

Body-and-cad Rigidity Theory

Audrey Lee-St. John

Joint work with: Kirk Haller, Meera Sitharam, Ileana Streinu, Neil White Jessica Sidman

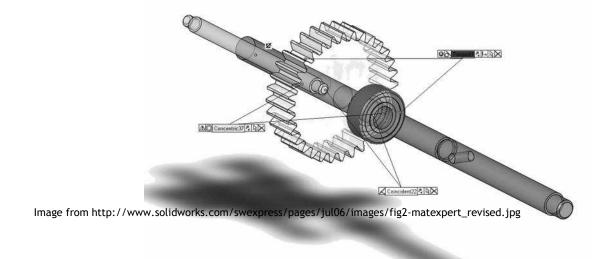
Workshop on Rigidity Fields Institute

Audrey Lee-St.John Mount Holyoke College

October 14, 2011 Toronto, ON

Motivation: CAD

- In SolidWorks 3D assembly environment
 - Atomic elements are "sets" or rigid bodies
 - Constraints are called "mates" or "dimensions"
 - Very rich "language" to describe complicated systems



CAD constraints

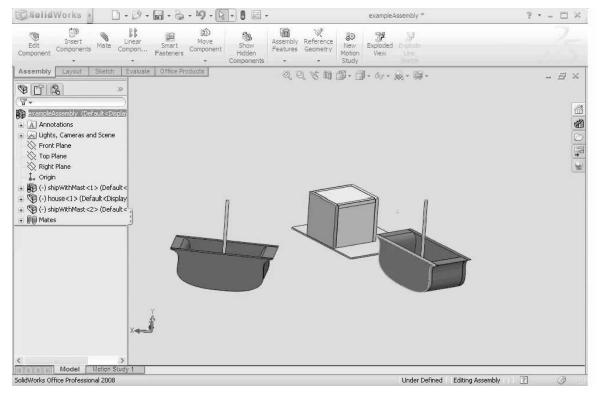
- Constraints are placed by identifying *primitive geometries* on sets
 - E.g., points, lines, planes, curves
- Example constraints
 - Symmetry, angle, equality
- Current rigidity models do not capture such systems

Example

- 2 rigid bodies
- Plane-plane ||
- Plane-plane coincident
- Line-plane perpendicular
- Point-point distance (bar)
- Point-point distance (bar)

SolidWorks

• Example assembly



Known rigidity: body-bar-hinge model

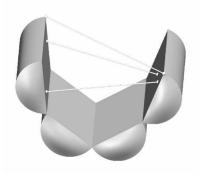
- Building blocks are rigid bodies
- Constraints are
 - fixed-length bars rigidly attached to bodies by universal joints
 - hinges

3D Body-and-bar

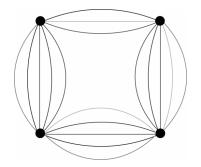
(Generically) minimally rigid body-and-bar frameworks characterized by Tay's **counting condition**:

A body-and-bar framework is generically minimally rigid

for associated graph on *n* vertices and *m* edges: any *n*' vertices span at most 6*n*'-6 edges



and m = 6n-6



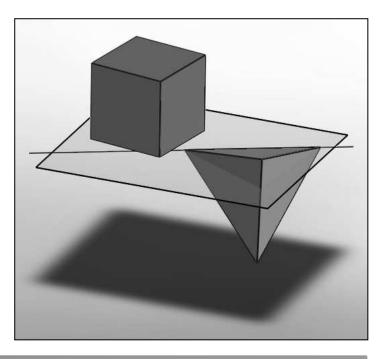
A recipe for rigidity theory

- Formulate algebraic rigidity concept
 - Often quadratic systems
 - Even defining rigidity is challenging and subtle!
 - Differential geometry, topology, algebraic geometry
- Study associated infinitesimal rigidity
 - Linear algebra
- Try to find combinatorial characterizations
 - Graph theory
- ... that hopefully lead to efficient algorithms!
 - (Pebble games)
 - Matroid theory

Body-and-cad

Body-and-cad frameworks

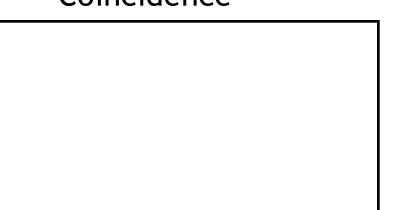
- Rigid bodies
 - Geometric elements
 - lines, planes, points
- Pairwise constraints

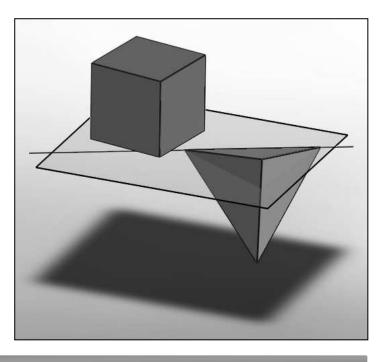


Body-and-cad frameworks

• Rigid bodies

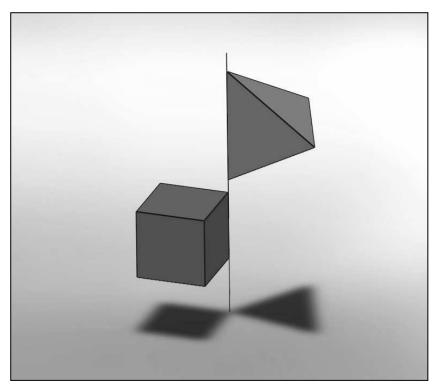
- Geometric elements
 - lines, planes, points
- Pairwise constraints
 - Coincidence





Example coincidence constraint

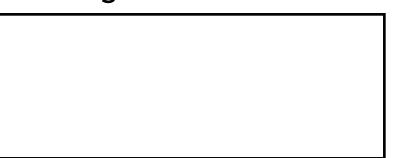
• Line-line coincidence

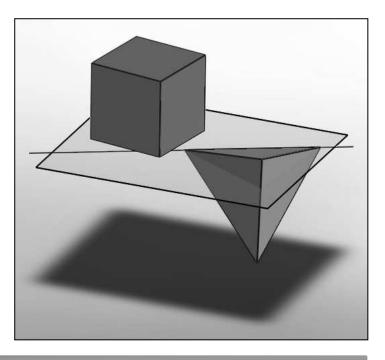


Body-and-cad frameworks

• Rigid bodies

- Geometric elements
 - lines, planes, points
- Pairwise constraints
 - Coincidence
 - Angle

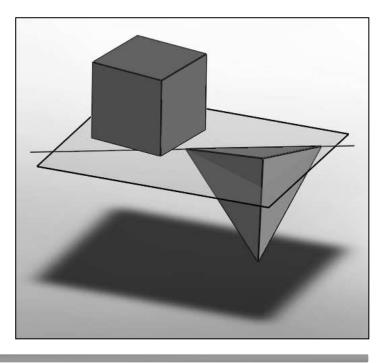




Body-and-cad frameworks

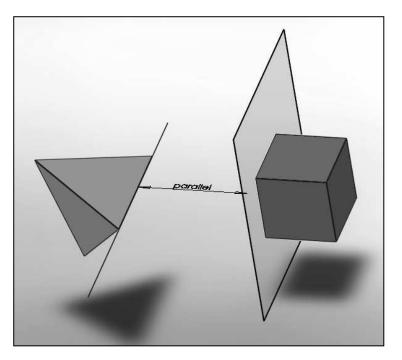
• Rigid bodies

- Geometric elements
 - lines, planes, points
- Pairwise constraints
 - Coincidence
 - Angle
 - Parallel
 - Perpendicular
 - Arbitrary fixed angle

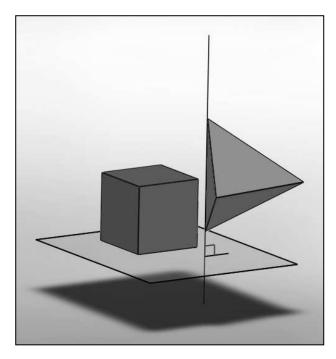


Example angle constraints

• Plane-line parallel



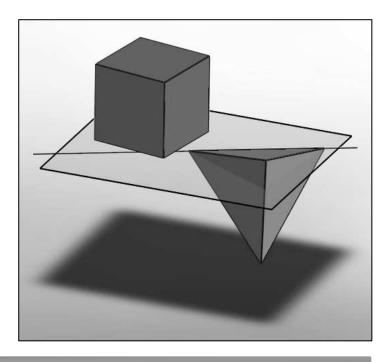
• Plane-line perpendicular



Body-and-cad frameworks

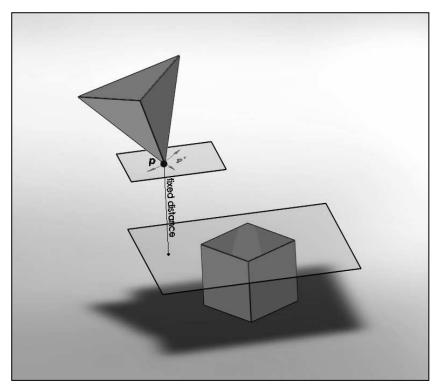
• Rigid bodies

- Geometric elements
 - lines, planes, points
- Pairwise constraints
 - Coincidence
 - Angle
 - Parallel
 - Perpendicular
 - Arbitrary fixed angle
 - Distance



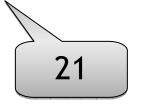
Example distance constraint

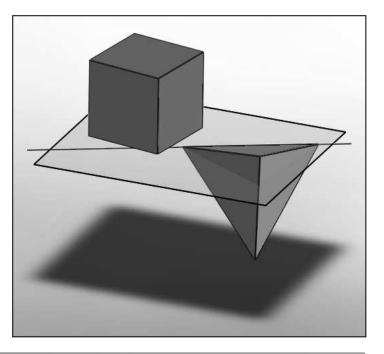
• Plane-point distance



Body-and-cad frameworks

- Rigid bodies
 - Geometric elements
 - lines, planes, points
- Pairwise constraints
 - Coincidence
 - Angle
 - Distance





A recipe for rigidity theory

• Formulate algebraic rigidity concept

- Often quadratic systems
- Even defining rigidity is challenging and subtle!
 - Differential geometry, topology, algebraic geometry
- Study associated infinitesimal rigidity

Linear algebra

• Try to find combinatorial characterizations

Graph theory

- ... that hopefully lead to efficient algorithms!
 - (Pebble games)
 - Matroid theory

Tools

- Grassmann-Cayley algebra
 - extensors and tensors
- Plücker coordinates
- Theory of screws/twists

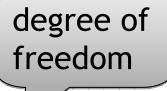
Goal: rigidity matrix

• Angular and blind constraints

	\mathbf{s}_1^*		\mathbf{s}_i^*		-	\mathbf{s}_n^*		
	\mathbf{v}_1	ω_1		\mathbf{v}_i	ω_i		\mathbf{v}_n	ω_n
	0			0			0	
		÷		÷	÷			:
Angular constraints	0			0			0	
	÷	÷		÷	÷		÷	÷
	0			0			0	
Blind constraints	:	:		:	:		:	:

Constraint types

• Observe:



Some constraints may affect > 1 dof

- Plane-plane parallel
- Line-line parallel
- Introduce primitive constraints
 - May affect $\leq 1 \text{ dof}$
 - Line-line perpendicular

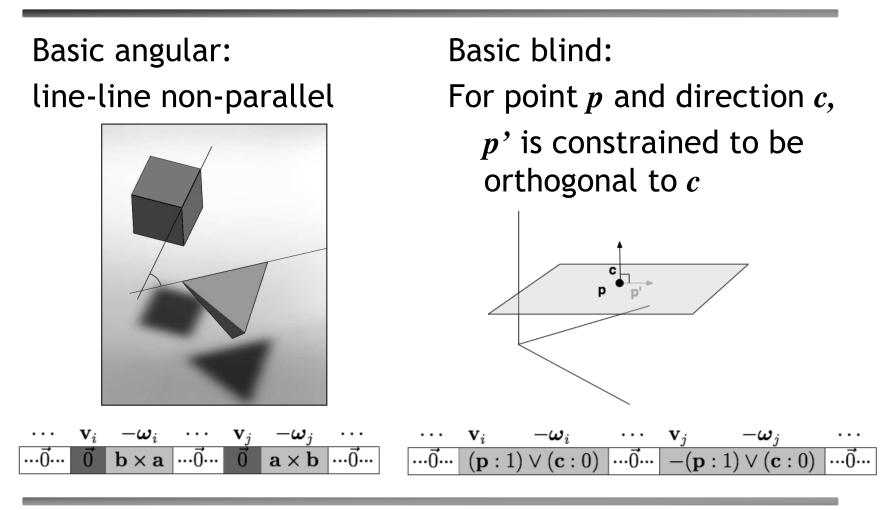
Primitive constraint types

- Angular
 - May affect only rotational dofs
 - Line-line perpendicular
- Blind
 - May affect either rotational or translational dofs
 - Point-point distance (bar)

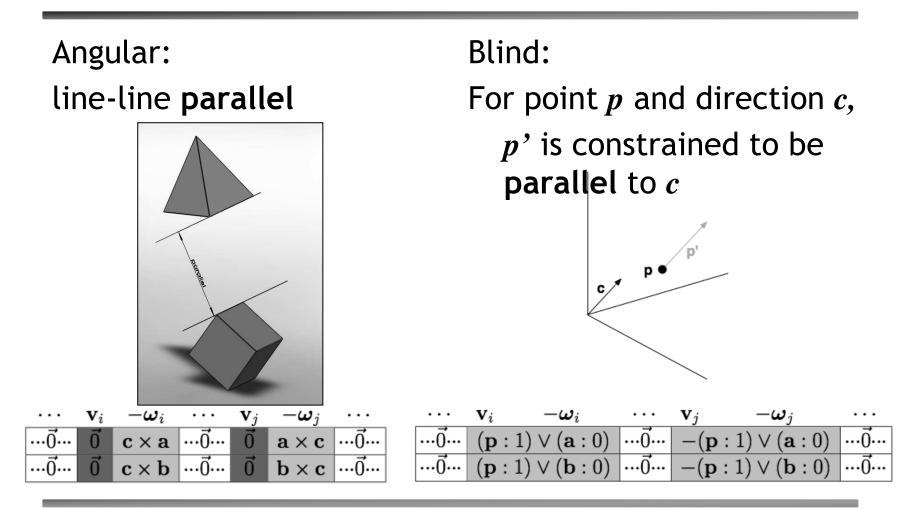
Basic building blocks

- 20 of 21 body-and-cad constraints decompose into 2 basic building blocks:
 - 1 angular
 - 1 blind
- Point-point coincidence requires separate treatment

Basic building blocks

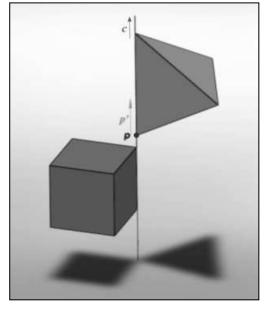


Building blocks



Example: line-line coincidence

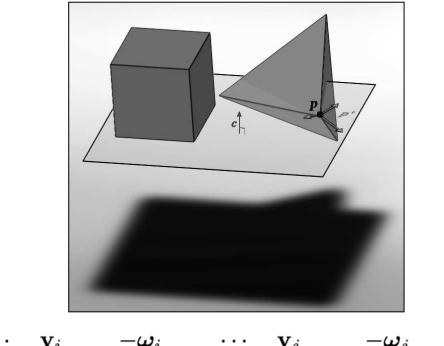
(i) line-line parallel(iii) p' same direction as c



	\mathbf{v}_i	$-oldsymbol{\omega}_i$	• • •	\mathbf{v}_{j}	$-oldsymbol{\omega}_j$	•••
<u>0</u>	Ő	$\mathbf{c} \times \mathbf{a}$	<u>0</u>	Ō	$\mathbf{a} \times \mathbf{c}$	ī
<u>0</u>	Ō	$\mathbf{c} \times \mathbf{b}$	<u>0</u>	Ō	$\mathbf{b} \times \mathbf{c}$	ī.
<u>0</u>	(p	$(\mathbf{a}:0)$: 1) \vee ($\mathbf{a}:0$)	<u>0</u>	—(]	$\mathbf{p}:1)\vee(\mathbf{a}:0)$	<u>0</u>
<u>0</u>	(p	$:1) \lor (\mathbf{b}:0)$	<u>0</u>	-(J	$\mathbf{p}:1)\vee(\mathbf{b}:0)$	ī

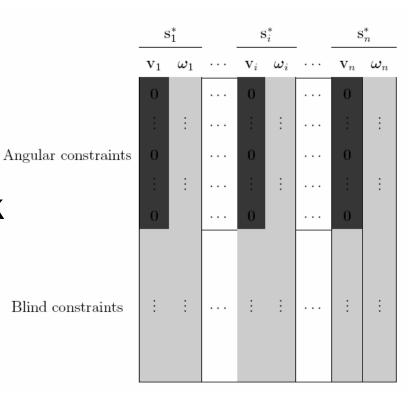
Example: plane-point coincidence

(iv) p' is constrained to be orthogonal to c



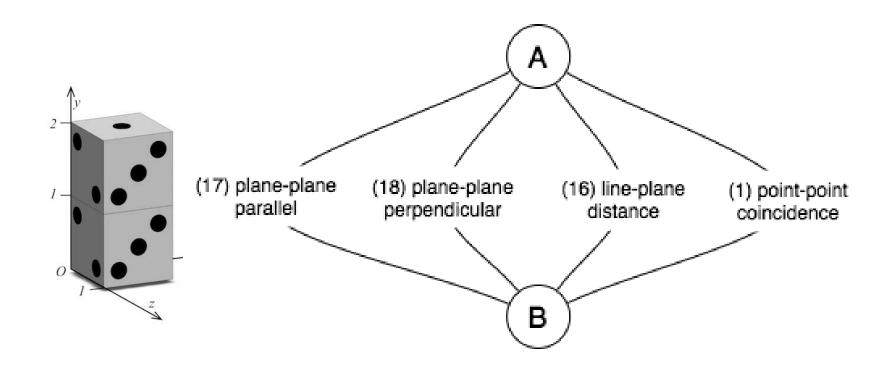
Rigidity matrix

21 body-and-cad constraints - Each associated to ≤ 1 angular building block ≤ 1 blind building block

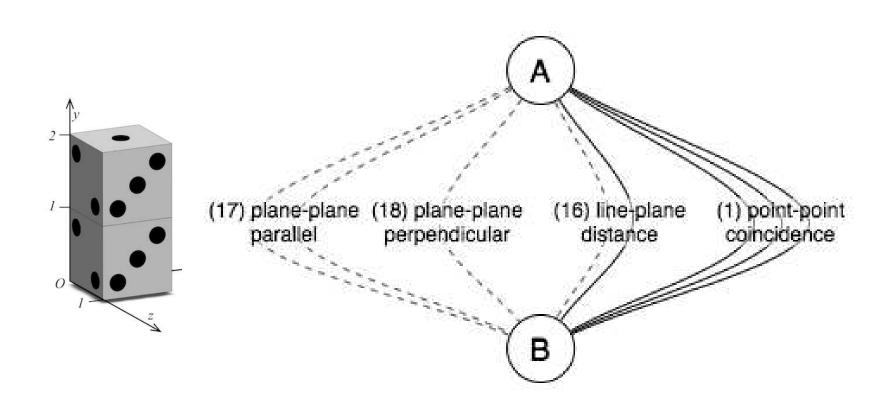


Combinatorics

Cad graph



Primitive cad graph

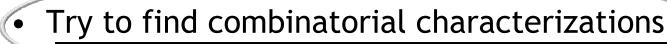


A recipe for rigidity theory

• Formulate algebraic rigidity concept

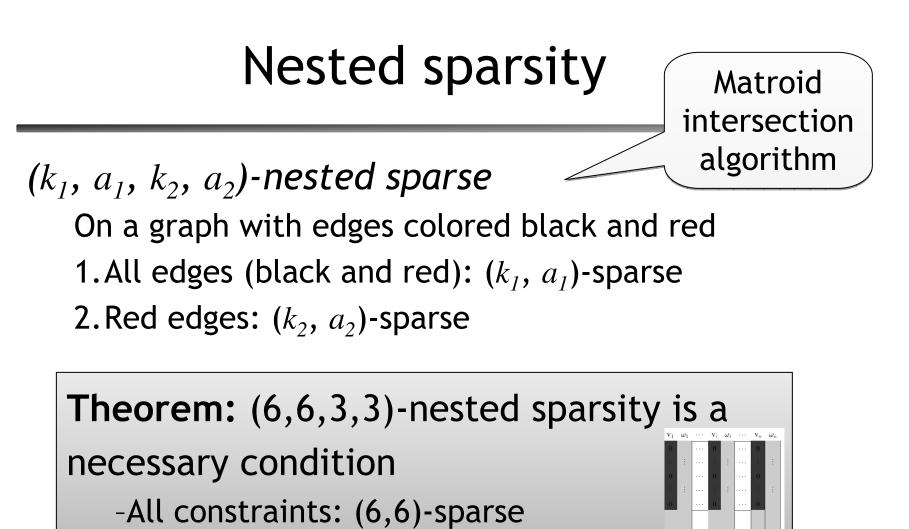
- Often quadratic systems
- Even defining rigidity is challenging and subtle!
 - Differential geometry, topology, algebraic geometry
- Study associated infinitesimal rigidity

Linear algebra



Graph theory

- ... that hopefully lead to efficient algorithms!
 - (Pebble games)
 - Matroid theory

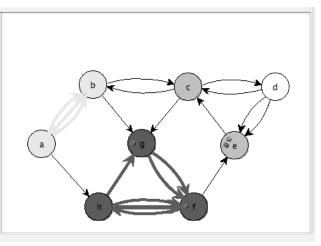


-Angular constraints: (3,3)-sparse

· · · · · · · · · ·

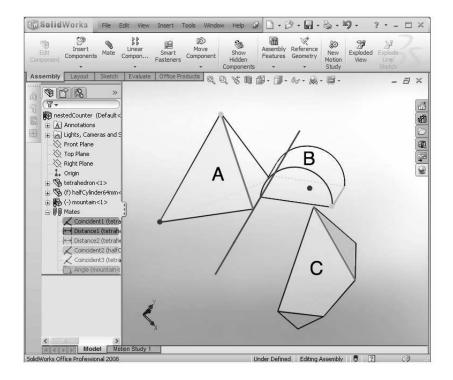
Sparsity

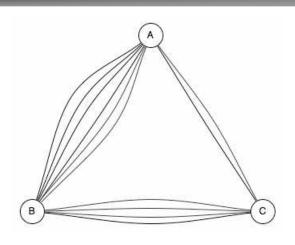
- A graph G on n vertices is (k,a)-sparse if every set of n' vertices spans at most
 kn'-a edges
- Pebble game algorithms for sparsity (Lee, Streinu '05)
 - Matroidal properties of sparse graphs

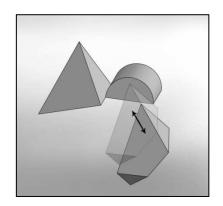


Nested sparsity for body-and-cad

• Not sufficient







This sounds familiar...

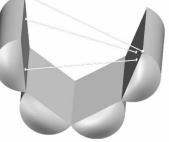
Bar-and-joint: 3D

- Combinatorial characterization is open!!
 - Generalized Laman count (3,6) is *necessary* but not *sufficient*
 - Double banana example

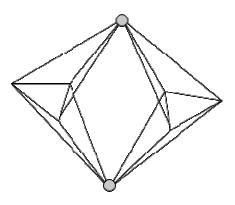
Body-and-cad: 3D

• Can we come up with a combinatorial characterization for body-and-cad rigidity?

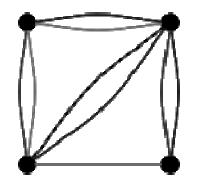
- Is this as hard as 3D bar-and-joint?
- Where does it lie between body-and-bar and bar-and-joint?



Without point-point coincidences...



... we have a combinatorial characterization!



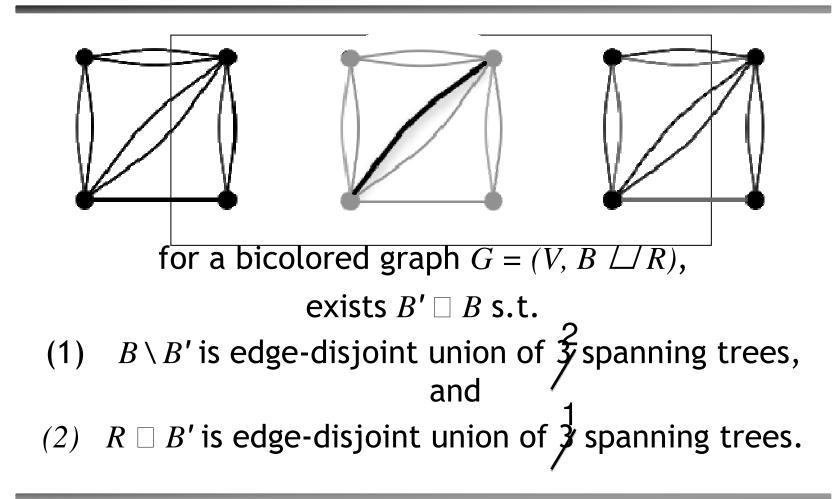
Main theorem

A body-and-cad framework (with no point-point coincidences) is generically minimally rigid

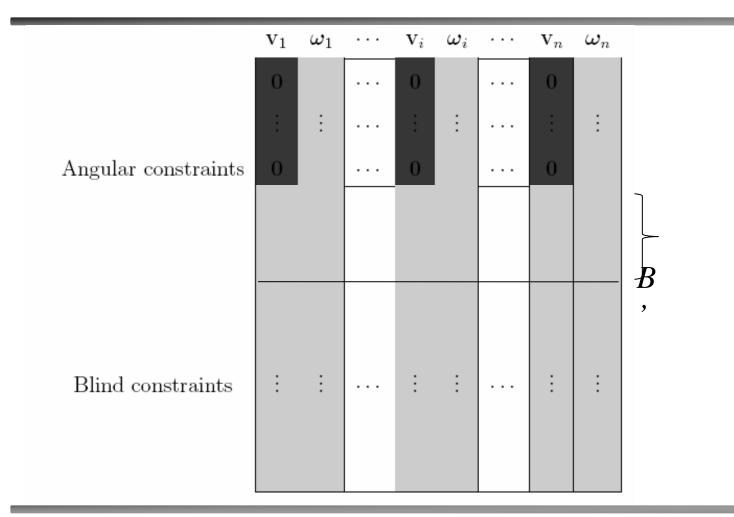
for its associated primitive cad graph $G = (V, B \ \ \ R)$, exists $B' \square B$ s.t. (1) $B \setminus B'$ is edge-disjoint union of 3 spanning trees, and

(2) $R \square B'$ is edge-disjoint union of 3 spanning trees.

Combinatorics



Intuitively...



Generalize White and Whiteley

- A bi-colored graph G is (k,g)-counted if
 m = kn k (count on total edges), and
 m_R ≤ gn g (count on red edges)
- A (k,g)-frame is a pair (G,x),
 - $-x:E \rightarrow R^k$, where $x(r)_j = 0$ for j = 1, ..., k-g and $r \Box R$

Body-and-cad (without point-point coincidence) are (6,3)-frames

Main theorem

A (k,g)-frame, with $G = (V, B \sqcup R)$ a bicolored graph, is generically minimally rigid \Box exists $B' \Box B$ s.t.

- (1) $B \setminus B'$ is edge-disjoint union of k-g spanning trees, and
- (2) $R \square B'$ is edge-disjoint union of g spanning trees.

Pure condition

Tied-down rigidity matrix

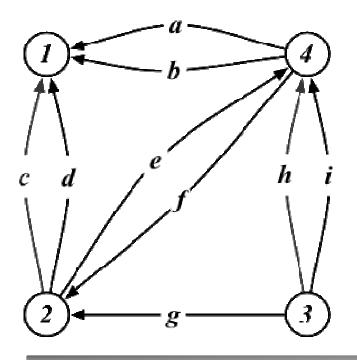
- The pure condition for G is a polynomial in indeterminate edge vectors: $C(G) = det(M_T(G))$
- A (k,g)-fan φ is a partitioning of E into n-1 ordered sets $(\varphi_2,...,\varphi_n)$ such that each $\varphi_i = (\varphi_{i,1},...,\varphi_{i,k})$ contains
 - exactly k edges incident to vertex i,
 - $\leq g$ (red) edges from R

Fans and the pure condition

Proposition.

$$C(G) = \Sigma \varphi \pm [\varphi_2] \cdots [\varphi_n],$$

for all distinct (*k*,*g*)-fans φ of *G*.



- (3,1)-fan diagram corresponds to one *distinct* fan
- more than one (3,1)-fan, including: ((c,d,e),(a,b,f),(g,h,i)) ((e,c,d),(f,a,b),(i,g,h)) ((c,e,d),(a,f,b),(g,i,h))

Proof sketch

- => If $C(G) \neq 0$, then can pick out k trees
 - Red edges can only appear in g of the trees due to 0 entries
 - B' is composed of black edges in those g trees
- <= If have tree decomposition, assign

$$x'(e) = \begin{cases} (a_{j,1}, a_{j,2}, \dots, a_{j,k}) & \text{if } e \in B \setminus B' \\ (0, 0, \dots, 0, a_{j,k-g+1}, \dots, a_{j,k}) & \text{if } e \in R \cup B' \end{cases}$$

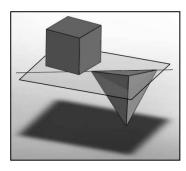
Then only one distinct (k,g)-fan (root trees at vertex 1 and direct edges to root) contributes a non-zero term to C(G) and $C(G) \neq 0$.

Conclusions

Summary of contributions

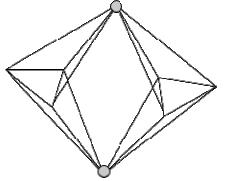
- New rigidity model
 - Body-and-cad
 - 21 pairwise constraints
 - Coincidence
 - Angle
 - Distance
- Infinitesimal rigidity theory foundation
 - Rigidity matrix

- Combinatorics
 - Nested sparsity
 - Necessary, not sufficient
 - Trees
 - Characterization for 20 of 21 constraints



Open questions

- Other constraints for CAD
 - Symmetry, equality
- Combinatorial characterization for point-point coincidence



Thank you!

- Infinitesimal rigidity theory based on dissertation work at UMass Amherst
 - Advisor: Ileana Streinu
 - Other collaborators: Kirk Haller, Meera Sitharam, Neil White
- Combinatorial characterization
 - Joint work with Jessica Sidman
- Questions?

Symmetric Mate

- Allows two similar entities to be symmetric about a face or plane
- Features allowed:
 - Points
 - Planes or planar faces
 - Spheres of equal radius
 - Cylinders of equal radius

http://www.neswuc.com/Presentation/Advanced_Mates.pdf

Confidential information

Alpha helices

• Line-line angle

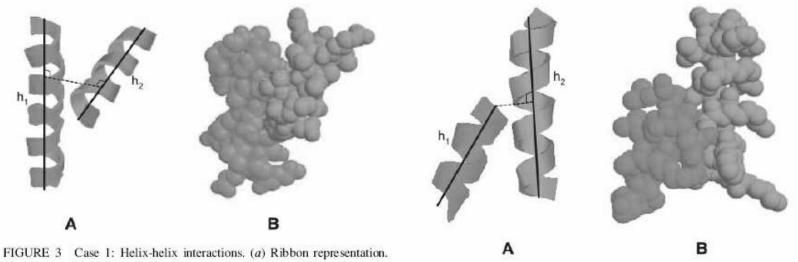


FIGURE 3 Case 1: Helix-helix interactions. (*a*) Ribbon representation. (*b*) All-atom. The helices in this figure are the third helix (21 residues with sequence numbers 60–80) and the fifth helix (14 residues with sequence numbers 93–106) in a protein with ID 119L.

FIGURE 4 Case 2: Helix-helix interactions. (a) Ribbon representation. (b) All-atom. The helices in this figure are the fifth helix (11 residues with sequence numbers 93-103) and the 18th helix (17 residues with sequence numbers 351-367) in a protein with ID 16PK.

Lee, Sangyoon, and Chirikjian, Gregory. Interhelical angle and distance prefer-ences in globular proteins. Biophysical Journal 86 (2004), 1105–1117.

Beta sheets

• Plane-plane ||, coincident

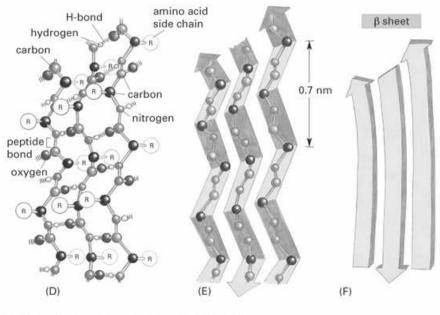
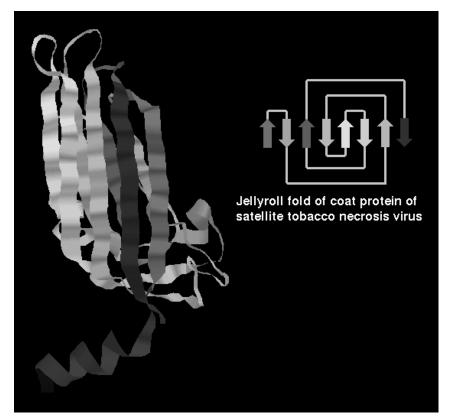


Figure 4-10 part 2 of 2 Essential Cell Biology, 2/e. (© 2004 Garland Science)

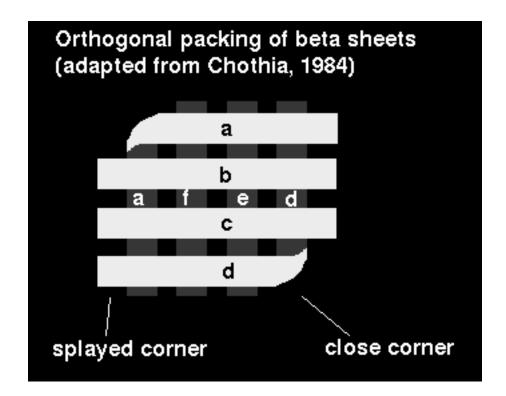
http://fig.cox.miami.edu/~cmallery/255/255prot/ecb4x10b.jpg

Beta sheets



http://www.cryst.bbk.ac.uk/PPS95/course/8_folds/8_stv.gif

Orthogonal beta sheets



http://www.cryst.bbk.ac.uk/PPS2/course/section9/9_sheshe.html

Body-and-cad

	plane		line		point	
	angular	blind	angular	blind	angular	blind
plane						
coincidence	2	1	1	1	0	1
distance	2	1	1	1	0	1
parallel	2	0	1	0		
perpendicular	1	0	2	0		
fixed angle	1	0	1	0		
line						
coincidence			2	2	0	2
distance			0	1	0	1
parallel			2	0		
perpendicular			1	0		
fixed angle			1	0		
point						
coincidence					0	3
distance					0	1