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Real Realisations

Given a realisation (G , p) of a graph G in R
2, let r(G , p)

denote the number of distinct equivalent realisations.
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r(G , p) is known to be finite if (G , p) is rigid and generic, but
need not be the same for all generic p.
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Real Realisations

Given a realisation (G , p) of a graph G in R
2, let r(G , p)

denote the number of distinct equivalent realisations.

r(G , p) is known to be finite if (G , p) is rigid and generic, but
need not be the same for all generic p.

Borcea and Streinu (2004) showed that r(G , p) ≤ 4n for all
generic rigid (G , p) and constructed examples where
r(G , p) = 12n/3 ≈ (2.28)n.
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Real Realisations

Given a realisation (G , p) of a graph G in R
2, let r(G , p)

denote the number of distinct equivalent realisations.

r(G , p) is known to be finite if (G , p) is rigid and generic, but
need not be the same for all generic p.

Borcea and Streinu (2004) showed that r(G , p) ≤ 4n for all
generic rigid (G , p) and constructed examples where
r(G , p) = 12n/3 ≈ (2.28)n.

Jackson, Jordán, Szabadka (2006) showed that r(G , p) is the
same for all generic rigid (G , p) when the rigidity matroid of
G is connected and gave a formula for r(G , p) in this case.
This implies that r(G , p) ≤ 2n/2 ≈ 1.14n when G has a
connected rigidity matroid.
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Complex Realisations

r(G , p) is the number of real solutions to a system of
quadratic equations. In this context it is natural to consider
the number of complex solutions. This number should be
better behaved than r(G , p), and it will give an upper bound
on r(G , p).
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Complex Realisations

r(G , p) is the number of real solutions to a system of
quadratic equations. In this context it is natural to consider
the number of complex solutions. This number should be
better behaved than r(G , p), and it will give an upper bound
on r(G , p).

Let d : C
2 → C by d(x , y) = x2 + y2.
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Complex Realisations

r(G , p) is the number of real solutions to a system of
quadratic equations. In this context it is natural to consider
the number of complex solutions. This number should be
better behaved than r(G , p), and it will give an upper bound
on r(G , p).

Let d : C
2 → C by d(x , y) = x2 + y2.

Two realisations (G , p) and (G , q) of a graph G in C
2 are

equivalent if d(p(u) − p(v)) = d(q(u) − q(v)) for all
e = uv ∈ E .
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Complex Realisations

r(G , p) is the number of real solutions to a system of
quadratic equations. In this context it is natural to consider
the number of complex solutions. This number should be
better behaved than r(G , p), and it will give an upper bound
on r(G , p).

Let d : C
2 → C by d(x , y) = x2 + y2.

Two realisations (G , p) and (G , q) of a graph G in C
2 are

equivalent if d(p(u) − p(v)) = d(q(u) − q(v)) for all
e = uv ∈ E .

Given a realisation (G , p) of a graph G in C
2, let c(G , p)

denote the number of distinct equivalent realisations.
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Genericness

Theorem

Suppose G is generically rigid in R
2. Then c(G , p) is the same

(finite number) for all generic p.
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Genericness

Theorem

Suppose G is generically rigid in R
2. Then c(G , p) is the same

(finite number) for all generic p.

We denote this common value of c(G , p) by c(G ).
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Genericness

Theorem

Suppose G is generically rigid in R
2. Then c(G , p) is the same

(finite number) for all generic p.

We denote this common value of c(G , p) by c(G ).

Problem

Can we determine c(G ) for a given rigid graph G?
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Henneberg moves

Lemma

Suppose G is obtained from H by a type one Henneberg move.
Then c(G ) = 2c(H).
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Henneberg moves

Lemma

Suppose G is obtained from H by a type one Henneberg move.
Then c(G ) = 2c(H).

Theorem

Suppose G is obtained from H by a type two Henneberg move
peformed on a redundant edge of H. Then c(G ) ≤ c(H).
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Henneberg moves

Lemma

Suppose G is obtained from H by a type one Henneberg move.
Then c(G ) = 2c(H).

Theorem

Suppose G is obtained from H by a type two Henneberg move
peformed on a redundant edge of H. Then c(G ) ≤ c(H).

Conjecture

If G is obtained from H by a type two Henneberg move peformed
on a non-redundant edge of H then c(G ) > c(H).
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Global Rigidity

Theorem

A graph G has c(G ) = 1 if and only if either G is 3-connected and
redundantly rigid or G ∈ {K2,K3}.
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Global Rigidity

Theorem

A graph G has c(G ) = 1 if and only if either G is 3-connected and
redundantly rigid or G ∈ {K2,K3}.

Corollary

A graph G has r(G , p) = 1 for some generic real p if and only if
c(G ) = 1.
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Separable graphs

Theorem

Suppose G = G1 ∪ G2 for two edge-disjoint subgraphs G1,G2 with
V (G1) ∩ V (G2) = {u, v}. Let Hi = Gi + uv for i = 1, 2.

If G1,G2 are both rigid, then c(G ) = 2c(H1)c(H2).

If G1 is rigid and G2 is not rigid, then c(G ) = 2c(G1)c(H2).
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Separable graphs

Theorem

Suppose G = G1 ∪ G2 for two edge-disjoint subgraphs G1,G2 with
V (G1) ∩ V (G2) = {u, v}. Let Hi = Gi + uv for i = 1, 2.

If G1,G2 are both rigid, then c(G ) = 2c(H1)c(H2).

If G1 is rigid and G2 is not rigid, then c(G ) = 2c(G1)c(H2).

Theorem

Suppose G = G1 ∪ G2 ∪ {e1, e2, e3} for two disjoint subgraphs
G1,G2 and three disjoint edges e1, e2, e3. Then
c(G ) = 12c(G1)c(G2).
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Separable graphs

Theorem

Suppose G = G1 ∪ G2 for two edge-disjoint subgraphs G1,G2 with
V (G1) ∩ V (G2) = {u, v}. Let Hi = Gi + uv for i = 1, 2.

If G1,G2 are both rigid, then c(G ) = 2c(H1)c(H2).

If G1 is rigid and G2 is not rigid, then c(G ) = 2c(G1)c(H2).

Theorem

Suppose G = G1 ∪ G2 ∪ {e1, e2, e3} for two disjoint subgraphs
G1,G2 and three disjoint edges e1, e2, e3. Then
c(G ) = 12c(G1)c(G2).

It follows that we can reduce the problem of determining c(G ) to
the case when G is 3-connected and all 3-edge-cuts are ‘trivial’.
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Problems

Problem

Can we determine the smallest α such that c(G ) = O(αn) for all
rigid graphs G on n vertices? (We know that 2.28 ≤ α ≤ 4 by
Borcea and Streinu.)
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Problems

Problem

Can we determine the smallest α such that c(G ) = O(αn) for all
rigid graphs G on n vertices? (We know that 2.28 ≤ α ≤ 4 by
Borcea and Streinu.)

Problem

Is c(G ) ≥ 2n−3 for all isostatic graphs G on n vertices?
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Problems

Problem

Can we determine the smallest α such that c(G ) = O(αn) for all
rigid graphs G on n vertices? (We know that 2.28 ≤ α ≤ 4 by
Borcea and Streinu.)

Problem

Is c(G ) ≥ 2n−3 for all isostatic graphs G on n vertices?

Problem (Thurston)

Does every rigid graph G have a generic realisation (G , p) in R
2

such that r(G , p) = c(G )?
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