The number of complex realisations of a rigid graphs

Bill Jackson
School of Mathematical Sciences
Queen Mary, University of London, England
and
John C. Owen
Siemans, Cambridge, England.

Workshop on Rigidity
Fields Institute, October, 2011

Real Realisations

- Given a realisation (G, p) of a graph G in \mathbb{R}^{2}, let $r(G, p)$ denote the number of distinct equivalent realisations.

Real Realisations

- Given a realisation (G, p) of a graph G in \mathbb{R}^{2}, let $r(G, p)$ denote the number of distinct equivalent realisations.
- $r(G, p)$ is known to be finite if (G, p) is rigid and generic, but need not be the same for all generic p.

Real Realisations

- Given a realisation (G, p) of a graph G in \mathbb{R}^{2}, let $r(G, p)$ denote the number of distinct equivalent realisations.
- $r(G, p)$ is known to be finite if (G, p) is rigid and generic, but need not be the same for all generic p.
- Borcea and Streinu (2004) showed that $r(G, p) \leq 4^{n}$ for all generic rigid (G, p) and constructed examples where $r(G, p)=12^{n / 3} \approx(2.28)^{n}$.

Real Realisations

- Given a realisation (G, p) of a graph G in \mathbb{R}^{2}, let $r(G, p)$ denote the number of distinct equivalent realisations.
- $r(G, p)$ is known to be finite if (G, p) is rigid and generic, but need not be the same for all generic p.
- Borcea and Streinu (2004) showed that $r(G, p) \leq 4^{n}$ for all generic rigid (G, p) and constructed examples where $r(G, p)=12^{n / 3} \approx(2.28)^{n}$.
- Jackson, Jordán, Szabadka (2006) showed that $r(G, p)$ is the same for all generic rigid (G, p) when the rigidity matroid of G is connected and gave a formula for $r(G, p)$ in this case. This implies that $r(G, p) \leq 2^{n / 2} \approx 1.14^{n}$ when G has a connected rigidity matroid.

Complex Realisations

- $r(G, p)$ is the number of real solutions to a system of quadratic equations. In this context it is natural to consider the number of complex solutions. This number should be better behaved than $r(G, p)$, and it will give an upper bound on $r(G, p)$.

Complex Realisations

- $r(G, p)$ is the number of real solutions to a system of quadratic equations. In this context it is natural to consider the number of complex solutions. This number should be better behaved than $r(G, p)$, and it will give an upper bound on $r(G, p)$.
- Let $d: \mathbb{C}^{2} \rightarrow \mathbb{C}$ by $d(x, y)=x^{2}+y^{2}$.

Complex Realisations

- $r(G, p)$ is the number of real solutions to a system of quadratic equations. In this context it is natural to consider the number of complex solutions. This number should be better behaved than $r(G, p)$, and it will give an upper bound on $r(G, p)$.
- Let $d: \mathbb{C}^{2} \rightarrow \mathbb{C}$ by $d(x, y)=x^{2}+y^{2}$.
- Two realisations (G, p) and (G, q) of a graph G in \mathbb{C}^{2} are equivalent if $d(p(u)-p(v))=d(q(u)-q(v))$ for all $e=u v \in E$.

Complex Realisations

- $r(G, p)$ is the number of real solutions to a system of quadratic equations. In this context it is natural to consider the number of complex solutions. This number should be better behaved than $r(G, p)$, and it will give an upper bound on $r(G, p)$.
- Let $d: \mathbb{C}^{2} \rightarrow \mathbb{C}$ by $d(x, y)=x^{2}+y^{2}$.
- Two realisations (G, p) and (G, q) of a graph G in \mathbb{C}^{2} are equivalent if $d(p(u)-p(v))=d(q(u)-q(v))$ for all $e=u v \in E$.
- Given a realisation (G, p) of a graph G in \mathbb{C}^{2}, let $c(G, p)$ denote the number of distinct equivalent realisations.

Genericness

Theorem

Suppose G is generically rigid in \mathbb{R}^{2}. Then $c(G, p)$ is the same (finite number) for all generic p.

Genericness

Theorem

Suppose G is generically rigid in \mathbb{R}^{2}. Then $c(G, p)$ is the same (finite number) for all generic p.

We denote this common value of $c(G, p)$ by $c(G)$.

Genericness

Theorem

Suppose G is generically rigid in \mathbb{R}^{2}. Then $c(G, p)$ is the same (finite number) for all generic p.

We denote this common value of $c(G, p)$ by $c(G)$.

Problem

Can we determine $c(G)$ for a given rigid graph G ?

Henneberg moves

Lemma

Suppose G is obtained from H by a type one Henneberg move. Then $c(G)=2 c(H)$.

Henneberg moves

Lemma

Suppose G is obtained from H by a type one Henneberg move. Then $c(G)=2 c(H)$.

Theorem

Suppose G is obtained from H by a type two Henneberg move peformed on a redundant edge of H. Then $c(G) \leq c(H)$.

Henneberg moves

Lemma

Suppose G is obtained from H by a type one Henneberg move. Then $c(G)=2 c(H)$.

Theorem

Suppose G is obtained from H by a type two Henneberg move peformed on a redundant edge of H. Then $c(G) \leq c(H)$.

Conjecture

If G is obtained from H by a type two Henneberg move peformed on a non-redundant edge of H then $c(G)>c(H)$.

Global Rigidity

Theorem

A graph G has $c(G)=1$ if and only if either G is 3-connected and redundantly rigid or $G \in\left\{K_{2}, K_{3}\right\}$.

Global Rigidity

Theorem

A graph G has $c(G)=1$ if and only if either G is 3-connected and redundantly rigid or $G \in\left\{K_{2}, K_{3}\right\}$.

Corollary

A graph G has $r(G, p)=1$ for some generic real p if and only if $c(G)=1$.

Separable graphs

Theorem

Suppose $G=G_{1} \cup G_{2}$ for two edge-disjoint subgraphs G_{1}, G_{2} with $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{u, v\}$. Let $H_{i}=G_{i}+u v$ for $i=1,2$.

- If G_{1}, G_{2} are both rigid, then $c(G)=2 c\left(H_{1}\right) c\left(H_{2}\right)$.
- If G_{1} is rigid and G_{2} is not rigid, then $c(G)=2 c\left(G_{1}\right) c\left(H_{2}\right)$.

Separable graphs

Theorem

Suppose $G=G_{1} \cup G_{2}$ for two edge-disjoint subgraphs G_{1}, G_{2} with $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{u, v\}$. Let $H_{i}=G_{i}+u v$ for $i=1,2$.

- If G_{1}, G_{2} are both rigid, then $c(G)=2 c\left(H_{1}\right) c\left(H_{2}\right)$.
- If G_{1} is rigid and G_{2} is not rigid, then $c(G)=2 c\left(G_{1}\right) c\left(H_{2}\right)$.

Theorem

Suppose $G=G_{1} \cup G_{2} \cup\left\{e_{1}, e_{2}, e_{3}\right\}$ for two disjoint subgraphs G_{1}, G_{2} and three disjoint edges e_{1}, e_{2}, e_{3}. Then $c(G)=12 c\left(G_{1}\right) c\left(G_{2}\right)$.

Separable graphs

Theorem

Suppose $G=G_{1} \cup G_{2}$ for two edge-disjoint subgraphs G_{1}, G_{2} with $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{u, v\}$. Let $H_{i}=G_{i}+u v$ for $i=1,2$.

- If G_{1}, G_{2} are both rigid, then $c(G)=2 c\left(H_{1}\right) c\left(H_{2}\right)$.
- If G_{1} is rigid and G_{2} is not rigid, then $c(G)=2 c\left(G_{1}\right) c\left(H_{2}\right)$.

Theorem

Suppose $G=G_{1} \cup G_{2} \cup\left\{e_{1}, e_{2}, e_{3}\right\}$ for two disjoint subgraphs G_{1}, G_{2} and three disjoint edges e_{1}, e_{2}, e_{3}. Then $c(G)=12 c\left(G_{1}\right) c\left(G_{2}\right)$.

It follows that we can reduce the problem of determining $c(G)$ to the case when G is 3 -connected and all 3-edge-cuts are 'trivial'.

Problem

Can we determine the smallest α such that $c(G)=\mathrm{O}\left(\alpha^{n}\right)$ for all rigid graphs G on n vertices? (We know that $2.28 \leq \alpha \leq 4$ by Borcea and Streinu.)

Problems

Problem

Can we determine the smallest α such that $c(G)=\mathrm{O}\left(\alpha^{n}\right)$ for all rigid graphs G on n vertices? (We know that $2.28 \leq \alpha \leq 4$ by Borcea and Streinu.)

Problem

Is $c(G) \geq 2^{n-3}$ for all isostatic graphs G on n vertices?

Problems

Problem

Can we determine the smallest α such that $c(G)=\mathrm{O}\left(\alpha^{n}\right)$ for all rigid graphs G on n vertices? (We know that $2.28 \leq \alpha \leq 4$ by Borcea and Streinu.)

Problem

Is $c(G) \geq 2^{n-3}$ for all isostatic graphs G on n vertices?

Problem (Thurston)

Does every rigid graph G have a generic realisation (G, p) in \mathbb{R}^{2} such that $r(G, p)=c(G)$?

