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When is a matrix singular?

Let A be an nx n matrix.

We can find det A, that is, the signed sum
of n!/products, in O(n3) steps.
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entries are from a field where division can
be performed quickly.



When is a matrix singular?

Let A be an nx n matrix.

det A can be determined effectively if the
entries are from a field where division can

be performed quickly.

But what if they are from a field in general,
or from a commutative ring ?



A classical case

D. Konig, 1915

If the nonzero entries are distinct variables
(or real numbers, algebraically independent
over the field of the rationals) then we can
describe the zero-nonzero pattern of the
matrix by a bipartite graph and check
whether the graph has a perfect matching.
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If the nonzero entries are different variables
(or real numbers, algebraically independent
over the field of the rationals)

then rank equals term rank.



Systems of Distinct Representatives and Linear Algebra*

‘ Jack Edmonds
Institute for Basic Standards, National Bureau of Standards, Washington, D.C. 20234
(November 16, 1966)

Some purposes of this paper are: (1) To take seriously the term, “term rank.” (2) To make an issue
of not “rearranging rows and columns™ by not “arranging” them in the first place, (31 To promote the
numerical use of Cramer's rule. (1) To illustrate that the relevance of “number of steps™ 1o “amount
of work™ depends on the amount of work in a step. (5) To cail attention to the computational aspect
of SDR’s. an aspect where the subject differs from being an instance of familiar linear algebra. (6) To
describe an SDR instance of a theory on extremal combinatorics that nses linear algebra in very dif-
ferent ways than does totally unimodular theary, (The preceding paper. Optimum Branchings, de-

scribes another instance of that theory))

Key Words: Algorithms, combinatorics, indeterminates, linear algebra, matroids, systems of

distinct representatives, term rank.

1. Introduction

he well-known concept of term rank [5, 6].! is
wn here to be a special case of linear-algebra rank.
s observation is used to provide a simple linear-
:bra proof of the well-known SDR theorem. Exeept
familiar linear algebra, the paper is self-contained.
ncidentally to SDR’s, an algorithm is presented for
aputing the determinant or the rank of any matrix
r any integral domain. It is a variation of Gaussian
.. linear) elimination which has certain advantages.

s observed to be an interestingly bad algorithm for

aputing term rank.
‘he final part of the paper discusses some simple
troidal aspects of SDR’s.

However, here the word ‘“transversal” will be used
differently.)

3. Matrices of Zeros and Ones

The subject of SDR’s is frequently treated in the
context of matrices of 0's and 1's. The incidence
matrix of the family Q of subsets of £ is the matrix
A= [a;]. i€k, jeQ. such that aj;=1if iej, and a;;=0
otherwise.

AMiﬂg_iﬂ a matrix is a subset of its positions
(i, J) such that first indices (rows) of members are all
different and second indices (columns) of members are
all different. A transversal (column transversal) of a
matrix is a matching in the matrix which has a member



Edmonds, 1967

The term rank of a 0,1 -matrix A is the
same as the linear algebra rank of the
matrix obtained by replacing the 1’s in
A Dby distinct indeterminates over any
integral domain.



Edmonds, 2009

=)

Edmond@s, 1967 @&
The term rank of a 0,1 matrix A is the
same as the linear algebra rank of
the matrix obtained by replacing the
1's In A by distinct indeterminates

over any integral domain.




If the nonzero entries are not independent
then deciding singularity may be hard.

Such algebraic dependencies often occur in
engineering applications.



If the nonzero entries are not independent
then deciding singularity may be hard.

Such algebraic dependencies often occur in
engineering applications.

Examples in the analysis of electric
networks were collected in a survey
paper to appear as Chapter 11 of
R. Mahjoub (ed.),

Progress in Combinatorial Optimization,
Wiley, 2012.



If the nonzero entries are not independent
then deciding singularity may be hard.

Such algebraic dependencies often occur in
engineering applications.

In this talk examples in the analysis of bar-
and-joint frameworks are discussed.
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How can we describe the difference?



What is the effect of a rod?

]
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What is the effect of a rod?

| — ]

\/(Ii . 5:1')2 + (yi = y;*)z + (311_ — 2z7)% = constant

| (1‘1'7[3) - 333'[3))-.2 + (.y; (t] -*-?J-(t])z +_ (2:(t) — z; (t]]2 =cij

e R

(5:(6) = 55(0) () — £5(8) + (5e) — (61 (0) — 65(0)+
() - z:r'(t))(éi(t) — z;(t)} =0,



(5:(8) = 5(0) (6 = 250) + (9 (0) — (0N (6 6) — 65()+
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(5:(8) = 5(0) (6 = 250) + (9 (0) — (0N (6 6) — 65()+
() - 25 (O) &0 ~ 5 () =0

| (h,— — hj)(vi - -lvj.)_= 0 for every rod R;; -
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» '..+ (z:(t) — 2;(t))2(t) + (2, (t) — =(t))z;(t) =O0. |



:!‘ - (;i(t) - EJ"(‘)}if(?) + {z(t) — i (¢)) %5 (t) +- _—
Lt (a0 = R + () - 2 (0)5(0) =0

Au=0

[zi-z2 o=z 0 0 yi—y2 y2—y1 O 0
|z — 3 0 T3 — X1 0 -y 0 yw-un O

Ty —x4 0 0 " z4—x1 y1—ya O 0 wm—wn
0  z2o—x3 r3~z2 0 0  y2—ws .3134_?;2 -0

| 0 L2 — x4 0 $4?$2 0  ya—vya 0 Y4 — Y2
L0 0 wm-z4 zg—2z3 0 0 ys—ys ya—ys




A framework with n joints in the
ad-dimensional space is defined
to be (infinitesimally) rigid if

r(A) = nd — d(d+1)/2

In particular: r(A)=n—-1itd =1,
r(A) =2n — 3 for the plane and
r(A) =3n— 6 for the 3-space.






* For certain graphs (like C,)
every realization leads to
nonrigid frameworks.

e For others, some of their
realizations lead to rigid
frameworks.

These latter type of graphs are
called generic rigid.



* Deciding the rigidity of a frame-
work (that is, of an actual real-
ization of a graph) is a problem
in linear algebra.

» Deciding whether a graph is
generic rigid iIs a combinatorial
problem.



* Deciding the rigidity of a frame-
work (that is, of an actual real-
ization of a graph) is determining
r(A) over the field of the reals.

» Deciding whether a graph is
generic rigid is determining r(A)
over a commutative ring.



The matrix A in case of K,

In the 2-dimensional space

-3 -1 0 0 wyi—-y y2—y1 O 0 ]

fzy —x3 0 T3 — I 0 vyi—y3 0 wyw-y O

|T1i—z4 O 0 24—z y1—ys O 0y
0 Ty — T3 T3 — 2 0 0 y2—y3 .3134_?;2 -0

| 0 L2 — x4 0 $4?$2 0  ya—vya 0 Y4 — Y2
L0 0 wm-z4 zg—2z3 0 0 ys—ys ya—ys




» Special case: minimal generic
rigid graphs (when the deletion of
any edge destroys rigidity).

* In this case the number of rods
must be r(A) = nd — d(d+1)/2



» Special case: minimal generic
rigid graphs (when the deletion of
any edge destroys rigidity).

* In this case the number of rods
must be r(A) = nd — d(d+1)/2

 Why minimal?



A famous minimally rigid structure:
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Szabadsag Bridge, Budapest



In the 1-dimensional case a frame-
work Is rigid if and only if its graph
IS connected, hence minimal (ge-
neric) rigid graphs are the trees.

In the 2-dimensional case minimal
generic rigid graphs are well
characterized (see later).

In higher dimensions the problem is
open.



A 1-dimensional example

XX XoX; 0 0 0
4



A 1-dimensional example

X:-Xo XomX, 0 0 0
: X;i-X3 0 X3-X; 0 0
0 0 XXy Xy X3 0
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0 i XXy X4 X3 0
0 : X3-X5 0 X5-X3
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X:-Xo XomX, 0 0 0
: X;i-X3 0 X3-X; 0 0
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A 1-dimensional example

XX, 0 0 0

X1-X5  Xg=X; 0 0
0 Xg-Xy; X4 X3 0
0 X3-X5 0 X5-X3

One single ,product” —
expanded to 24= 16 products.
They correspond to the 16
possible orientations of the tree.



A 1-dimensional example

XX, 0 0 0
X1-X5  Xg=X; 0 0
0 Xg-Xy; X4 X3 0
0 X3-X5 0 X5-X3

For example, this orientation
corresponds to x,2 x;°

The sequence [2,0,2,0,0] of
the exponents will be called
the profile of the producit.




The n-tuple [a,, a,, ... a.] with
2a=n-1 arises as the profile of an
expansion member if and only if the
tree has an orientation satisfying
d,..(v)=q; for every vertex v,

This can be checked in polynomial
time (using a matroid intersection
algorithm)



If a graph with n vertices and n-1
edges is not a tree then it is not
generic rigid (in the 1-dimensional
case).

The determinant may or may not
have nonzero expansion
members, depending on the
selection of the vertex to be fixed.



XX 0 Xgx; O 0 {§
0 Xo-X3 XX, 0 O

2 3

U'I\_p.



XX, Xo-X; 0

0 0 1 4
XX 0 Xgx; O 0 A I
0 XoX3 XX, 0 0 A
0O O 0 X, X5 X5-X, = 5
If we delete one of the first three columns,

the remaining 4X4 matrix will have no
nonzero expansion member



Xi-Xo Xoox;, 0 0 0

1 4

XX 0 Xgx; O 0 {§ AI
0 Xo-X3 XX, 0 O

2 3 5

0 0 0 Xy X5 Xs-X,

If we delete one of the last two columns,
the remaining 4X4 matrix will have 32
nonzero expansion members (which will
pairwise cancel out each other).



The reason of the different behaviour:

The profile of a nonzero expansion
member uniquely determines the
orientation of the graph
If and only if
the graph has no circuits.



Lovasz and Yemini (1982)

In the 2-dimensional case a graph
G with n vertices and 2n-3 edges is
minimal generic rigid if and only if
for any edge e of GG the edge set
G+e is the union of two trees.



A V]

4

The profile of this pair of trees Is
[1,0,2,0; 1,0,0,2]
and this corresponds to the
expansion member

2, vy 2
X1X3°Y 1Y 4



The corresponding 2-dimensional
problem:

Given a graph G with n vertices and
2n - 2 edges, and two n-tuples
la,, a,,... a ]with Za.=n-1 and

[1815 1827 :Bn] Wlth ZB n-1.

Can we decompose G into two trees so
that the first one has an orientation
satistying d,(v)=0a; for every vertex v,
and the second has an orientation
satisfying d,(v;)=B,; for every vertex v, ?



Results:

» Either decomposability alone or
orientability alone can be formulated as
the intersection problem of two matroids
and hence can be checked in polynomial
time (these are well known since the late
1960's).

* The whole problem can be formulated as
the intersection problem of three matroids
(but this latter problem is NP-hard).



Conjecture

The whole problem is solvable In
polynomial time and probably so
IS its d-dimensional generalization
for every d.



Thank you for your attention
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