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When is a matrix singular?

Let A  be an n x n  matrix.

We can find det A, that is, the signed sum 
of n! products, in O(n3) steps.
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When is a matrix singular?

Let A  be an n x n  matrix.

det A    can be determined effectively if the

entries are from a field where division can

be performed quickly.

But what if they are from a field in general,

or from a commutative ring ?



A classical case

D. Kınig, 1915

If the nonzero entries are distinct variables

(or real numbers, algebraically independent

over the field of the rationals) then we can

describe the zero-nonzero pattern of the

matrix by a bipartite graph and check

whether the graph has a perfect matching.





If the nonzero entries are different variables

(or real numbers, algebraically independent

over the field of the rationals)

then rank equals term rank.





Edmonds, 1967

The term rank of a 0,1 -matrix A is the

same as the linear algebra rank of the

matrix obtained by replacing the 1’s in

A by distinct indeterminates over any

integral domain.
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The term rank of a 0,1 matrix A is the

same as the linear algebra rank of

the matrix obtained by replacing the

1’s in A by distinct indeterminates

over any integral domain.

Edmonds, 2009



If the nonzero entries are not independent
then deciding singularity may be hard.

Such algebraic dependencies often occur in
engineering applications.



If the nonzero entries are not independent
then deciding singularity may be hard.

Such algebraic dependencies often occur in
engineering applications.

Examples in the analysis of electric
networks were collected in a survey 
paper to appear as Chapter 11 of 
R. Mahjoub (ed.), 
Progress in Combinatorial Optimization, 
Wiley, 2012.



If the nonzero entries are not independent
then deciding singularity may be hard.

Such algebraic dependencies often occur in
engineering applications.

In this talk examples in the analysis of bar-
and-joint frameworks are discussed.



Rigid Non-rigid (mechanism)

Bar and joint frameworks
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Rigid Non-rigid (mechanism)

How can we describe the difference?

Bar and joint frameworks



What is the effect of a rod?

i j
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What is the effect of a rod?



Au=0



A framework with n joints in the
d-dimensional space is defined

to be (infinitesimally) rigid if

r(A) = nd – d(d+1)/2

In particular: r(A) = n – 1 if d = 1, 

r(A) = 2n – 3  for the plane and

r(A) = 3n – 6  for the 3-space.



Rigid Non-rigid (has an

infinitesimal motion)

(although the graphs of the two

frameworks are isomorphic)



• For certain graphs (like C4) 
every realization leads to

nonrigid frameworks.

• For others, some of their

realizations lead to rigid
frameworks.

These latter type of graphs are

called generic rigid. 



• Deciding the rigidity of a frame-

work (that is, of an actual real-

ization of a graph) is a problem

in linear algebra.

• Deciding whether a graph is 

generic rigid is a combinatorial

problem.



• Deciding the rigidity of a frame-

work (that is, of an actual real-

ization of a graph) is determining

r(A) over the field of the reals.

• Deciding whether a graph is 

generic rigid is determining r(A)

over a commutative ring.



The matrix A in case of K4

in the 2-dimensional space



• Special case: minimal generic

rigid graphs (when the deletion of

any edge destroys rigidity).

• In this case the number of rods
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• Special case: minimal generic

rigid graphs (when the deletion of

any edge destroys rigidity).

• In this case the number of rods

must be r(A) = nd – d(d+1)/2

• Why minimal?



A famous minimally rigid structure:

Szabadság Bridge, Budapest



In the 1-dimensional case a frame-

work is rigid if and only if its graph

is connected, hence minimal (ge-

neric) rigid graphs are the trees.

In the 2-dimensional case minimal

generic rigid graphs are well

characterized (see later).

In higher dimensions the problem is 

open.



A 1-dimensional example

1

2

3

4

5

x1-x2 x2-x1 0           0           0

x1-x3 0         x3-x1            0           0

0        0         x3-x4 x4-x3 0

0        0         x3-x5 0        x5-x3
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A 1-dimensional example

1

2

3

4

5

x1-x2 0           0           0

x1-x3 x3-x1 0           0

0        x3-x4 x4-x3 0

0        x3-x5 0         x5-x3

One single „product” –
expanded to  24 = 16  products. 
They correspond to the  16 
possible orientations of the tree.



A 1-dimensional example

1

2

3

4

5

x1-x2 0           0           0

x1-x3 x3-x1 0           0

0        x3-x4 x4-x3 0

0        x3-x5 0         x5-x3

For example, this orientation
corresponds to x1

2 x3
2

The sequence [2,0,2,0,0]  of
the exponents will be called
the profile of the product.



The n-tuple [α1, α2, … αn]  with

Σαi=n-1 arises as the profile of an

expansion member if and only if the

tree has an orientation satisfying

dout(vi)=αi for every vertex vi

This can be checked in polynomial

time (using a matroid intersection

algorithm)



If a graph with n vertices and n-1 

edges is not a tree then it is not

generic rigid (in the 1-dimensional 

case).

The determinant may or may not

have nonzero expansion

members, depending on the

selection of the vertex to be fixed.
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4

5

If we delete one of the first three columns, 

the remaining 4X4 matrix will have no 

nonzero expansion member



x1-x2 x2-x1 0       0       0

x1-x3 0     x3-x1     0       0

0    x2-x3 x3-x2 0       0

0      0       0     x4-x5 x5-x4

1

2 3

4

5

If we delete one of the last two columns, 

the remaining 4X4 matrix will have 32 

nonzero expansion members (which will

pairwise cancel out each other).



The reason of the different behaviour:

The profile of a nonzero expansion

member uniquely determines the

orientation of the graph

if and only if

the graph has no circuits.



Lovász and Yemini (1982)

In the 2-dimensional case a graph

G with n vertices and 2n-3 edges is 

minimal generic rigid if and only if

for any edge e of G the edge set

G+e is the union of two trees.



1

2

3

4

The profile of this pair of trees is 

[1,0,2,0; 1,0,0,2]                       

and this corresponds to the

expansion member

x1x3
2y1y4

2



The corresponding 2-dimensional 

problem:

Given a graph G with n vertices and
2n - 2 edges, and two n-tuples
[α1, α2,… αn] with Σαi = n - 1  and
[β1, β2,… βn] with Σβi = n - 1.

Can we decompose G into two trees so
that the first one has an orientation
satisfying dout(vi)=αi for every vertex vi
and the second has an orientation
satisfying dout(vi)=βi for every vertex vi ?



Results:

• Either decomposability alone or
orientability alone can be formulated as
the intersection problem of two matroids
and hence can be checked in polynomial
time (these are well known since the late
1960’s).

• The whole problem can be formulated as
the intersection problem of three matroids
(but this latter problem is NP-hard). 



Conjecture

The whole problem is solvable in

polynomial time and probably so

is its d-dimensional generalization

for every d. 



Thank you for your attention

recski@cs.bme.hu


