
Anna Lubiw
University of

Waterloo

Reconfiguration
of Graph Drawings

Reconfiguring a Graph Drawing

Given a planar drawing of a graph, transform it,
preserving planarity + other structure

Transform to a specific target
or to attain some structure.

convex faces

1

2

1
2

3

3

1 2

3

Reconfiguring a Graph Drawing

Given a planar drawing of a graph, transform it,
preserving planarity + other structure

Transform to a specific target
or to attain some structure.

convex faces
Carpenter’s Rule
[Connelly, Demaine, Rote, 2003]

cycle

edge lengths

1

2

3

1

1

2

2

3

3

Outline

• transform planar graph drawing to specific target (“morphing”)
• straight line edges
• edges are [orthogonal] poly-lines
• morphing preserving lengths, directions, etc.

• transform planar graph drawing to attain convex faces
• polygon, with increasing visibility

Morphing Graph Drawings

Erten, Kobourov, Pitta,

GMorph, 2004

Definition. Let P and Q be two drawings of graph G. A morph from P to Q is a
continuous family of drawings P(t), 0 ≤ t ≤ 1 with P(0) = P and P(1) = Q.

Morphing Graph Drawings

Erten, Kobourov, Pitta,

GMorph, 2004

Definition. Let P and Q be two drawings of graph G. A morph from P to Q is a
continuous family of drawings P(t), 0 ≤ t ≤ 1 with P(0) = P and P(1) = Q.

Morphing Graph Drawings

Erten, Kobourov, Pitta,

GMorph, 2004

A linear morph ― vertices
move in straight lines at
uniform speed, edges are
straight line segments.

Definition. Let P and Q be two drawings of graph G. A morph from P to Q is a
continuous family of drawings P(t), 0 ≤ t ≤ 1 with P(0) = P and P(1) = Q.

NOT a planar morph.

Morphing Graph Drawings
Definition. Let P and Q be two drawings of graph G. A morph from P to Q is a
continuous family of drawings P(t), 0 ≤ t ≤ 1 with P(0) = P and P(1) = Q.

Erten, Kobourov, Pitta,

GMorph, 2004

A linear morph ― vertices
move in straight lines at
uniform speed, edges are
straight line segments.

Given two planar drawings of a graph, find a [straight-line] planar morph
between them.

Planar Morphing

Every intermediate drawing is planar. Note that P =P(0) and Q =P(1) must
represent the same embedding)

Given two planar drawings of a graph, find a [straight-line] planar morph
between them.

Planar Morphing

Every intermediate drawing is planar. Note that P =P(0) and Q =P(1) must
represent the same embedding)

Application: 2D Morphing as 3D Shape Reconstruction

algorithm is required, step 4 can be applied more
rarely, for example every 2–20 iterations, or can only
be applied in regions affected by refinement opera-
tions of step 2.

6 Experimental results

We have implemented all the algorithms described in
this paper and applied them to numerous example
inputs. Our inputs consist of two planar polygons, which
serve as the source and target (top and bottom) cross-
sections of the sweep. These two are compatibly trian-
gulated with sufficient mesh quality (using the algorithm
in Fig. 9) and then morphed to create intermediate
compatibly triangulated polygons. Especially challeng-
ing inputs are when the source and target are signifi-
cantly different. Figures 10, 11 and 12 show some
sample input pairs, the compatible triangulations (usu-
ally of low quality) with a small number of Steiner
vertices generated by the methods of Sect. 2.2, the re-
meshed high quality compatible triangulations gener-
ated by the methods of Sect. 4 and the intermediate

Fig. 9 Compatible remeshing algorithm

Fig. 10a, b 3D sweep
generation. a Optimal (no
Steiner vertices) compatible
triangulation of source and
target polygons. Top row:
high-quality compatible
triangulation and intermediates
generated by morphing
procedure. Minimum angles of
the source and target
triangulations are 27.2! and
25.9!, respectively. b 3D
visualization of sweeps from a
number of different angles

Fig. 11a, b 3D sweep
generation. a Compatible
triangulation of source and
target polygons with three
Steiner vertices. Top row: high
quality compatible
triangulation and intermediates
generated by morphing
procedure. Minimum angles of
the source and target
triangulations are 15.9! and
15.3!, respectively. b 3D
visualization of sweeps from a
number of different angles

154

algorithm is required, step 4 can be applied more
rarely, for example every 2–20 iterations, or can only
be applied in regions affected by refinement opera-
tions of step 2.

6 Experimental results

We have implemented all the algorithms described in
this paper and applied them to numerous example
inputs. Our inputs consist of two planar polygons, which
serve as the source and target (top and bottom) cross-
sections of the sweep. These two are compatibly trian-
gulated with sufficient mesh quality (using the algorithm
in Fig. 9) and then morphed to create intermediate
compatibly triangulated polygons. Especially challeng-
ing inputs are when the source and target are signifi-
cantly different. Figures 10, 11 and 12 show some
sample input pairs, the compatible triangulations (usu-
ally of low quality) with a small number of Steiner
vertices generated by the methods of Sect. 2.2, the re-
meshed high quality compatible triangulations gener-
ated by the methods of Sect. 4 and the intermediate

Fig. 9 Compatible remeshing algorithm

Fig. 10a, b 3D sweep
generation. a Optimal (no
Steiner vertices) compatible
triangulation of source and
target polygons. Top row:
high-quality compatible
triangulation and intermediates
generated by morphing
procedure. Minimum angles of
the source and target
triangulations are 27.2! and
25.9!, respectively. b 3D
visualization of sweeps from a
number of different angles

Fig. 11a, b 3D sweep
generation. a Compatible
triangulation of source and
target polygons with three
Steiner vertices. Top row: high
quality compatible
triangulation and intermediates
generated by morphing
procedure. Minimum angles of
the source and target
triangulations are 15.9! and
15.3!, respectively. b 3D
visualization of sweeps from a
number of different angles

154

 Surazhsky, Gotsman, High quality compatible triangulations, 2002

• polynomial size ??

Planar Graph Morphing

• existence of morph preserving straight-line [Cairns 1944, Thomassen 1983]

• an algorithm [Floater and Gotsman 1999, Gotsman and Surazhsky 2001]

Planar Graph Drawing

• existence of straight-line drawing [Wagner, Koebe 1936, Fáry 1948, Stein 1951]

• an algorithm [Tutte 1963]

• polynomial size grid [de Fraysseix, Pach, Pollack; Schnyder 1990]

Morphing Planar Straight-Line Graph Drawings

• polynomial size ??

Planar Graph Morphing

• existence of morph preserving straight-line [Cairns 1944, Thomassen 1983]

• an algorithm [Floater and Gotsman 1999, Gotsman and Surazhsky 2001]

Planar Graph Drawing

• existence of straight-line drawing [Wagner, Koebe 1936, Fáry 1948, Stein 1951]

• an algorithm [Tutte 1963]

• polynomial size grid [de Fraysseix, Pach, Pollack; Schnyder 1990]

Morphing Planar Straight-Line Graph Drawings

Every planar graph has a drawing with straight lines for edges.
[Wagner, Koebe 1936, Fáry 1948, Stein 1951]

Planar Graph Drawing: Existence

remove a vertex of degree ≤ 5

apply induction

Fact: a ≤ 5-gon has a point
that sees all vertices

replace missing vertex

extra recursive call to make face convex
⇒ exponential number of steps

ere is a planar morph between any two straight-line embeddings of a
triangulation. [Cairns 1944]

Extended to planar graphs [omassen 1983].

Planar Graph Morphing: Existence

Fact: a ≤ 5-gon has a point vertex
that sees all vertices

in P contract a vertex v of degree ≤ 5
to neighbour u that sees sameP

Q
Complication: cannot use same u in Q

• polynomial size ??

Planar Graph Morphing

• existence of morph preserving straight-line [Cairns 1944, Thomassen 1983]

• an algorithm [Floater and Gotsman 1999, Gotsman and Surazhsky 2001]

Planar Graph Drawing

• existence of straight-line drawing [Wagner, Koebe 1936, Fáry 1948, Stein 1951]

• an algorithm [Tutte 1963]

• polynomial size grid [de Fraysseix, Pach, Pollack; Schnyder 1990]

Morphing Planar Straight-Line Graph Drawings

Can find a planar straight line drawing in polynomial time by solving a linear
system to find coordinates. [Tutte 1963]

fix convex outer face

(x(u), y(u)) =
1
6

6�

i=1

(x(vi), y(vi))

one equation for each interior vertex:

Planar Graph Drawing: Algorithm

A morphing algorithm that computes a “snapshot” at any time t, 0 ≤ t ≤ 1.
[Floater and Gotsman 1999, Gotsman and Surazhsky 2001]

P Q

Planar Graph Morphing: Algorithm

A morphing algorithm that computes a “snapshot” at any time t, 0 ≤ t ≤ 1.
[Floater and Gotsman 1999, Gotsman and Surazhsky 2001]

v1

v2

v3

v4

v

(x(v), y(v)) =
4�

i=1

1
4
(x(vi), y(vi))

P Q

Planar Graph Morphing: Algorithm

A morphing algorithm that computes a “snapshot” at any time t, 0 ≤ t ≤ 1.
[Floater and Gotsman 1999, Gotsman and Surazhsky 2001]

v1

v2

v3

v4

v

(x(v), y(v)) =
4�

i=1

1
4
(x(vi), y(vi))

m(v, vi)

P Q

Planar Graph Morphing: Algorithm

A morphing algorithm that computes a “snapshot” at any time t, 0 ≤ t ≤ 1.
[Floater and Gotsman 1999, Gotsman and Surazhsky 2001]

v1

v2

v3

v4

v

(x(v), y(v)) =
4�

i=1

1
4
(x(vi), y(vi))

m(v, vi)
MP = [m(u, v)]n×n

P Q

Planar Graph Morphing: Algorithm

A morphing algorithm that computes a “snapshot” at any time t, 0 ≤ t ≤ 1.
[Floater and Gotsman 1999, Gotsman and Surazhsky 2001]

P Q

MQMP = [m(u, v)]n×n

Planar Graph Morphing: Algorithm

A morphing algorithm that computes a “snapshot” at any time t, 0 ≤ t ≤ 1.
[Floater and Gotsman 1999, Gotsman and Surazhsky 2001]

P Q

MQMP = [m(u, v)]n×n

M(t) = (1− t)MP + tMQt = 0 t = 1

Planar Graph Morphing: Algorithm

A morphing algorithm that computes a “snapshot” at any time t, 0 ≤ t ≤ 1.
[Floater and Gotsman 1999, Gotsman and Surazhsky 2001]

P Q

MQMP = [m(u, v)]n×n

M(t) = (1− t)MP + tMQt = 0 t = 1

Planar Graph Morphing: Algorithm

• polynomial size ??

Planar Graph Morphing

• existence of morph preserving straight-line [Cairns 1944, Thomassen 1983]

• an algorithm [Floater and Gotsman 1999, Gotsman and Surazhsky 2001]

Planar Graph Drawing

• existence of straight-line drawing [Wagner, Koebe 1936, Fáry 1948, Stein 1951]

• an algorithm [Tutte 1963]

• polynomial size grid [de Fraysseix, Pach, Pollack; Schnyder 1990]

Morphing Planar Straight-Line Graph Drawings

Given two straight line planar drawings of a graph, find a polynomial size
planar morph between them.

Open Problem

Requirements:
straight line edges
piece-wise linear

Outline

• transform planar graph drawing to specific target (“morphing”)
• straight line edges
• edges are [orthogonal] poly-lines
• morphing preserving lengths, directions, etc.

• transform planar graph drawing to attain convex faces
• polygon, with increasing visibility

Morphing (with Bent Edges) [Lubiw, Petrick, 2011]

Morphing Planar Straight-Line Graph Drawings

eorem. ere is a polynomial time algorithm to compute a planar morph
between two planar straight-line drawings P and Q (of the same graph) that
 • is composed of O(n6) linear morphs

• uses a polynomial size grid

1

1 2
2

1

Main idea: reduce to the case of parallel orthogonal graph drawings

parallel

Morphing Orthogonal Graph Drawings [Biedl, Lubiw, Petrick, Spriggs]

Main idea: reduce to the case of parallel orthogonal graph drawings

parallel

Morphing Orthogonal Graph Drawings

direction sequence: E N E S W

P Q

(a,b) is parallel in P and Q:

a
a

b

b

[Biedl, Lubiw, Petrick, Spriggs]

eorem. ere is a polynomial time algorithm to compute a morph
between two orthogonal drawings of the same graph that

• preserves planar, othogonal
• is composed of O(n4) linear morphs
• O(n) × O(n) grid
• constant minimum feature size

Morphing Orthogonal Graph Drawings [Biedl, Lubiw, Petrick, Spriggs]

Outline

• transform planar graph drawing to specific target (“morphing”)
• straight line edges
• edges are [orthogonal] poly-lines
• morphing preserving lengths, directions, etc.

• transform planar graph drawing to attain convex faces
• polygon, with increasing visibility

• planar (non-intersecting)
• directions (“parallel”)

• edge lengths
• angles

or change these monotonically
⎫
⎬
⎭

Morphing Preserving Other Properties

1

11

109

87

6
5

4

3
2

1

11

109

87

65

4

3

2

Figure 1.1: A pair of parallel simple drawings of a graph.

drawings are what we shall call parallel drawings in this thesis. However, we will define
parallel drawings in the context of straight-line drawings instead of polyline drawings. This
is done merely for notational convenience. A pair of orthogonal drawings that have the same
shape can always be converted to a pair of parallel straight-line drawings, by replacing bends
with vertices.

The notion of parallel drawings can be extended to non-orthogonal drawings also. In
general, two straight-line drawings of an abstract graph are parallel if for every edge {u, v}
in the graph, the vector from the point representing u to the point representing v in both
drawings has the same direction, and both vectors have non-zero length. Figure 1.1 depicts a
pair of parallel simple drawings. In this figure, vertices are represented by dots (we will some-
times omit the dots in illustrations). Vertices are numbered to illustrate the correspondence
between the two drawings.

Parallel drawings of a graph will exhibit the same ordering of edges around each vertex.
Thus, the distance between two parallel drawings will be zero with respect to the topology
metrics described by Bridgeman and Tamassia [12]. As well, for graphs with many edges, we
might expect that parallel drawings of the graph will exhibit a small distance with respect
to orthogonal ordering metrics. Parallel drawings of a complete graph will have a distance
of zero with respect to an orthogonal ordering metric—recall, these metrics are based on
the relative directions of corresponding edge-vectors in the two drawings. However, such
drawings are not very interesting since parallel drawings of a complete graph can always be
obtained from one another via scaling and translation.

Much greater flexibility occurs for drawings with a small number of edges. Even so,
parallel drawings of a graph seem likely to exhibit some degree of visual similarity. Given
a drawing of a graph, it may be possible to generate a new drawing that is parallel with
the original drawing, such that the new drawing exhibits some desirable property that the

9

parallel planar graph drawings

Morphing Preserving Directions (“Parallel”)

• parallel cycles always have a parallel morph [Guibas, Hershberger, Suri, 2000]
O(n log n) steps but terrible edge lengths

• parallel orthogonal graphs always have a parallel morph

Figure 1.2: A pair of parallel polygons.

whether two drawings are in fact parallel drawings of a graph, when not given the corre-
spondence between vertices of the two drawings. We leave these as issues open to future
study.

1.1.3 Background on parallel morphing

There exists only a small body of literature on parallel morphing. Grenander, Chow, and
Keenan [33] proved that every pair of parallel polygons will admit a parallel morph; a poly-
gon is a simple drawing of a cycle in the plane (Figure 1.2). Independently, Guibas and
Hershberger [35] proved that a pair of n-vertex polygons will admit a parallel morph com-
posed of O(n4/3+ε) steps for any ε > 0, where each step is a uniform scaling and translation
of a part of the polygon. Hershberger, and Suri [38] improved this bound to O(n log n) (also
see [34]). Earlier, Thomassen [65] had proved that every pair of parallel orthogonal poly-
gons will admit a parallel morph. These algorithms all suffer from the defect that edges in
intermediate drawings may shrink to infinitesimal lengths. This fact makes the algorithms
unsuitable for graph visualization.

Closely related to the subject of parallel morphing is the recent work of Streinu [57], who
studies kinetic graphs, which are straight-line drawings defined over a set of moving vertices.
In her study, vertices are assumed to move with constant velocities. A parallel redrawing
graph is defined as a kinetic graph in which each edge maintains its slope throughout the
motion. Of particular interest are planar graphs that maintain non-crossing edges throughout
the motion. Unlike our notion of parallel, edges are allowed to shrink to zero length, and to
reverse direction. Streinu gives a characterization of this class of kinetic graphs.

Although only a small number of papers exist that directly address the topic of parallel
morphing, there are connections between parallel morphing and a wide range of other re-
search. We will survey some of these in Section 1.2. In Section 1.3 we will formally define
the terms to be used throughout this thesis, and give a few basic lemmas. In Section 1.4 we
will overview the contents of each chapter.

11

Morphing Preserving Directions (“Parallel”)

Decision problem is NP-hard [Biedl, Lubiw, Spriggs].

parallel planar graph drawings with no parallel morph.

Morphing Preserving Directions (“Parallel”)

x

l

i

k f g

h
e

a

b c

dd

gfkj

i
h

a

cb

el

j

y

z

F igure 6.4: Parallel orthogonal drawings of a cycle tha t do not admit a parallel morph.

P roof: Let P denote the drawing illustra ted on the left of F igure 6.4, and let Q denote
the drawing on the right .

Not ice tha t vert ices labeled e, . . . , l must lie in a common x-z plane in any drawing tha t

is parallel with P and Q . T hroughout this proof, we use nota t ion of the form P y (e, . . . , l), for

example, to denote the common y-coordina te of vert ices e, . . . , l in P . We use this nota t ion

to emphasize tha t all of these vert ices have the same y-coordina te in any drawing tha t is
parallel with P .

For a contradict ion, assume tha t there exists a parallel morph M from P to Q . E x tend

the nota t ion defined above such tha t , e.g.

M y (t; e, . . . , l)

refers to the y-coordina te of the vert ices e, . . . , l in drawing M (t).
O bserve tha t the following inequalit ies will hold for all t [0, 1]:

max { M z (t; e), M z (t; l) } < M z (t; a, b, c, d) (6.4)

and

M y (t; e, . . . , l) < min { M y (t; a), M y (t; d) } (6.5)

Since P y (b, c) < P y (e, . . . , l) and Q y (b, c) > Q y (e, . . . , l), there must exist some t [0, 1]
such tha t

M y (t; b, c) = M y (t; e, . . . , l). (6.6)

Let t0 [0, 1] denote the smallest value t for which (6.6) holds.
A t t ime t0 , vert ices b, c and e, . . . , l all lie in a common x-z plane, i.e. a plane tha t is

perpendicular to the y-axis. Strict ly before these vert ices can be made coplanar, edge { b, c }
must be moved to a posit ion tha t does not overlap with edges { e, f } and { k , l } with respect

to the x- and z-axes. We will prove tha t this cannot happen in drawing M (t), for any t < t0 .
We may then conclude tha t there exists no parallel morph from P to Q .

Let us restrict our a t tent ion to drawings M (t) where t < t0 . B y definit ion, when t < t0

M y (t; b, c) < M y (t; e, . . . , l).

141

Orthogonal 3D Graph Drawings

Decision problem PSPACE-hard for parallel orthogonal 3D graphs
 [Biedl, Lubiw, Spriggs].
Open for cycles.

Parallel orthogonal cycles with no parallel morph.

Morphing Preserving Directions (“Parallel”)

• non-intersecting morph between polygons, preserving edge lengths
[the Carpenter’s Rule eorem: Connelly, Demaine, Rote, 2003]

• non-intersecting morph between polygons, edge lengths change
monotonically [Iben, O’Brien, Demaine, 2006]

3 Unfolding Groundwork
Our method stems from recent results showing that any planar col-
lection of polygons and polylines can be unfolded to an outer-
convex configuration. In an outer-convex configuration, all poly-
gons or polylines that are not contained inside another polygon are
separated from each other, and made either convex (polygons) or
straight (polylines). An unfolding motion preserves edge lengths
and avoids self-intersection. The existence of these unfolding mo-
tions has been demonstrated in both [8] and [21] using two distinct
approaches.

While both imply the existence of unfolding motions, actually
computing the motions directly implied by these proofs can be dif-
ficult. However, the motion implied by [8] has the additional prop-
erty that it is strictly expansive, meaning that the motion strictly
increases the distances between all vertices not sharing an edge.
In [5] it is shown that given the existence of expansive motions,
they can reformulate the unfolding problem as one where one sim-
ply seeks to minimize a suitable energy function. A suitable energy
function is one with the following properties:

Charge — the value of the function is finite for any intersection-
free configuration and approaches +∞ as the system ap-
proaches self-intersection.

Repulsive — the energy function decreases to first order under any
expansive motion.

Separable — as distinct connected components recede from each
other, any energy terms relating them should vanish.

C1,1 — the function should be C1 continuous with bounded cur-
vature.

It can then be shown that a simple optimization strategy, such as
gradient descent, can be used to generate an intersection-free inter-
polation path from any polygon to a convex polygon, and that the
space of valid configurations contains no local minima to get stuck
in. The results also imply that a valid energy function contains no
critical points of any kind at non-outer-convex points in the space of
valid configurations and that the valid configuration space is simply
connected. A detailed convergence proof with step bounds appears
in [5], but in summary, for a single polygon:

1. By charge, the energy function is finite for any valid initial
polygon and the energy function approaches +∞ as the sys-
tem approaches self-intersection, so any path that starts with
a non-intersecting polygon and strictly decreases energy can-
not lead to a self-intersection.

2. By repulsiveness, an expansive direction in configuration
space is a direction that decreases the energy, and from [8] we
know that such a direction always exists unless the polygon
is already convex. Therefore, the gradient can never vanish
except for convex polygons, and there can be no local min-
ima that do not correspond to a convex configuration.

Together these two observations guarantee that any continuous
gradient descent path starting from any valid polygon will converge
to a convexified polygon, and that at no point along the path will
the polygon intersect itself.

Figure 2. The top row demonstrates how using the vertex-position
metric alone will, as expected, generate a sequence with self in-
tersections. The bottom row illustrates how the collision avoidance
machinery alters the vertex motions to avoid self intersection. Com-
putation times were less than one second.

4 Energy and Parameterization
In [5], the authors used an energy function based on the elliptic
distance between edges and vertices because a C2 energy function
facilitates placing an actual bound on the worst-case number of Eu-
ler steps that might be required to convexify a given collection of
polygons and polylines. They also used an angle-based parameter-
ization because it allows them to guarantee that all edge lengths are
preserved exactly.

Here, however, we prefer to use an energy based on Euclidean
distances because we have found that it converges faster in prac-
tice. Additionally, we choose to parameterize using the vertex po-
sitions directly and enforce any desired edge-length preservation
using algebraic constraints. This decision simplifies interpolation
between polygons with different edge lengths, and it also preserves
any symmetries by treating all edges equivalently.

For a polygon with N vertices, let vi with i ∈ [1 . . . N] denote
the positions of the vertices, let ei be the edge between vi and vi+1,
and let li be the edge’s length1. The energy corresponding to the
polygon’s configuration is given by

E =
NX

i=1

NX

j=1
j �=i,j �=i−1

1
dist(vi, ej)2

(1)

where dist(vi, ej) is the Euclidean distance between edge j and
vertex i. It is easy to verify that this energy function is charge, sep-
arable, C1,1, and, except for the trivial cases of N ≤ 4, repulsive.

5 Refolding
Our interpolation algorithm relies on the energy-based unfolding
framework to guarantee that it can always construct an intersection-
free sequence between any two polygons. In the worst case, the al-
gorithm will convexify both polygons, trivially interpolate between
the two convex polygons, and produce the sequence begin-polygon
→ convexified-begin-polygon → convexified-end-polygon → end-
polygon.

In most contexts, this worst-case result is not particularly useful,
so the algorithm uses an additional distance metric to generate a
more desirable path. Because the energy function provides a guid-
ing framework, this metric can be quite simplistic and still produce
good results. In fact, many of the examples shown in this paper
were produced using the trivial metric based on the norm of dif-
ferences in vertex positions. That metric would simply move the
vertices on a straight line to their target location. As shown in Fig-
ure 2, this metric alone produces intersecting sequences, but it can
be guided around intersections by an appropriate energy function.

1Index arithmetic is modulo N , so vN+1 is equivalent to v1.

Not possible for graphs. Not possible for parallel morphs of polygons.

Morphing Preserving Edge Lengths

Conjecture. Open convex chains can be morphed with edge lengths and
angles changing monotonically.

+
-

+

-

Morphing Preserving Edge Lengths and Angles

Outline

• transform planar graph drawing to specific target (“morphing”)
• straight line edges
• edges are [orthogonal] poly-lines
• morphing preserving lengths, directions, etc.

• transform planar graph drawing to attain convex faces
• polygon, with increasing visibility

Convexifying Polygons

Convexifying is easy.

Convexifying preserving edge lengths is always possible:

the Carpenter’s Rule eorem: Connelly, Demaine, Rote, 2003

Convexifying without losing visibilities
Given a simple polygon, convexify without losing visibilities. [Devadoss, 2008]

1

3

2 4

5

6
7

Convexifying without losing visibilities
Given a simple polygon, convexify without losing visibilities. [Devadoss, 2008]

1

3

2 4

5

6
7

Convexifying without losing visibilities
Given a simple polygon, convexify without losing visibilities. [Devadoss, 2008]

1

3

2 4

5

6
7

1

3

2 4

5

6
7

1

3

2 4

56
7

1

3
2

4

56
7

2

6

Convexifying without losing visibilities
Given a simple polygon, convexify without losing visibilities. [Devadoss, 2008]

1

3

2 4

5

6
7

1

3

2 4

5

6
7

1

3

2 4

56
7

1

3
2

4

56
7

2

6

loses visibility

[Aichholzer, Hurtado, Aloupis, Lubiw, Demaine, Demaine, Dujmović, Rote, Schulz, Souvaine,
Winslow, 2011]

eorem. Can convexify any polygon in n moves where
 - every move increases visibility
 - a move translates one vertex along a polygon edge to a neighbour

Note that a vertex of the current polygon represents a set of vertices of the
original polygon.

1
2=3

4

6=5
7

1

3

2 4

5

6
7

1

3

2 4

6=5
7

Convexifying without losing visibilities

How to Convexify in n moves

Lemma. Every non-convex polygon has a visibility-increasing edge:
 an edge (u,v) such that for every point p along the edge (u,v),
 V(u) ⊆V(p) ⊆V(v)
 and there is a vertex in V(v) − V(u).

uv p

V(u)

a

b

How to Convexify in n moves

Lemma. Every non-convex polygon has a visibility-increasing edge:
 an edge (u,v) such that for every point p along the edge (u,v),
 V(u) ⊆V(p) ⊆V(v)
 and there is a vertex in V(v) − V(u).

uv p

V(u)

a

b

uv p

V(u)

V(p) a

b

How to Convexify in n moves

Lemma. Every non-convex polygon has a visibility-increasing edge:
 an edge (u,v) such that for every point p along the edge (u,v),
 V(u) ⊆V(p) ⊆V(v)
 and there is a vertex in V(v) − V(u).

uv p

V(u)

a

b

uv p

V(u)

V(p) a

b

uv p

V(u)

V(p)

V(v)

a

b

How to Convexify in n moves

Lemma. Every non-convex polygon has a visibility-increasing edge:
 an edge (u,v) such that for every point p along the edge (u,v),
 V(u) ⊆V(p) ⊆V(v)
 and there is a vertex in V(v) − V(u).

uv p

V(u)

a

b

uv p

V(u)

V(p) a

b

uv p

V(u)

V(p)

V(v)

a

b

Lemma ⇒ eorem 1
Move u to v.
Note u convex, (w,v) a chord.

uv

w

Proof. For any edge (b,a) with a reflex, there is a visibility-increasing edge
outside Pocket(b,a). By induction on # vertices outside Pocket(b,a).

How to Convexify in n moves

Lemma. Every non-convex polygon has a visibility-increasing edge:
 an edge (u,v) such that for every point p along the edge (u,v),
 V(u) ⊆V(p) ⊆V(v)
 and there is a vertex in V(v) - V(u).

23rd Canadian Conference on Computational Geometry, 2011

they observe that a monotone polygon can be convexi-
fied in one move. They also show that, even for mono-
tone polygons, it is not always possible to move just
one vertex and strictly increase the set of vertex visibil-
ities. Note that such an example depends crucially on
prohibiting coincident vertices! If vertices are allowed
to be coincident, our result shows that for any simple
polygon, it is possible to move one vertex until it gains
a new neighbour in the visibility graph.

The issue of allowing/disallowing coincident vertices
has arisen before in problems of transforming (or “mor-
phing”) polygons and straight-line graph drawings.
Cairns [6] showed how to transform between any two
straight-line planar triangulations that are combinato-
rially the same, using a sequence of moves each of which
translates one vertex onto another (or the reverse). He
then comments that it is possible to avoid coincident
vertices by keeping them a small distance apart. A
somewhat similar issue comes up in the result of Guibas
and Hershberger [16] who show that for any two simple
polygons on vertices 1, 2, . . . , n such that edge (i, i+ 1)
has the same direction vector in both polygons, there is
a morph between the polygons that preserves simplicity
and the direction vectors of edges. Their method moves
vertices infinitesimally close together and operates on
the infinitesimal structures.

The question of moving only one vertex at a time has
recently been settled in independent work by Ábrego et
al. [1], who show that if a there is a transformation that
convexifies a polygon without losing vertex visibilities,
then the transformation can be accomplished by moving
only one vertex at a time.

Although not directly relevant to this paper, we note
that there is a considerable body of work on making
polygons convex by means of “pivot” operations, such
as flips [13, 8, 15, 25] and flipturns [3, 4].

For background on visibility graphs of polygons, see
the books by Ghosh [14] and O’Rourke [22].

Definitions
Two points inside a polygon P are visible if the line

segment between them is contained in the closed poly-
gon. Given this definition, we will now use “visibility”
rather than “internal visibility”. We will assume that
the input polygon does not have three or more collinear
vertices. It is possible to perturb a polygon to achieve
this without losing internal vertex visibilities. Note the
consequence that if two vertices are visible, then the line
segment between them does not go through another ver-
tex. For point p in P , the visibility region of p, denoted
V (p), is the set of points in P visible from p.

Let a be a reflex vertex with neighbours b and b� on
the polygon boundary. Extend a line segment from b to
a and beyond, until it first hits the polygon boundary
at p. Define Pocket(b, a) to be the region bounded by
the chain along the polygon boundary from a to p go-

ing through b�, together with the line segment pa. We
consider points along the line segment pa to be outside
the pocket (i.e., the pocket is open along its “mouth”).
In particular, a is outside Pocket(b, a). See the shaded
region in Figure 1(a).

2 Convexifying polygons

Theorem 1 An n-vertex polygon can be convexified in
n moves, where each move strictly increases the set of
pairs of visible vertices, and each move translates one
vertex of the current polygon along an incident edge to
a neighbour on the polygon boundary.

The main tool in proving the theorem is the following.
We prove that if a polygon is not convex then it has an
edge along which visibility increases. More precisely,
define an edge (u, v) to be a visibility-increasing edge if
for every point p along the edge (u, v) we have V (u) ⊆
V (p) ⊆ V (v), and there is a vertex in V (v)− V (u).

We will use a stronger induction hypothesis to
prove that every non-convex polygon has a visibility-
increasing edge (u, v) where v is a reflex vertex. Note
that the fact that v is reflex implies that there is a vertex
in V (v)− V (u).

Lemma 2 Let P be a simple polygon with reflex vertex
a and edge (b, a). Then there is a visibility-increasing
edge (u, v) with v reflex and u, v exterior to Pocket(b, a)
such that u does not see into Pocket(b, a).

Proof. We prove the result by induction on the number
of reflex vertices of the polygon exterior to the pocket.
If (b, a) is a visibility-increasing edge, then it satisfies
the lemma, since b does not see into Pocket(b, a). See
Figure 1(a). This takes care of the base case where every
vertex v �= a exterior to the pocket is convex.

Figure 1: Visibility-increasing edges: (a) the edge (b, a)
is a visibility-increasing edge; (b) vertex b is reflex, so
we apply induction on (c, b).

If b is a reflex vertex then let c be the other neigh-
bour of b (i.e., the neighbour not equal to a). See Fig-
ure 1(b). Then Pocket(c, b) ⊇ Pocket(b, a). Also, note
that the reflex vertex a is exterior to Pocket(b, a) and

Pocket(b,a)

Proof. For any edge (b,a) with a reflex, there is a visibility-increasing edge
outside Pocket(b,a). By induction on # vertices outside Pocket(b,a).

How to Convexify in n moves

Lemma. Every non-convex polygon has a visibility-increasing edge:
 an edge (u,v) such that for every point p along the edge (u,v),
 V(u) ⊆V(p) ⊆V(v)
 and there is a vertex in V(v) - V(u).

23rd Canadian Conference on Computational Geometry, 2011

they observe that a monotone polygon can be convexi-
fied in one move. They also show that, even for mono-
tone polygons, it is not always possible to move just
one vertex and strictly increase the set of vertex visibil-
ities. Note that such an example depends crucially on
prohibiting coincident vertices! If vertices are allowed
to be coincident, our result shows that for any simple
polygon, it is possible to move one vertex until it gains
a new neighbour in the visibility graph.

The issue of allowing/disallowing coincident vertices
has arisen before in problems of transforming (or “mor-
phing”) polygons and straight-line graph drawings.
Cairns [6] showed how to transform between any two
straight-line planar triangulations that are combinato-
rially the same, using a sequence of moves each of which
translates one vertex onto another (or the reverse). He
then comments that it is possible to avoid coincident
vertices by keeping them a small distance apart. A
somewhat similar issue comes up in the result of Guibas
and Hershberger [16] who show that for any two simple
polygons on vertices 1, 2, . . . , n such that edge (i, i+ 1)
has the same direction vector in both polygons, there is
a morph between the polygons that preserves simplicity
and the direction vectors of edges. Their method moves
vertices infinitesimally close together and operates on
the infinitesimal structures.

The question of moving only one vertex at a time has
recently been settled in independent work by Ábrego et
al. [1], who show that if a there is a transformation that
convexifies a polygon without losing vertex visibilities,
then the transformation can be accomplished by moving
only one vertex at a time.

Although not directly relevant to this paper, we note
that there is a considerable body of work on making
polygons convex by means of “pivot” operations, such
as flips [13, 8, 15, 25] and flipturns [3, 4].

For background on visibility graphs of polygons, see
the books by Ghosh [14] and O’Rourke [22].

Definitions
Two points inside a polygon P are visible if the line

segment between them is contained in the closed poly-
gon. Given this definition, we will now use “visibility”
rather than “internal visibility”. We will assume that
the input polygon does not have three or more collinear
vertices. It is possible to perturb a polygon to achieve
this without losing internal vertex visibilities. Note the
consequence that if two vertices are visible, then the line
segment between them does not go through another ver-
tex. For point p in P , the visibility region of p, denoted
V (p), is the set of points in P visible from p.

Let a be a reflex vertex with neighbours b and b� on
the polygon boundary. Extend a line segment from b to
a and beyond, until it first hits the polygon boundary
at p. Define Pocket(b, a) to be the region bounded by
the chain along the polygon boundary from a to p go-

ing through b�, together with the line segment pa. We
consider points along the line segment pa to be outside
the pocket (i.e., the pocket is open along its “mouth”).
In particular, a is outside Pocket(b, a). See the shaded
region in Figure 1(a).

2 Convexifying polygons

Theorem 1 An n-vertex polygon can be convexified in
n moves, where each move strictly increases the set of
pairs of visible vertices, and each move translates one
vertex of the current polygon along an incident edge to
a neighbour on the polygon boundary.

The main tool in proving the theorem is the following.
We prove that if a polygon is not convex then it has an
edge along which visibility increases. More precisely,
define an edge (u, v) to be a visibility-increasing edge if
for every point p along the edge (u, v) we have V (u) ⊆
V (p) ⊆ V (v), and there is a vertex in V (v)− V (u).

We will use a stronger induction hypothesis to
prove that every non-convex polygon has a visibility-
increasing edge (u, v) where v is a reflex vertex. Note
that the fact that v is reflex implies that there is a vertex
in V (v)− V (u).

Lemma 2 Let P be a simple polygon with reflex vertex
a and edge (b, a). Then there is a visibility-increasing
edge (u, v) with v reflex and u, v exterior to Pocket(b, a)
such that u does not see into Pocket(b, a).

Proof. We prove the result by induction on the number
of reflex vertices of the polygon exterior to the pocket.
If (b, a) is a visibility-increasing edge, then it satisfies
the lemma, since b does not see into Pocket(b, a). See
Figure 1(a). This takes care of the base case where every
vertex v �= a exterior to the pocket is convex.

Figure 1: Visibility-increasing edges: (a) the edge (b, a)
is a visibility-increasing edge; (b) vertex b is reflex, so
we apply induction on (c, b).

If b is a reflex vertex then let c be the other neigh-
bour of b (i.e., the neighbour not equal to a). See Fig-
ure 1(b). Then Pocket(c, b) ⊇ Pocket(b, a). Also, note
that the reflex vertex a is exterior to Pocket(b, a) and

Pocket(b,a)

23rd Canadian Conference on Computational Geometry, 2011

they observe that a monotone polygon can be convexi-
fied in one move. They also show that, even for mono-
tone polygons, it is not always possible to move just
one vertex and strictly increase the set of vertex visibil-
ities. Note that such an example depends crucially on
prohibiting coincident vertices! If vertices are allowed
to be coincident, our result shows that for any simple
polygon, it is possible to move one vertex until it gains
a new neighbour in the visibility graph.

The issue of allowing/disallowing coincident vertices
has arisen before in problems of transforming (or “mor-
phing”) polygons and straight-line graph drawings.
Cairns [6] showed how to transform between any two
straight-line planar triangulations that are combinato-
rially the same, using a sequence of moves each of which
translates one vertex onto another (or the reverse). He
then comments that it is possible to avoid coincident
vertices by keeping them a small distance apart. A
somewhat similar issue comes up in the result of Guibas
and Hershberger [16] who show that for any two simple
polygons on vertices 1, 2, . . . , n such that edge (i, i+ 1)
has the same direction vector in both polygons, there is
a morph between the polygons that preserves simplicity
and the direction vectors of edges. Their method moves
vertices infinitesimally close together and operates on
the infinitesimal structures.

The question of moving only one vertex at a time has
recently been settled in independent work by Ábrego et
al. [1], who show that if a there is a transformation that
convexifies a polygon without losing vertex visibilities,
then the transformation can be accomplished by moving
only one vertex at a time.

Although not directly relevant to this paper, we note
that there is a considerable body of work on making
polygons convex by means of “pivot” operations, such
as flips [13, 8, 15, 25] and flipturns [3, 4].

For background on visibility graphs of polygons, see
the books by Ghosh [14] and O’Rourke [22].

Definitions
Two points inside a polygon P are visible if the line

segment between them is contained in the closed poly-
gon. Given this definition, we will now use “visibility”
rather than “internal visibility”. We will assume that
the input polygon does not have three or more collinear
vertices. It is possible to perturb a polygon to achieve
this without losing internal vertex visibilities. Note the
consequence that if two vertices are visible, then the line
segment between them does not go through another ver-
tex. For point p in P , the visibility region of p, denoted
V (p), is the set of points in P visible from p.

Let a be a reflex vertex with neighbours b and b� on
the polygon boundary. Extend a line segment from b to
a and beyond, until it first hits the polygon boundary
at p. Define Pocket(b, a) to be the region bounded by
the chain along the polygon boundary from a to p go-

ing through b�, together with the line segment pa. We
consider points along the line segment pa to be outside
the pocket (i.e., the pocket is open along its “mouth”).
In particular, a is outside Pocket(b, a). See the shaded
region in Figure 1(a).

2 Convexifying polygons

Theorem 1 An n-vertex polygon can be convexified in
n moves, where each move strictly increases the set of
pairs of visible vertices, and each move translates one
vertex of the current polygon along an incident edge to
a neighbour on the polygon boundary.

The main tool in proving the theorem is the following.
We prove that if a polygon is not convex then it has an
edge along which visibility increases. More precisely,
define an edge (u, v) to be a visibility-increasing edge if
for every point p along the edge (u, v) we have V (u) ⊆
V (p) ⊆ V (v), and there is a vertex in V (v)− V (u).

We will use a stronger induction hypothesis to
prove that every non-convex polygon has a visibility-
increasing edge (u, v) where v is a reflex vertex. Note
that the fact that v is reflex implies that there is a vertex
in V (v)− V (u).

Lemma 2 Let P be a simple polygon with reflex vertex
a and edge (b, a). Then there is a visibility-increasing
edge (u, v) with v reflex and u, v exterior to Pocket(b, a)
such that u does not see into Pocket(b, a).

Proof. We prove the result by induction on the number
of reflex vertices of the polygon exterior to the pocket.
If (b, a) is a visibility-increasing edge, then it satisfies
the lemma, since b does not see into Pocket(b, a). See
Figure 1(a). This takes care of the base case where every
vertex v �= a exterior to the pocket is convex.

Figure 1: Visibility-increasing edges: (a) the edge (b, a)
is a visibility-increasing edge; (b) vertex b is reflex, so
we apply induction on (c, b).

If b is a reflex vertex then let c be the other neigh-
bour of b (i.e., the neighbour not equal to a). See Fig-
ure 1(b). Then Pocket(c, b) ⊇ Pocket(b, a). Also, note
that the reflex vertex a is exterior to Pocket(b, a) and

induction on (c,b)

Proof. For any edge (b,a) with a reflex, there is a visibility-increasing edge
outside Pocket(b,a). By induction on # vertices outside Pocket(b,a).

How to Convexify in n moves

Lemma. Every non-convex polygon has a visibility-increasing edge:
 an edge (u,v) such that for every point p along the edge (u,v),
 V(u) ⊆V(p) ⊆V(v)
 and there is a vertex in V(v) - V(u).

23rd Canadian Conference on Computational Geometry, 2011

they observe that a monotone polygon can be convexi-
fied in one move. They also show that, even for mono-
tone polygons, it is not always possible to move just
one vertex and strictly increase the set of vertex visibil-
ities. Note that such an example depends crucially on
prohibiting coincident vertices! If vertices are allowed
to be coincident, our result shows that for any simple
polygon, it is possible to move one vertex until it gains
a new neighbour in the visibility graph.

The issue of allowing/disallowing coincident vertices
has arisen before in problems of transforming (or “mor-
phing”) polygons and straight-line graph drawings.
Cairns [6] showed how to transform between any two
straight-line planar triangulations that are combinato-
rially the same, using a sequence of moves each of which
translates one vertex onto another (or the reverse). He
then comments that it is possible to avoid coincident
vertices by keeping them a small distance apart. A
somewhat similar issue comes up in the result of Guibas
and Hershberger [16] who show that for any two simple
polygons on vertices 1, 2, . . . , n such that edge (i, i+ 1)
has the same direction vector in both polygons, there is
a morph between the polygons that preserves simplicity
and the direction vectors of edges. Their method moves
vertices infinitesimally close together and operates on
the infinitesimal structures.

The question of moving only one vertex at a time has
recently been settled in independent work by Ábrego et
al. [1], who show that if a there is a transformation that
convexifies a polygon without losing vertex visibilities,
then the transformation can be accomplished by moving
only one vertex at a time.

Although not directly relevant to this paper, we note
that there is a considerable body of work on making
polygons convex by means of “pivot” operations, such
as flips [13, 8, 15, 25] and flipturns [3, 4].

For background on visibility graphs of polygons, see
the books by Ghosh [14] and O’Rourke [22].

Definitions
Two points inside a polygon P are visible if the line

segment between them is contained in the closed poly-
gon. Given this definition, we will now use “visibility”
rather than “internal visibility”. We will assume that
the input polygon does not have three or more collinear
vertices. It is possible to perturb a polygon to achieve
this without losing internal vertex visibilities. Note the
consequence that if two vertices are visible, then the line
segment between them does not go through another ver-
tex. For point p in P , the visibility region of p, denoted
V (p), is the set of points in P visible from p.

Let a be a reflex vertex with neighbours b and b� on
the polygon boundary. Extend a line segment from b to
a and beyond, until it first hits the polygon boundary
at p. Define Pocket(b, a) to be the region bounded by
the chain along the polygon boundary from a to p go-

ing through b�, together with the line segment pa. We
consider points along the line segment pa to be outside
the pocket (i.e., the pocket is open along its “mouth”).
In particular, a is outside Pocket(b, a). See the shaded
region in Figure 1(a).

2 Convexifying polygons

Theorem 1 An n-vertex polygon can be convexified in
n moves, where each move strictly increases the set of
pairs of visible vertices, and each move translates one
vertex of the current polygon along an incident edge to
a neighbour on the polygon boundary.

The main tool in proving the theorem is the following.
We prove that if a polygon is not convex then it has an
edge along which visibility increases. More precisely,
define an edge (u, v) to be a visibility-increasing edge if
for every point p along the edge (u, v) we have V (u) ⊆
V (p) ⊆ V (v), and there is a vertex in V (v)− V (u).

We will use a stronger induction hypothesis to
prove that every non-convex polygon has a visibility-
increasing edge (u, v) where v is a reflex vertex. Note
that the fact that v is reflex implies that there is a vertex
in V (v)− V (u).

Lemma 2 Let P be a simple polygon with reflex vertex
a and edge (b, a). Then there is a visibility-increasing
edge (u, v) with v reflex and u, v exterior to Pocket(b, a)
such that u does not see into Pocket(b, a).

Proof. We prove the result by induction on the number
of reflex vertices of the polygon exterior to the pocket.
If (b, a) is a visibility-increasing edge, then it satisfies
the lemma, since b does not see into Pocket(b, a). See
Figure 1(a). This takes care of the base case where every
vertex v �= a exterior to the pocket is convex.

Figure 1: Visibility-increasing edges: (a) the edge (b, a)
is a visibility-increasing edge; (b) vertex b is reflex, so
we apply induction on (c, b).

If b is a reflex vertex then let c be the other neigh-
bour of b (i.e., the neighbour not equal to a). See Fig-
ure 1(b). Then Pocket(c, b) ⊇ Pocket(b, a). Also, note
that the reflex vertex a is exterior to Pocket(b, a) and

Pocket(b,a)

23rd Canadian Conference on Computational Geometry, 2011

they observe that a monotone polygon can be convexi-
fied in one move. They also show that, even for mono-
tone polygons, it is not always possible to move just
one vertex and strictly increase the set of vertex visibil-
ities. Note that such an example depends crucially on
prohibiting coincident vertices! If vertices are allowed
to be coincident, our result shows that for any simple
polygon, it is possible to move one vertex until it gains
a new neighbour in the visibility graph.

The issue of allowing/disallowing coincident vertices
has arisen before in problems of transforming (or “mor-
phing”) polygons and straight-line graph drawings.
Cairns [6] showed how to transform between any two
straight-line planar triangulations that are combinato-
rially the same, using a sequence of moves each of which
translates one vertex onto another (or the reverse). He
then comments that it is possible to avoid coincident
vertices by keeping them a small distance apart. A
somewhat similar issue comes up in the result of Guibas
and Hershberger [16] who show that for any two simple
polygons on vertices 1, 2, . . . , n such that edge (i, i+ 1)
has the same direction vector in both polygons, there is
a morph between the polygons that preserves simplicity
and the direction vectors of edges. Their method moves
vertices infinitesimally close together and operates on
the infinitesimal structures.

The question of moving only one vertex at a time has
recently been settled in independent work by Ábrego et
al. [1], who show that if a there is a transformation that
convexifies a polygon without losing vertex visibilities,
then the transformation can be accomplished by moving
only one vertex at a time.

Although not directly relevant to this paper, we note
that there is a considerable body of work on making
polygons convex by means of “pivot” operations, such
as flips [13, 8, 15, 25] and flipturns [3, 4].

For background on visibility graphs of polygons, see
the books by Ghosh [14] and O’Rourke [22].

Definitions
Two points inside a polygon P are visible if the line

segment between them is contained in the closed poly-
gon. Given this definition, we will now use “visibility”
rather than “internal visibility”. We will assume that
the input polygon does not have three or more collinear
vertices. It is possible to perturb a polygon to achieve
this without losing internal vertex visibilities. Note the
consequence that if two vertices are visible, then the line
segment between them does not go through another ver-
tex. For point p in P , the visibility region of p, denoted
V (p), is the set of points in P visible from p.

Let a be a reflex vertex with neighbours b and b� on
the polygon boundary. Extend a line segment from b to
a and beyond, until it first hits the polygon boundary
at p. Define Pocket(b, a) to be the region bounded by
the chain along the polygon boundary from a to p go-

ing through b�, together with the line segment pa. We
consider points along the line segment pa to be outside
the pocket (i.e., the pocket is open along its “mouth”).
In particular, a is outside Pocket(b, a). See the shaded
region in Figure 1(a).

2 Convexifying polygons

Theorem 1 An n-vertex polygon can be convexified in
n moves, where each move strictly increases the set of
pairs of visible vertices, and each move translates one
vertex of the current polygon along an incident edge to
a neighbour on the polygon boundary.

The main tool in proving the theorem is the following.
We prove that if a polygon is not convex then it has an
edge along which visibility increases. More precisely,
define an edge (u, v) to be a visibility-increasing edge if
for every point p along the edge (u, v) we have V (u) ⊆
V (p) ⊆ V (v), and there is a vertex in V (v)− V (u).

We will use a stronger induction hypothesis to
prove that every non-convex polygon has a visibility-
increasing edge (u, v) where v is a reflex vertex. Note
that the fact that v is reflex implies that there is a vertex
in V (v)− V (u).

Lemma 2 Let P be a simple polygon with reflex vertex
a and edge (b, a). Then there is a visibility-increasing
edge (u, v) with v reflex and u, v exterior to Pocket(b, a)
such that u does not see into Pocket(b, a).

Proof. We prove the result by induction on the number
of reflex vertices of the polygon exterior to the pocket.
If (b, a) is a visibility-increasing edge, then it satisfies
the lemma, since b does not see into Pocket(b, a). See
Figure 1(a). This takes care of the base case where every
vertex v �= a exterior to the pocket is convex.

Figure 1: Visibility-increasing edges: (a) the edge (b, a)
is a visibility-increasing edge; (b) vertex b is reflex, so
we apply induction on (c, b).

If b is a reflex vertex then let c be the other neigh-
bour of b (i.e., the neighbour not equal to a). See Fig-
ure 1(b). Then Pocket(c, b) ⊇ Pocket(b, a). Also, note
that the reflex vertex a is exterior to Pocket(b, a) and

induction on (c,b)

CCCG 2011, Toronto ON, August 10–12, 2011

not exterior to Pocket(c, b). Therefore we can apply in-

duction to conclude that there is a visibility-increasing

edge (u, v) exterior to Pocket(c, b) such that v is reflex

and u does not see into Pocket(c, b). Then u cannot see

into Pocket(b, a), so (u, v) satisfies the lemma.

Figure 2: Visibility-increasing edges in the general case,

where we apply induction on (y, x).

We are left with the case where b is a convex vertex

but (b, a) is not a visibility-increasing edge. Note that

because a is a reflex vertex, V (a) contains a vertex not

in V (b). Therefore, the only way that (b, a) can fail to

be visibility-increasing is that there is a point p on (b, a)

and a point t on the boundary of P such that t sees p,

but t does not see a. See Figure 2. Now we rotate

the line through t and p about t until it hits the poly-

gon boundary. More precisely, consider the first point

q along the line segment pa such that the line segment

qt does not lie in the interior of P . Then some vertex x

lies on the line segment qt. Note that x must be a reflex

vertex. There are two paths on the polygon boundary

from x to t. Take the path that does not contain a, and

let y be the neighbour of x on this path. (It may happen

that y = t.) We will apply induction on the edge (y, x).

Observe that Pocket(y, x) ⊇ Pocket(b, a). Also, note

that the reflex vertex a is exterior to Pocket(b, a) and

not exterior to Pocket(y, x). Therefore we can apply in-

duction to conclude that there is a visibility-increasing

edge (u, v) exterior to Pocket(y, x) such that v is reflex

and u does not see into Pocket(y, x). Then u cannot see

into Pocket(b, a), so (u, v) satisfies the lemma. �

Proof. [of Theorem 1] The proof is by induction on

the number of vertices. If the polygon has three ver-

tices then it is already convex. For the general case, if

the polygon is convex then there is nothing to prove,

so suppose there is a reflex vertex. Then by Lemma 2,

there is a visibility-increasing edge (u, v). The plan is to

move vertex u to vertex v, resulting in a simple polygon

with fewer vertices on which we apply induction. See

Figure 5. Let w be the other neighbour of u on the poly-

gon boundary. We have V (u) ⊆ V (v) and w ∈ V (u),

so w must be visible to v. In particular, u is a con-

vex vertex and the line segment wv does not intersect

the polygon boundary except at its endpoints. There-

fore moving u to v results in a simple polygon. Observe

that no vertex visibilities are affected by the move, ex-

cept that u gains visibilities once it reaches v (if not

before). Note that u may become collinear with two

other vertices of the polygon at an intermediate point

of the move, but this causes no problems. �

3 Avoiding coincident vertices

In the previous section we showed how to convexify

any polygon without losing internal visibilities, provided

that vertices are allowed to become coincident. In this

section we show how to avoid coincident vertices. Each

set of coincident vertices from the previous method is

replaced by a cluster of vertices that are close together

but not coincident. One move of the previous method

becomes O(n) moves, each moving a single vertex. The

total number of moves is therefore O(n2). Vertex visibil-

ities are never lost, but a single move might not increase

vertex visibilities.

Figure 3: Cluster vertices along a single edge (top); a

reflex cluster (left); and a convex cluster (right). Shaded

areas indicate the interior of the polygon.

The basic idea is to replace an edge uv by a slightly

outward-bent convex chain, with some points on a shal-

low convex curve close to u, and other points on a shal-

low convex curve close to v, see Figure 3 (top). In gen-

eral, a cluster will consist of a representative vertex v,

together with the vertices that have been moved to join

v, and now lie on two convex curves incident to v. The

representative vertex v will be at the same point in the

plane as it was in the original polygon. If C is a clus-

ter with representative vertex v, we will say that C is

the cluster of v. Figure 3 depicts a reflex and a con-
vex cluster. In a convex cluster all vertices see each

other; in a reflex cluster only vertices in the same arc

see each other, and the representative vertex sees the

whole cluster.

All vertices of a cluster lie in the ε-neighbourhood of

induction on (y,x)

How to convexify without coincident vertices

eorem. Can convexify any polygon in O(n2) moves where
 - no move decreases visibility
 - a move translates one vertex in a straight line
 - vertices are never coincident

v
w

u

v
w w

Open Questions

Convexify an orthogonal polygon without losing visibility, maintaining
orthogonality.

CCCG 2011, Toronto ON, August 10–12, 2011

configuration) the transformation we wish to realize is
a counterclockwise rotation of w’s right cluster and a
clockwise rotation of v’s left cluster to their final posi-
tions. We describe how to do this for v’s left cluster. In
the first step, move the vertices of v’s left cluster (one
by one) close enough to v that their new positions and
their final positions are in convex position, as shown in
Figure 7. In the second step, move the vertices one by
one to their final positions, starting with the vertex far-
thest from v along the chain. Convexity of the cluster
(and hence visibility within the cluster) is maintained
during the second step because the union of the initial
and final positions of all moved vertices is in convex po-
sition. Global visibilities may be gained but are never
lost.

Figure 7: Adjusting the position of v’s left cluster
vertices. All movement takes place within the �-
neighbourhood of v. The first vertex move is shown
with a thin directed line. Note that this figure is not to
scale since the angle α should be much smaller.

From the above ideas, we obtain the following result.

Theorem 3 An n-vertex polygon can be convexified in
O(n2) moves, so that visibilities between vertices are
never lost, and vertices never become coincident. Each
move is a translation of a single vertex.

4 Discussion and Open Problems

We have shown that any simple n-vertex polygon can be
convexified in O(n2) single-vertex moves without ever
decreasing the visibility graph, answering a question
posed by Devadoss et al. [12]. If coincident vertices are
allowed, then n moves suffice, and each move strictly
increases the visibility graph.

In the same paper, Devados et al. ask about trans-
forming a polygon to decrease the visibility graph: can
any simple polygon be transformed to a polygon whose
visibility graph is a triangulation without ever increas-
ing the visibility graph? This question remains open.

For orthogonal polygons, it would be desirable to
maintain orthogonality. We conjecture than every sim-
ple orthogonal polygon can be convexified (i.e., trans-
formed to a rectangle) without losing visibilities, while
maintaining orthogonality. A minimal motion that
maintains orthogonality is to move one edge orthogo-
nal to itself (i.e., a horizontal edge moves vertically, and
vice versa). However, Figure 8 shows an example where
no edge can be moved orthogonally to gain visibilities.

It is possible that the current result can be generalized
to straight line drawings of planar graphs: Given a pla-
nar graph embedded in the plane as a straight-line draw-
ing, is it possible to transform the drawing so that every
internal face becomes convex, while remaining straight-
line planar, and without losing internal visibilities? Our
result is the special case where the drawing has only
one internal face. The fact that such a transformation
is possible, ignoring visibility constraints, is not at all
obvious, but follows from the result by Thomassen [24],
who showed (based on a result of Cairns [6]) that there is
a transformation between any two straight-line planar
drawings of the same embedded graph that preserves
straight-line planarity. Vertices become coincident dur-
ing this transformation, although that can be avoided by
keeping them close but distinct. The number of vertex
movements is not polynomially bounded. For further
discussion on morphing of graph drawings, see [20, 21].

Finally, we make two remarks about our result on
the existence of a visibility-increasing edge in any sim-
ple polygon. Since good things (like ears of polygons)
come in pairs, it is natural to ask whether every simple
polygon has two visibility-increasing edges.

Visibility-increasing edges may have other uses in the
study of visibility graphs. A major open question is
whether visibility graphs of polygons can be recognized
in polynomial time (with or without the information
about which edges form the polygon boundary). This
is Problem 17 in the Open Problems Project [9].

Figure 8: An orthogonal polygon where no single edge
can be moved orthogonally to gain visibilities.in this example, no single edge can move

Open Questions

Transform a planar straight-line graph drawing to a convex one, without
losing visibilities.

Ignoring visibility constraints, this can be done [omassen 1983, Cairns 1944].
But can it be done efficiently?

Given two straight line planar drawings of a graph, find a polynomial size
planar morph between them.

Open Questions

Given a straight line planar drawing of a graph, find a polynomial size
planar morph to a drawing with convex internal faces.

or at least:

convex faces

1
2

3

1 2

3

1
3

2

1
2

3

e End

