Rigidity Workshop, Toronto 2011

Pin Merging in Planar Body Frameworks

Rudi Penne
rudi.penne@kdg.be
Karel de Grote-Hogeschool
University of Antwerp

Meet a $\frac{3}{2} T$-graph
pin meraing in planar body frameworks - p. 2/2

Meet a $\frac{3}{2} T$-graph

Meet a $\frac{3}{2} T$-graph

Definition:
$G=(V, E)$ is a $\frac{3}{2} T$-graph if

$$
E=F_{R} \cup F_{Y} \cup F_{G}
$$

with covering trees $F_{R} \cup F_{Y}, F_{R} \cup F_{G}$ and $F_{Y} \cup F_{G}$.

Meet a $\frac{3}{2} T$-graph

Definition:
$G=(V, E)$ is a $\frac{3}{2} T$-graph if

$$
E=F_{R} \cup F_{Y} \cup F_{G}
$$

with covering trees $F_{R} \cup F_{Y}, F_{R} \cup F_{G}$ and $F_{Y} \cup F_{G}$.

Meet a $\frac{3}{2} T$-graph

Definition:
$G=(V, E)$ is a $\frac{3}{2} T$-graph if

$$
E=F_{R} \cup F_{Y} \cup F_{G}
$$

with covering trees $F_{R} \cup F_{Y}, F_{R} \cup F_{G}$ and $F_{Y} \cup F_{G}$.

Meet a $\frac{3}{2} T$-graph

Definition:
$G=(V, E)$ is a $\frac{3}{2} T$-graph if

$$
E=F_{R} \cup F_{Y} \cup F_{G}
$$

with covering trees $F_{R} \cup F_{Y}, F_{R} \cup F_{G}$ and $F_{Y} \cup F_{G}$.

The double of a $\frac{3}{2} T$-graph

Definition: $2 G$: the double of a graph:

The double of a $\frac{3}{2} T$-graph

Definition: $2 G$: the double of a graph:
= multigraph obtained from $G=(V, E)$ by doubling each edge in E

The double of a $\frac{3}{2} T$-graph

Definition: $2 G$: the double of a graph:
$=$ multigraph obtained from $G=(V, E)$ by doubling each edge in E
Property: G is a $\frac{3}{2} T$-graph
$\Longleftrightarrow 2 G$ is the union of 3 spanning trees

The double of a $\frac{3}{2} T$-graph

Definition: $2 G$: the double of a graph:
$=$ multigraph obtained from $G=(V, E)$ by doubling each edge in E
Property: G is a $\frac{3}{2} T$-graph
$\Longleftrightarrow 2 G$ is the union of 3 spanning trees
(Indeed: $2 G=T_{R Y} \cup T_{R G} \cup T_{Y G}$
with $T_{R Y}=F_{R} \cup F_{Y}, T_{R G}=F_{R} \cup F_{G}$ and $T_{Y G}=F_{Y} \cup F_{G}$.)

The double of a $\frac{3}{2} T$-graph

Definition: $2 G$: the double of a graph:
$=$ multigraph obtained from $G=(V, E)$ by doubling each edge in E
Property: G is a $\frac{3}{2} T$-graph
$\Longleftrightarrow 2 G$ is the union of 3 spanning trees
(Indeed: $2 G=T_{R Y} \cup T_{R G} \cup T_{Y G}$
with $T_{R Y}=F_{R} \cup F_{Y}, T_{R G}=F_{R} \cup F_{G}$ and $T_{Y G}=F_{Y} \cup F_{G}$.)
Conclusion: (Nash-Williams, Tutte)
$G=(V, E)$ is a $\frac{3}{2} T$-graph \Longleftrightarrow

1. $2|E|=3|V|-3$
2. $\forall \emptyset \neq E^{\prime} \subset E: 2\left|E^{\prime}\right| \leq 3\left|V^{\prime}\right|-3$

Graphs as framework design

$$
\left.G=(V, E): \text { given graph (e.g. } \frac{3}{2} T \text {-graph }\right)
$$

Graphs as framework design

$G=(V, E)$: given graph (e.g. $\frac{3}{2} T$-graph $)$
$V \leftrightarrow$ rigid bodies in the plane
$E \leftrightarrow$ revolute pins connecting body pairs

Graphs as framework design

$G=(V, E)$: given graph (e.g. $\frac{3}{2} T$-graph)
$V \leftrightarrow$ rigid bodies in the plane
$E \leftrightarrow$ revolute pins connecting body pairs

Graphs as framework design

$G=(V, E)$: given graph (e.g. $\frac{3}{2} T$-graph $)$
$V \leftrightarrow$ rigid bodies in the plane
$E \leftrightarrow$ revolute pins connecting body pairs

Remark: pins have degree 2 in generic realizations

Results in general dimensions

d : dimension workspace

Results in general dimensions

d : dimension workspace
$G=(V, E)$: design for body-and-hinge framework
$V \leftrightarrow$ rigid bodies in d-space
$E \leftrightarrow$ hinges attaching body pairs

Results in general dimensions

d : dimension workspace
$G=(V, E)$: design for body-and-hinge framework
$V \leftrightarrow$ rigid bodies in d-space
$E \leftrightarrow$ hinges attaching body pairs
$D=\binom{d+1}{d-1}$: dimension space of hinges
Theorem: G can be realized as inf. rigid body-and-hinge framework in \mathbb{R}^{d} iff. $(D-1) G$ contains D edge-disjoint spanning trees. (Tay-Whiteley)

Results in general dimensions

d : dimension workspace
$G=(V, E)$: design for body-and-hinge framework
$V \leftrightarrow$ rigid bodies in d-space
$E \leftrightarrow$ hinges attaching body pairs
$D=\binom{d+1}{d-1}$: dimension space of hinges
Theorem: G can be realized as inf. rigid body-and-hinge framework in \mathbb{R}^{d} iff. $(D-1) G$ contains D edge-disjoint spanning trees. (Tay-Whiteley)

Special case ($d=2$): $\frac{3}{2} T$-graph is a minimal design for inf. rigid body-and-pin framework in the plane.

Non-generic realizations

$$
G=(V, E) \text { : design for body-and-hinge framework in } \mathbb{R}^{d}
$$

Non-generic realizations

$G=(V, E)$: design for body-and-hinge framework in R^{d} Assume: $(D-1) G$ contains D edge-disjoint spanning trees

Non-generic realizations

$G=(V, E)$: design for body-and-hinge framework in \mathbb{R}^{d} Assume: $(D-1) G$ contains D edge-disjoint spanning trees

Katoh-Tanigawa: \exists rigid realizations with plates

Non-generic realizations

$G=(V, E)$: design for body-and-hinge framework in \mathbb{R}^{d} Assume: $(D-1) G$ contains D edge-disjoint spanning trees

Katoh-Tanigawa: \exists rigid realizations with plates
Special case: $\frac{3}{2} T$-graph can be realized as inf. rigid frameworks in the plane with collinear pins for each body. (Jackson-Jordán)

Non-generic realizations

$G=(V, E)$: design for body-and-hinge framework in \mathbb{R}^{d} Assume: $(D-1) G$ contains D edge-disjoint spanning trees

Katoh-Tanigawa: \exists rigid realizations with plates
General incidences: (allowing coinciding hinges = "multi-hinges")
count criterium on incidence graph $K_{b, h}$
but no tree decomposition
(Tay(?), 1987) (Tanigawa, 2011):

Non-generic realizations

$G=(V, E)$: design for body-and-hinge framework in \mathbb{R}^{d} Assume: $(D-1) G$ contains D edge-disjoint spanning trees

Katoh-Tanigawa: \exists rigid realizations with plates
General incidences: (allowing coinciding hinges = "multi-hinges")
count criterium on incidence graph $K_{b, h}$
but no tree decomposition
(Tay(?), 1987) (Tanigawa, 2011):
\exists rigid realization $\Longleftrightarrow \exists I \subset(D-1) E\left(K_{b, h}\right)$ s.t.

1) $|I|=D \cdot b+(D-1) \cdot h-D$
2) $\forall F \subset I: F \leq D \cdot B(F)+(D-1) \cdot H(F)-D$

Pin merging

pin meraina in planar bodv frameworks - p. 7/2

Pin merging

= non-generic planar realization of $G=(V, E)$ as body framework such that certain attachments (in E) are realized as coinciding pins:

Pin merging

= non-generic planar realization of $G=(V, E)$ as body framework such that certain attachments (in E) are realized as coinciding pins:

Pin merging

$=$ non-generic planar realization of $G=(V, E)$ as body framework such that certain attachments (in E) are realized as coinciding pins:

Question:
What pin mergings in $\frac{3}{2} T$-graphs preserve inf. rigidity?

Hypergraphs and merged pins

Example:

Hypergraphs and merged pins

constraint: bodies 1,2,4,7 attached by one pin

Hypergraphs and merged pins

constraint: bodies 1,2,4,7 attached by one pin \Rightarrow edges $12,42,72$ clustered as hyperedge

Hypergraphs and merged pins

constraint: bodies 1,2,4,7 attached by one pin \Rightarrow edges 12, 42, 72 clustered as hyperedge
\Rightarrow framework design = hypergraph

Hypergraphs and merged pins

constraint: bodies 1,2,4,7 attached by one pin \Rightarrow edges 12, 42, 72 clustered as hyperedge
\Rightarrow framework design $=$ hypergraph

Hypergraphs and merged pins

constraint: bodies 1,2,4,7 attached by one pin \Rightarrow edges 12, 42, 72 clustered as hyperedge
\Rightarrow framework design $=$ hypergraph

Notice: this pin merge causes non-trivial motions.

Intermezzo: weights of hyperedges

Intermezzo: weights of hyperedges

$$
G=\left(\{1,2,3,4,5,6,7\},\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}\right)
$$

Intermezzo: weights of hyperedges

$$
G=\left(\{1,2,3,4,5,6,7\},\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}\right)
$$

hyperedges:

$$
\begin{aligned}
& e_{1}=\{2,7\} \\
& e_{2}=\{2,4\} \\
& e_{3}=\{3,4,5\} \\
& e_{4}=\{1,3,6\}
\end{aligned}
$$

Intermezzo: weights of hyperedges

$G=\left(\{1,2,3,4,5,6,7\},\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}\right)$
hyperedges:

$$
\begin{aligned}
& e_{1}=\{2,7\} \\
& e_{2}=\{2,4\} \\
& e_{3}=\{3,4,5\} \\
& e_{4}=\{1,3,6\}
\end{aligned}
$$

Definition: weight hyperedge: $w(e)=|e|-1$

Intermezzo: weights of hyperedges

$G=\left(\{1,2,3,4,5,6,7\},\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}\right)$ hyperedges:

$$
\begin{aligned}
& e_{1}=\{2,7\} \\
& e_{2}=\{2,4\} \\
& e_{3}=\{3,4,5\} \\
& e_{4}=\{1,3,6\}
\end{aligned}
$$

Definition: weight hyperedge: $w(e)=|e|-1$
$w\left(e_{1}\right)=w\left(e_{2}\right)=1, w\left(e_{3}\right)=w\left(e_{4}\right)=2$

Intermezzo: weights of hyperedges

$G=\left(\{1,2,3,4,5,6,7\},\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}\right)$ hyperedges:

$$
\begin{aligned}
& e_{1}=\{2,7\} \\
& e_{2}=\{2,4\} \\
& e_{3}=\{3,4,5\} \\
& e_{4}=\{1,3,6\}
\end{aligned}
$$

Definition: weight hyperedge: $w(e)=|e|-1$
$w\left(e_{1}\right)=w\left(e_{2}\right)=1, w\left(e_{3}\right)=w\left(e_{4}\right)=2$
Application: Hypertree:

Intermezzo: weights of hyperedges

$$
G=\left(\{1,2,3,4,5,6,7\},\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}\right)
$$

hyperedges:

$$
\begin{aligned}
& e_{1}=\{2,7\} \\
& e_{2}=\{2,4\} \\
& e_{3}=\{3,4,5\} \\
& e_{4}=\{1,3,6\}
\end{aligned}
$$

Definition: weight hyperedge: $w(e)=|e|-1$
$w\left(e_{1}\right)=w\left(e_{2}\right)=1, w\left(e_{3}\right)=w\left(e_{4}\right)=2$

Application: Hypertree:

G connected and no hypercycles
$\Longleftrightarrow G$ connected and $w(E)=|V|-1$
$\Longleftrightarrow w(E)=|V|-1$ and for each $\emptyset \neq E^{\prime} \subset E: w\left(E^{\prime}\right) \leq\left|\cup E^{\prime}\right|-1$

$\frac{3}{2} H T$-Hypergraphs

$\frac{3}{2} H T$-Hypergraphs

$\frac{3}{2} H T$-decomposition:

3 colours for hyperedges

$\frac{3}{2} H T$-Hypergraphs

$\frac{3}{2} H T$-decomposition:
3 colours for hyperedges
union 2 colours \rightarrow spanning hypertree

$\frac{3}{2} H T$-Hypergraphs

spanning hypertree:

$\frac{3}{2} H T$-decomposition:
3 colours for hyperedges
union 2 colours \rightarrow spanning hypertree

$\frac{3}{2} H T$-Hypergraphs

spanning hypertree:

$\frac{3}{2} H T$-decomposition:
3 colours for hyperedges

union 2 colours \rightarrow spanning hypertree

$\frac{3}{2} H T$-Hypergraphs

spanning hypertree:

$\frac{3}{2} H T$-decomposition:
3 colours for hyperedges

union 2 colours \rightarrow spanning hypertree
Consequence: $\frac{3}{2} H T$-hypergraph $G=(V, E) \Rightarrow$

- $2 \cdot w(E)=3|V|-3$
- for each $\emptyset \neq E^{\prime} \subset E: 2 \cdot w\left(E^{\prime}\right) \leq 3\left|\cup E^{\prime}\right|-3$

$\frac{3}{2} H T$-Hypergraphs

spanning hypertree:

$\frac{3}{2} H T$-decomposition:
3 colours for hyperedges

union 2 colours \rightarrow spanning hypertree
Consequence: $\frac{3}{2} H T$-hypergraph $G=(V, E) \Rightarrow$

- $2 \cdot w(E)=3|V|-3$
- for each $\emptyset \neq E^{\prime} \subset E: 2 \cdot w\left(E^{\prime}\right) \leq 3\left|\cup E^{\prime}\right|-3$

$\frac{3}{2} H T$ versus $\frac{3}{2} T$

hypergraph $G=(V, E)$

$\frac{3}{2} H T$ versus $\frac{3}{2} T$

hypergraph $G=(V, E)$

total weight $w(E)$
graph $G_{2}=\left(V, E_{2}\right)$

number of edges $\left|E_{2}\right|$

$\frac{3}{2} H T$ versus $\frac{3}{2} T$

hypergraph $G=(V, E)$

total weight $w(E)$
$\frac{3}{2} H T$-decomposition
graph $G_{2}=\left(V, E_{2}\right)$

number of edges $\left|E_{2}\right|$

$\frac{3}{2} T$-decomposition

sometimes

$\frac{3}{2} H T$-obstructions

(3/2, 3/2)-hypertight

$\frac{3}{2} H T$-obstructions

(3/2, 3/2)-hypertight yet not $\frac{3}{2} H T$-decomposable

$\frac{3}{2} H T$-obstructions

(3/2, 3/2)-hypertight yet not $\frac{3}{2} H T$-decomposable

Property: $\frac{3}{2} H T \Rightarrow$ no (hyper)leaves

$\frac{3}{2} H T$-obstructions

(3/2, 3/2)-hypertight yet not $\frac{3}{2} H T$-decomposable

Property: $\frac{3}{2} H T \Rightarrow$ no (hyper)leaves
Conjecture: leaf-free $+(3 / 2,3 / 2)$-hypertight $\Longleftrightarrow \frac{3}{2} H T$

$\frac{3}{2} H T$-obstructions

(3/2, 3/2)-hypertight yet not $\frac{3}{2} H T$-decomposable

Property: $\frac{3}{2} H T \Rightarrow$ no (hyper)leaves
Conjecture: leaf-free $+(3 / 2,3 / 2)$-hypertight $\Longleftrightarrow \frac{3}{2} H T$
Lucky guess: leaf-free + (D/(D-1),D/(D-1))-hypertight $\Longleftrightarrow \frac{D}{D-1} H T$

$\frac{3}{2} H T$-Hypergraphs as rigid frameworks

 Definition. Planar framework realization of hypergraph $G=$ body-and-pin realization where hyperedges represent merged pins.
$\frac{3}{2} H T$-Hypergraphs as rigid frameworks

 Definition. Planar framework realization of hypergraph $G=$ body-and-pin realization where hyperedges represent merged pins.Theorem:

$\frac{3}{2} H T$-Hypergraphs as rigid frameworks

Definition. Planar framework realization of hypergraph $G=$ body-and-pin realization where hyperedges represent merged pins.

Theorem:
G contains $\frac{3}{2} H T \Rightarrow$ realizable as inf. rigid planar body-and-pin framework.

$\frac{3}{2} H T$-Hypergraphs as rigid frameworks

Definition. Planar framework realization of hypergraph $G=$ body-and-pin realization where hyperedges represent merged pins.

Theorem:
G contains $\frac{3}{2} H T \Rightarrow$ realizable as inf. rigid planar body-and-pin framework.
Proof. Specialisation of rigidity matrix. Valid for general dimensions.

$\frac{3}{2} H T$-Hypergraphs as rigid frameworks

Definition. Planar framework realization of hypergraph $G=$ body-and-pin realization where hyperedges represent merged pins.

Theorem:
G contains $\frac{3}{2} H T \Rightarrow$ realizable as inf. rigid planar body-and-pin framework.
Proof. Specialisation of rigidity matrix. Valid for general dimensions.

Conjecture: The converse holds.

The rigidity matrix I

Realization of hypergraph $G=(V, E)$ as body and pin framework in the plane: $F=(G, P)$

$$
P: E \rightarrow \mathbb{R}^{2}: e \mapsto P(e)=\left(x_{e}, y_{e}\right)
$$

The rigidity matrix I

Realization of hypergraph $G=(V, E)$ as body and pin framework in the plane: $F=(G, P)$

$$
P: E \rightarrow \mathbb{R}^{2}: e \mapsto P(e)=\left(x_{e}, y_{e}\right)
$$

Choose host graph $G_{2}=\left(V, E_{2}\right)$.

The rigidity matrix I

Realization of hypergraph $G=(V, E)$ as body and pin framework in the plane: $F=(G, P)$

$$
P: E \rightarrow \mathbb{R}^{2}: e \mapsto P(e)=\left(x_{e}, y_{e}\right)
$$

Choose host graph $G_{2}=\left(V, E_{2}\right)$. For each edge $i j \in E_{2}$ with $\{i, j\} \subset e \in E$:

$$
\begin{aligned}
J X_{i j} & =\left(0, \ldots, 0,1,0 \ldots, 0,-1,0, \ldots, 0|0, \ldots, 0| 0, \ldots, 0,-x_{e}, 0, \ldots, 0, x_{e}, 0, \ldots, 0\right) \\
J Y_{i j} & =\left(0, \ldots, 0|0, \ldots, 0,1,0 \ldots, 0,-1,0, \ldots, 0| 0, \ldots, 0,-y_{e}, 0, \ldots, 0, y_{e}, 0, \ldots, 0\right)
\end{aligned}
$$

(non-zero entries in positions i and j in subsequences of length $|V|$)

The rigidity matrix I

Realization of hypergraph $G=(V, E)$ as body and pin framework in the plane: $F=(G, P)$

$$
P: E \rightarrow \mathbb{R}^{2}: e \mapsto P(e)=\left(x_{e}, y_{e}\right)
$$

Choose host graph $G_{2}=\left(V, E_{2}\right)$. For each edge $i j \in E_{2}$ with $\{i, j\} \subset e \in E$:

$$
\begin{aligned}
J X_{i j} & =\left(0, \ldots, 0,1,0 \ldots, 0,-1,0, \ldots, 0|0, \ldots, 0| 0, \ldots, 0,-x_{e}, 0, \ldots, 0, x_{e}, 0, \ldots, 0\right) \\
J Y_{i j} & =\left(0, \ldots, 0|0, \ldots, 0,1,0 \ldots, 0,-1,0, \ldots, 0| 0, \ldots, 0,-y_{e}, 0, \ldots, 0, y_{e}, 0, \ldots, 0\right)
\end{aligned}
$$

(non-zero entries in positions i and j in subsequences of length $|V|$)
$\Rightarrow 2 w(E) \times|V|$ matrix $M\left(G_{2}, P\right)$.

The rigidity matrix II

Given hypergraph $G=(V, E)$ with realization $F=(G, P)$

The rigidity matrix II

Given hypergraph $G=(V, E)$ with realization $F=(G, P)$
Let $C_{i}=\left(a_{i}, b_{i}, c_{i}\right)$ with $i=1, \ldots, v=|V|$
and put $\gamma=\left(a_{1}, \ldots, a_{v}, b_{1}, \ldots, b_{v}, c_{1}, \ldots, c_{v}\right) \in \mathbb{R}^{3 v}$

The rigidity matrix II

Given hypergraph $G=(V, E)$ with realization $F=(G, P)$
Let $C_{i}=\left(a_{i}, b_{i}, c_{i}\right)$ with $i=1, \ldots, v=|V|$
and put $\gamma=\left(a_{1}, \ldots, a_{v}, b_{1}, \ldots, b_{v}, c_{1}, \ldots, c_{v}\right) \in \mathbb{R}^{3 v}$
Property: The C_{i} are centers of motion for bodies of F
$M\left(G_{2}, P\right) \cdot \gamma^{T}=0$ for any host G_{2}
$\Longleftrightarrow M\left(G_{2}, P\right) \cdot \gamma^{T}=\mathbf{0}$ for every host G_{2}

The rigidity matrix II

Given hypergraph $G=(V, E)$ with realization $F=(G, P)$
Let $C_{i}=\left(a_{i}, b_{i}, c_{i}\right)$ with $i=1, \ldots, v=|V|$
and put $\gamma=\left(a_{1}, \ldots, a_{v}, b_{1}, \ldots, b_{v}, c_{1}, \ldots, c_{v}\right) \in \mathbb{R}^{3 v}$
Property: The C_{i} are centers of motion for bodies of F
$M\left(G_{2}, P\right) \cdot \gamma^{T}=0$ for any host G_{2}
$\Longleftrightarrow M\left(G_{2}, P\right) \cdot \gamma^{T}=\mathbf{0}$ for every host G_{2}

Remarks:

- rank $M\left(G_{2}, P\right)$ independent from host
- F inf. rigid \Longleftrightarrow rank $M\left(G_{2}, P\right)=3|V|-3$
- F isostatic $\Longleftrightarrow M\left(G_{2}, P\right)$ has independent rows and $2 \cdot w(E)=3|V|-3$

Independent hypergraphs

Independent hypergraphs

Definition: Hypergraph $G=(V, E)$ is 2-independent iff. there is a realization P such that for some (hence for every) host G_{2} the rows of $M\left(G_{2}, P\right)$ are linearly independent.

Independent hypergraphs

Definition: Hypergraph $G=(V, E)$ is 2-independent iff. there is a realization P such that for some (hence for every) host G_{2} the rows of $M\left(G_{2}, P\right)$ are linearly independent.

Count criterion: Hypergraph $G=(V, E)$ without leaves is 2-independent iff.
$\forall \emptyset \neq E^{\prime} \subset E: 2 \cdot w\left(E^{\prime}\right) \leq 3\left|\cup E^{\prime}\right|-3$

Independent hypergraphs

Definition: Hypergraph $G=(V, E)$ is 2-independent iff. there is a realization P such that for some (hence for every) host G_{2} the rows of $M\left(G_{2}, P\right)$ are linearly independent.

Count criterion: Hypergraph $G=(V, E)$ without leaves is 2-independent iff.
$\forall \emptyset \neq E^{\prime} \subset E: 2 \cdot w\left(E^{\prime}\right) \leq 3\left|\cup E^{\prime}\right|-3$

Proof:

necessary: corank of each row subset ≥ 3
sufficient: Laman's Theorem

Independent hypergraphs

Definition: Hypergraph $G=(V, E)$ is 2-independent iff. there is a realization P such that for some (hence for every) host G_{2} the rows of $M\left(G_{2}, P\right)$ are linearly independent.

Count criterion: Hypergraph $G=(V, E)$ without leaves is 2-independent iff.
$\forall \emptyset \neq E^{\prime} \subset E: 2 \cdot w\left(E^{\prime}\right) \leq 3\left|\cup E^{\prime}\right|-3$

Proof:

necessary: corank of each row subset ≥ 3
sufficient: Laman's Theorem
Remark. Our count is equivalent to the Tay-Tanigawa criterion for $d=2$ (extra condition: no leaves).

Results and conjectures: overview

$G=(V, E)$: hypergraph with no isolated vertices

Results and conjectures: overview

$G=(V, E)$: hypergraph with no isolated vertices
G realizable as inf. rigid planar body-pin framework

Results and conjectures: overview

$G=(V, E)$: hypergraph with no isolated vertices
G realizable as inf. rigid planar body-pin framework I
no hyperleaves
and G contains
$\left(\frac{3}{2}, \frac{3}{2}\right)$-hypertight
subgraph

Results and conjectures: overview

$G=(V, E)$: hypergraph with no isolated vertices
G realizable as inf. rigid planar body-pin framework

no hyperleaves and G contains $\left(\frac{3}{2}, \frac{3}{2}\right)$-hypertight subgraph
G contains
$\frac{3}{2} \mathrm{HT}$-decomposition

Results and conjectures: overview

$G=(V, E)$: hypergraph with no isolated vertices
G realizable as inf. rigid planar body-pin framework

no hyperleaves and G contains
$\left(\frac{3}{2}, \frac{3}{2}\right)$-hypertight subgraph
(conjectured)
G contains
$\frac{3}{2} \mathrm{HT}$-decomposition

ミ

Matrix proof

Proposition: G is $\frac{3}{2} \mathrm{HT} \Rightarrow G$ is independent.

Matrix proof

Proposition: G is $\frac{3}{2} \mathrm{HT} \Rightarrow G$ is independent.

Proof:

hypergraph $G \rightarrow$ host graph $G_{2} \rightarrow M\left(G_{2}, \mathbf{X}, \mathrm{Y}\right)$
variables $(\mathbf{X}, \mathbf{Y})=\left(X_{e}, Y_{e}, \ldots\right)$ for each hyperedge e

Matrix proof

Proposition: G is $\frac{3}{2} \mathrm{HT} \Rightarrow G$ is independent.

Proof:

hypergraph $G \rightarrow$ host graph $G_{2} \rightarrow M\left(G_{2}, \mathbf{X}, \mathbf{Y}\right)$
$\frac{3}{2} \mathrm{HT} \Rightarrow 2 G_{2}=T_{1} \cup T_{2} \cup T_{3}$
(doubled) edges hosting the same hyperedge belong to the same trees

Matrix proof

Proposition: G is $\frac{3}{2} \mathrm{HT} \Rightarrow G$ is independent.
Proof:
hypergraph $G \rightarrow$ host graph $G_{2} \rightarrow M\left(G_{2}, \mathbf{X}, \mathrm{Y}\right)$
$\frac{3}{2} \mathrm{HT} \Rightarrow 2 G_{2}=T_{1} \cup T_{2} \cup T_{3}$
Rearrange rows of $M\left(G_{2}, \mathbf{X}, \mathrm{Y}\right):\left(T_{2}=T_{2 x} \cup T_{2 y}\right)$

$$
\left(\begin{array}{c|c|c}
I\left(T_{1}\right) & 0\left(T_{1}\right) & X\left(T_{1}\right) \\
I\left(T_{2 x}\right) & 0\left(T_{2 x}\right) & X\left(T_{2 x}\right) \\
0\left(T_{2 y}\right) & I\left(T_{2 y}\right) & Y\left(T_{2 y}\right) \\
0\left(T_{3}\right) & I\left(T_{3}\right) & Y\left(T_{3}\right)
\end{array}\right)
$$

Matrix proof (continued)

Specialization (X, Y):
e covered by $T_{1} \Rightarrow X_{e}=0$
e not covered by $T_{1} \Rightarrow X_{e}=1$
e covered by $T_{3} \quad \Rightarrow \quad Y_{e}=0$
e not covered by $T_{1} \Rightarrow Y_{e}=1$

Matrix proof (continued)

Specialization (X, Y):

e covered by $T_{1} \Rightarrow X_{e}=0$
e not covered by $T_{1} \Rightarrow X_{e}=1$
e covered by $T_{3} \quad \Rightarrow \quad Y_{e}=0$
e not covered by $T_{1} \Rightarrow Y_{e}=1$
$\Rightarrow M\left(G_{2}, \mathbf{X}, \mathrm{Y}\right)$ becomes:
$M=\left(\begin{array}{c|c|c}I\left(T_{1}\right) & 0\left(F_{1}\right) & 0\left(F_{1}\right) \\ I\left(T_{2 x}\right) & 0\left(T_{2 x}\right) & -I\left(T_{2 x}\right) \\ 0\left(T_{2 y}\right) & I\left(T_{2 y}\right) & -I\left(T_{2 y}\right) \\ 0\left(T_{3}\right) & I\left(T_{3}\right) & 0\left(T_{3}\right)\end{array}\right)$

Matrix proof (continued)

Specialization (X, Y):
e covered by $T_{1} \Rightarrow X_{e}=0$
e not covered by $T_{1} \Rightarrow X_{e}=1$
e covered by $T_{3} \quad \Rightarrow \quad Y_{e}=0$
e not covered by $T_{1} \Rightarrow Y_{e}=1$
$\Rightarrow M\left(G_{2}, \mathbf{X}, \mathrm{Y}\right)$ becomes:
$M=\left(\begin{array}{c|c|c}I\left(T_{1}\right) & 0\left(F_{1}\right) & 0\left(F_{1}\right) \\ I\left(T_{2 x}\right) & 0\left(T_{2 x}\right) & -I\left(T_{2 x}\right) \\ 0\left(T_{2 y}\right) & I\left(T_{2 y}\right) & -I\left(T_{2 y}\right) \\ 0\left(T_{3}\right) & I\left(T_{3}\right) & 0\left(T_{3}\right)\end{array}\right)$
Observe: rows M lin. independent.

Matrix proof (continued)

Specialization (X, Y):
e covered by $T_{1} \quad \Rightarrow \quad X_{e}=0$
e not covered by $T_{1} \Rightarrow X_{e}=1$
e covered by $T_{3} \quad \Rightarrow \quad Y_{e}=0$
e not covered by $T_{1} \Rightarrow Y_{e}=1$
$\Rightarrow M\left(G_{2}, \mathbf{X}, \mathrm{Y}\right)$ becomes:
$M=\left(\begin{array}{c|c|c}I\left(T_{1}\right) & 0\left(F_{1}\right) & 0\left(F_{1}\right) \\ I\left(T_{2 x}\right) & 0\left(T_{2 x}\right) & -I\left(T_{2 x}\right) \\ 0\left(T_{2 y}\right) & I\left(T_{2 y}\right) & -I\left(T_{2 y}\right) \\ 0\left(T_{3}\right) & I\left(T_{3}\right) & 0\left(T_{3}\right)\end{array}\right)$
Observe: rows M lin. independent. Q.E.D.

Generalization to higher dimensions

d : dimension workspace

Generalization to higher dimensions

d : dimension workspace
hypergraph $G=(V, E)$: design for body-and-hinge
framework
$V \leftrightarrow$ rigid bodies in d-space
hyperedges: collecting bodies attached by 1 common hinge

Generalization to higher dimensions

d : dimension workspace
hypergraph $G=(V, E)$: design for body-and-hinge framework
$V \leftrightarrow$ rigid bodies in d-space
hyperedges: collecting bodies attached by 1 common hinge
$D=\binom{d+1}{d-1}$: dimension space of hinges
Theorem: G contains a $\frac{D}{D-1} \mathrm{HT}$-decomposition
\Rightarrow realizable as inf. rigid body-hinge framework in d-space.

Generalization to higher dimensions

d : dimension workspace
hypergraph $G=(V, E)$: design for body-and-hinge framework
$V \leftrightarrow$ rigid bodies in d-space
hyperedges: collecting bodies attached by 1 common hinge
$D=\binom{d+1}{d-1}$: dimension space of hinges
Theorem: G contains a $\frac{D}{D-1} \mathrm{HT}$-decomposition
\Rightarrow realizable as inf. rigid body-hinge framework in d-space.
Proof: cf. $d=2$.

Generalization to higher dimensions

d : dimension workspace
hypergraph $G=(V, E)$: design for body-and-hinge framework
$V \leftrightarrow$ rigid bodies in d-space
hyperedges: collecting bodies attached by 1 common hinge
$D=\binom{d+1}{d-1}$: dimension space of hinges
Theorem: G contains a $\frac{D}{D-1} \mathrm{HT}$-decomposition
\Rightarrow realizable as inf. rigid body-hinge framework in d-space.
Proof: cf. $d=2$.
Theorem: Assume no leaves. G is d-independent iff.
$\forall \emptyset \neq E^{\prime} \subset E:(D-1) \cdot w\left(E^{\prime}\right) \leq D\left|\cup E^{\prime}\right|-D$.
Proof. Tay-Tanigawa count for rigidity.

Generating $\frac{3}{2} \mathrm{~T}$-decompositions

Given a $\frac{3}{2}$ T-graph $G=(V, E)$:

Generating $\frac{3}{2} \mathrm{~T}$-decompositions

Given a $\frac{3}{2}$ T-graph $G=(V, E)$:
$E=F_{R} \cup F_{Y} \cup F_{G}$ with covering trees $T_{R Y}=F_{R} \cup F_{Y}$, $T_{R G}=F_{R} \cup F_{G}$ and $T_{Y G}=F_{Y} \cup F_{G}$.

Generating $\frac{3}{2} \mathrm{~T}$-decompositions

Given a $\frac{3}{2}$ T-graph $G=(V, E)$:
$E=F_{R} \cup F_{Y} \cup F_{G}$ with covering trees $T_{R Y}=F_{R} \cup F_{Y}$, $T_{R G}=F_{R} \cup F_{G}$ and $T_{Y G}=F_{Y} \cup F_{G}$.

Question: How do we find other decompositions?

Generating $\frac{3}{2} \mathrm{~T}$-decompositions

Given a $\frac{3}{2}$ T-graph $G=(V, E)$:
$E=F_{R} \cup F_{Y} \cup F_{G}$ with covering trees $T_{R Y}=F_{R} \cup F_{Y}$, $T_{R G}=F_{R} \cup F_{G}$ and $T_{Y G}=F_{Y} \cup F_{G}$.

Question: How do we find other decompositions?

Generating $\frac{3}{2} \mathbf{T}$-decompositions II

colour swap: an edge for an edge!

Generating $\frac{3}{2} \mathbf{T}$-decompositions II

colour swap: an edge for an edge!
(e.g. red edge turns green \Longleftrightarrow green edge turns red)

Generating $\frac{3}{2} \mathbf{T}$-decompositions II

colour swap: an edge for an edge!
(e.g. red edge turns green \Longleftrightarrow green edge turns red) Algorithm:

Generating $\frac{3}{2} \mathbf{T}$-decompositions II

colour swap: an edge for an edge!
(e.g. red edge turns green \Longleftrightarrow green edge turns red) Algorithm:

- Select a red edge e

Generating $\frac{3}{2}$ T-decompositions II

colour swap: an edge for an edge!
(e.g. red edge turns green \Longleftrightarrow green edge turns red) Algorithm:

- Select a red edge e
- Consider unique circuit γ
 in $T_{Y G}+e$

Generating $\frac{3}{2}$ T-decompositions II

colour swap: an edge for an edge!
(e.g. red edge turns green \Longleftrightarrow green edge turns red) Algorithm:

- Select a red edge e
- Consider unique circuit γ

in $T_{Y G}+e$
- Select green edge d in γ such that unique circuit in $T_{R Y}+d$ contains e

Generating $\frac{3}{2}$ T-decompositions II

colour swap: an edge for an edge!
(e.g. red edge turns green \Longleftrightarrow green edge turns red) Algorithm:

- Select a red edge e
- Consider unique circuit γ

in $T_{Y G}+e$
- Select green edge d in γ such that unique circuit in $T_{R Y}+d$ contains e

Generating $\frac{3}{2}$ T-decompositions II

colour swap: an edge for an edge!
(e.g. red edge turns green \Longleftrightarrow green edge turns red)

Algorithm:

- Select a red edge e
- Consider unique circuit γ in $T_{Y G}+e$
- Select green edge d in γ such that unique circuit in
 $T_{R Y}+d$ contains e
- Swap colours of e and d.

Generating $\frac{3}{2} \mathbf{T}$-decompositions II

colour swap: an edge for an edge!
(e.g. red edge turns green \Longleftrightarrow green edge turns red)

Algorithm:

- Select a red edge e
- Consider unique circuit γ in $T_{Y G}+e$
- Select green edge d in γ such that unique circuit in
 $T_{R Y}+d$ contains e
- Swap colours of e and d.

Observe: $T_{Y G}+e_{1}-e_{2}$ and $T_{R Y}+e_{2}-e_{1}$ still trees!

Colour swap condition

Given a $\frac{3}{2}$ T-graph $G=(V, E)$: $E=F_{R} \cup F_{Y} \cup F_{G}$

Colour swap condition

Given a $\frac{3}{2}$ T-graph $G=(V, E)$:
$E=F_{R} \cup F_{Y} \cup F_{G}$
$e \in E \rightarrow \gamma(e)$: unique path in G without colour(e) connecting endpoints e

Colour swap condition

Given a $\frac{3}{2}$ T-graph $G=(V, E)$:
$E=F_{R} \cup F_{Y} \cup F_{G}$
$e \in E \rightarrow \gamma(e)$: unique path in G without colour(e) connecting endpoints e

Theorem. Let e be edge of $\frac{3}{2} T$-graph G.
Choose any colour K different from colour (e).

Colour swap condition

Given a $\frac{3}{2}$ T-graph $G=(V, E)$:
$E=F_{R} \cup F_{Y} \cup F_{G}$
$e \in E \rightarrow \gamma(e)$: unique path in G without colour(e) connecting endpoints e

Theorem. Let e be edge of $\frac{3}{2} \mathrm{~T}$-graph G.
Choose any colour K different from colour (e).
There always exists an edge d in $\gamma(e)$ s.t.

1) colour $(d)=K$
2) e belongs to $\gamma(d)$

Colour swap condition

Given a $\frac{3}{2}$ T-graph $G=(V, E)$:
$E=F_{R} \cup F_{Y} \cup F_{G}$
$e \in E \rightarrow \gamma(e)$: unique path in G without colour(e) connecting endpoints e

Theorem. Let e be edge of $\frac{3}{2} \mathrm{~T}$-graph G.
Choose any colour K different from colour (e).
There always exists an edge d in $\gamma(e)$ s.t.

1) colour $(d)=K$
2) e belongs to $\gamma(d)$

Proof. (assume colour $(e)=\mathrm{R}, \mathrm{K}=\mathrm{G}$)
Suppose for every green edge d of $\gamma(e)$: $e \notin \gamma(d)$

Colour swap condition

Given a $\frac{3}{2}$ T-graph $G=(V, E)$:
$E=F_{R} \cup F_{Y} \cup F_{G}$
$e \in E \rightarrow \gamma(e)$: unique path in G without colour(e) connecting endpoints e

Theorem. Let e be edge of $\frac{3}{2} \mathrm{~T}$-graph G.
Choose any colour K different from colour (e).
There always exists an edge d in $\gamma(e)$ s.t.

1) colour $(d)=K$
2) e belongs to $\gamma(d)$

Proof. (assume colour(e) $=\mathrm{R}, \mathrm{K}=\mathrm{G}$)
Suppose for every green edge d of $\gamma(e)$: $e \notin \gamma(d)$
$\Rightarrow e \cup \gamma(e) \cup \gamma\left(d_{1}\right) \cup \gamma\left(d_{2}\right) \cup \ldots$ contains a red-yellow cycle.

Colour swap condition

Given a $\frac{3}{2}$ T-graph $G=(V, E)$:
$E=F_{R} \cup F_{Y} \cup F_{G}$
$e \in E \rightarrow \gamma(e)$: unique path in G without colour(e) connecting endpoints e

Theorem. Let e be edge of $\frac{3}{2} \mathrm{~T}$-graph G.
Choose any colour K different from colour (e).
There always exists an edge d in $\gamma(e)$ s.t.

1) colour $(d)=K$
2) e belongs to $\gamma(d)$

Proof. (assume colour(e) $=\mathrm{R}, \mathrm{K}=\mathrm{G}$)
Suppose for every green edge d of $\gamma(e)$: $e \notin \gamma(d)$
$\Rightarrow e \cup \gamma(e) \cup \gamma\left(d_{1}\right) \cup \gamma\left(d_{2}\right) \cup \ldots$ contains a red-yellow cycle.
QED

Brain tapas

- Is every $\frac{3}{2}$ T-decomposition reachable by colour swaps?

Brain tapas

- Is every $\frac{3}{2}$ T-decomposition reachable by colour swaps?
- Is every minimally rigid design for planar body-pin frameworks (allowing multi-pins) obtained from a $\frac{3}{2} \mathrm{HT}$-decomposition?

Brain tapas

- Is every $\frac{3}{2}$ T-decomposition reachable by colour swaps?
- Is every minimally rigid design for planar body-pin frameworks (allowing multi-pins) obtained from a $\frac{3}{2} \mathrm{HT}$-decomposition?
- Equivalently: is $\left(\frac{3}{2}, \frac{3}{2}\right)$-hypertightness sufficient for a $\frac{3}{2} \mathrm{HT}$?

Brain tapas

- Is every $\frac{3}{2}$ T-decomposition reachable by colour swaps?
- Is every minimally rigid design for planar body-pin frameworks (allowing multi-pins) obtained from a $\frac{3}{2} \mathrm{HT}$-decomposition?
- Equivalently: is $\left(\frac{3}{2}, \frac{3}{2}\right)$-hypertightness sufficient for a $\frac{3}{2} \mathrm{HT}$?
- Is every minimally rigid design for spatial body-hinge frameworks (allowing multi-hinges) obtained from a ${ }_{5}^{6} \mathrm{HT}$-decomposition?

Brain tapas

- Is every $\frac{3}{2}$ T-decomposition reachable by colour swaps?
- Is every minimally rigid design for planar body-pin frameworks (allowing multi-pins) obtained from a $\frac{3}{2} \mathrm{HT}$-decomposition?
- Equivalently: is $\left(\frac{3}{2}, \frac{3}{2}\right)$-hypertightness sufficient for a $\frac{3}{2} \mathrm{HT}$?
- Is every minimally rigid design for spatial body-hinge frameworks (allowing multi-hinges) obtained from a ${ }_{5}^{6} \mathrm{HT}$-decomposition?
- Is $\left(\frac{6}{5}, \frac{6}{5}\right)$-hypertightness sufficient for a $\frac{6}{5} \mathrm{HT}$?

Brain tapas

- Is every $\frac{3}{2}$ T-decomposition reachable by colour swaps?
- Is every minimally rigid design for planar body-pin frameworks (allowing multi-pins) obtained from a $\frac{3}{2} \mathrm{HT}$-decomposition?
- Equivalently: is $\left(\frac{3}{2}, \frac{3}{2}\right)$-hypertightness sufficient for a $\frac{3}{2} \mathrm{HT}$?
- Is every minimally rigid design for spatial body-hinge frameworks (allowing multi-hinges) obtained from a ${ }_{5}^{6} \mathrm{HT}$-decomposition?
- Is $\left(\frac{6}{5}, \frac{6}{5}\right)$-hypertightness sufficient for a $\frac{6}{5} \mathrm{HT}$?
- Generalization to spatial body-pin frameworks? (allowing multi-pins, and body pairs sharing 2 pins)

Any answers?

pin meraina in planar body frameworks - p. 25/2

