Isostatic Structures:
 Using Richard Rado's Matroid Matchings

Henry Crapo, Les Moutons matheux, La Vacquerie Joint work with Tiong Seng Tay, Nat. Univ. Singapore, and Emanuela Ughi, Univ. Perugia

Workshop on Rigidity, Fields Institute, 11-14 October, 2011

Outline

(1) Main Points
(2) Basics and Context
(3) Semi-simplicial Maps

4 Shelling
(5) Freely Shellable Maps
(6) Partitions of the Vertex Set
(7) Finale

Dedication

I would like to dedicate this talk to two persons, both of whom are architects and engineers.

Dedication

To Janos Baracs,

Dedication

To Janos Baracs,

instigator and cofounder of the research group Topologie Structurale, who learned projective geometry
from his high school math teacher in Budapest, and who introduced Ivo Rosenberg and myself to three dimensional space and rigidity during a workshop for members of the Centre de recherches mathématiques in January 1973, over 38 years ago,

Dedication

. . . posing, among other problems:

- to characterize generically 3 -isostatic graphs
- to predict special positions of non-rigidity for generically 3-isostatic graphs,
- to specify the correct placements of cross-braces in grid frameworks.
- to analyze the rigidity of tensegrity frameworks.
- to analyze the relation between stresses and lifting of plane polyedral frameworks.
- to develop a theory of periodic filling of space by copies of one or more associated zonohedra.

Dedication

To Richard Gage,

Dedication

To Richard Gage,

founder and leading member of the association Architects and Engineers for 911 Truth, who has brought a new level of intelligent and systematic inquiry, a new level of organization and energetic public engagement, to the quest for an independent inquiry into the state crimes of $11 / 9 / 2001$ and into this decade of their rain of miserable consequences.

Dedication

To Richard Gage,

founder and leading member of the association Architects and Engineers for 911 Truth, who has brought a new level of intelligent and systematic inquiry, a new level of organization and energetic public engagement, to the quest for an independent inquiry into the state crimes of $11 / 9 / 2001$ and into this decade of their rain of miserable consequences.

Dedication

Everything you ever wanted to know about the 9/11 conspiracy theory in under 5 minutes.

http://www.informationclearinghouse.info/article29110.htm
(surely the central rigidity problem of our era)

Dedication

With special thanks to Walter Whiteley and Bob Connelly, Ileana Streinu and Tibor Jordán, who have so energetically kept this beautiful subject alive and well,
expanding its horizons, training the researchers of this new generation, and making it possible for us to be together today.

Main Points

(1) If a graph G has a shellable semi-simplicial map to the d-simplex K_{d+1}, then it is generically d-isostatic.

Main Points

(1) If a graph G has a shellable semi-simplicial map to the d-simplex K_{d+1}, then it is generically d-isostatic.
(2) Conjecture: The converse is true.

Main Points

(1) If a graph G has a shellable semi-simplicial map to the d-simplex K_{d+1}, then it is generically d-isostatic.
(2) Conjecture: The converse is true.
(3) We offer a strengthened conjecture:

Conjecture: A graph is generically d-isostatic if and only if it has a freely-shellable semi-simplicial map to the d-simplex.

Main Points

(1) If a graph G has a shellable semi-simplicial map to the d-simplex K_{d+1}, then it is generically d-isostatic.
(2) Conjecture: The converse is true.
(3) We offer a strengthened conjecture:

Conjecture: A graph is generically d-isostatic if and only if it has a freely-shellable semi-simplicial map to the d-simplex.
(4) We investigate further restrictions of the class of maps to maps that are fewer in number and easier to construct: maps whose vertex packets are broken paths.

Generically Isostatic Graphs

A graph $G(V, E)$ is generically d-isostatic if and only if it is edge-minimal among graphs that are rigid in some (and therefore in almost every) position in real Euclidean or projective space of dimension d.

Generically Isostatic Graphs

We shall deal only with generic behavior of graphs as structures, so we will speak simply of " d-isostatic" graphs, dropping the adjective "generic".

Generically Isostatic Graphs

A graph, as bar-and-joint structure, is isostatic:

Generically Isostatic Graphs

A graph, as bar-and-joint structure, is isostatic:
in Statics, if and only if
all external equilibrium loads are uniquely resolvable in the edges.

Generically Isostatic Graphs

A graph, as bar-and-joint structure, is isostatic:
in Mechanics, if and only if
it is edge-minimal among graphs with no internal motion.

Generically Isostatic Graphs

A graph, as bar-and-joint structure, is isostatic:
in Matroid Theory, if and only if
it is a basis for the generic d-rigidity matroid on K_{V}.

Generically Isostatic Graphs

A graph, as bar-and-joint structure, is isostatic:
in Statics, if and only if
all external equilibrium loads are uniquely resolvable in the edges.
in Mechanics, if and only if
it is edge-minimal among graphs with no internal motion.
in Matroid Theory, if and only if
it is a basis for the generic d-rigidity matroid on K_{V}.

d-Isostatic Graphs

1-isostatic graphs are trees.

A 2-isostatic graph.

A 2-isostatic graph.

A 3-isostatic graph. (maximal planar)

A 3-isostatic graph.

Figure: d-Isostatic graphs, for $d=1,2,3$.

Definition

A semi-simplicial map $f: G(V, E) \rightarrow K_{d+1}$, where

$$
K_{d+1}=K(I, J)
$$

and

$$
I=\{1,2, \ldots\}, \quad J=\{12,13, \ldots\}
$$

consists of a pair of maps

$$
f_{0}: V \rightarrow I, f_{1}: E \rightarrow J,
$$

that preserve incidence.

Definition

That is, an edge $e=a b$ whose vertices a and b have distinct values $f_{0}(a)=i, f_{0}(b)=j$ in $/$ must be sent by f_{1} to $i j \in J$.
We call such an edge $e=a b$ an $i j$-bridge.

Definition

An edge $e=a b$ whose end vertices go to the same vertex, say $f_{0}(a)=i=f_{0}(b)$, must be sent to an edge $i j$ of K incident to i.

We call such an edge $e=a b$ a loop at i toward j.

Definition

The subset $f_{0}^{-1}(i)$, for any vertex $i \in I$, we call the $i^{t h}$ vertex packet of f, denoted V_{i}.

Definition

We shall include in the definition of simplicial map one crucial additional property:

Definition

We shall include in the definition of simplicial map one crucial additional property:
$\left(\mathcal{P}_{0}\right)$ Edge independence: The inverse image $f_{1}^{-1}(i j)$, denoted $T_{i j}$, of any edge $i j$ of K is a tree spanning the union $V_{i} \cup V_{j}$ of its two related vertex packets.

Definition

(the combined statement:)
A semi-simplicial map $f: G(V, E) \rightarrow K_{d+1}(I, J)$, consists of a pair of maps $f_{0}: V \rightarrow I, f_{1}: E \rightarrow J$, that preserve incidence, and ...
$\left(\mathcal{P}_{0}\right)$ Edge independence: The inverse image $f_{1}^{-1}(i j)$, denoted $T_{i j}$, of any edge $i j$ of K
is a tree spanning the union $V_{i} \cup V_{j}$
of its two related vertex packets.

Visual Representation of Maps

Semi-simplicial maps have very satisfactory visual representations, using colors taken from a standard edge-coloring of K_{d+1} to specify the images of each edge.

Figure: A d-isostatic graph, with semi-simplicial map.

Visual Representation of Maps

The tree-decomposition is then easily comprehended.

Figure: The trees T_{12} and T_{34}.

Visual Representation of Maps

The tree-decomposition is then easily comprehended.

Figure: The trees T_{13} and T_{24}.

Visual Representation of Maps

The tree-decomposition is then easily comprehended.

Figure: The trees T_{14} and T_{24}.

Visual Representation of Maps

Figure: All together now!.

Path Connectivity

Figure: Paths between vertices having distinct/identical images.

If a and b have distinct images i, j under f_{0}, then a and b are connected along a unique path in the tree $T_{i j}$.

Path Connectivity

Figure: Paths between vertices having distinct/identical images.

If a and b have the same image i under f_{0}, then they are connected along unique paths in each of the d trees $T_{i j}$, for $j \neq i$.

Shelling

A vertex packet can be shelled
if there is a sequence of monochromatic cuts that reduces it to a subgraph with no edges.

Figure: A sequence of monochromatic cuts.

Special Placement

In the special position given by a semi-simplicial map, any external equilibrium test load applied at two vertices a, b is uniquely resolvable.

Special Placement

In the special position given by a semi-simplicial map, any external equilibrium test load applied at two vertices a, b is uniquely resolvable.

If $f(a) \neq f(b)$, the external load is resolved (and uniquely so) along the path between a and b in the tree $T_{i j}$, all those edges being collinear along the line $i \vee j$.

Special Placement

In the special position given by a semi-simplicial map,
any external equilibrium test load applied at two vertices a, b is uniquely resolvable.

If $f(a)=f(b)=i$, the external load
can be uniquely represented as a sum
of $d+1$ equilibrium loads applied to a, b, one in each of the (independent) directions $i \vee j$ at i.

These individual loads are then uniquely resolvable along the paths from a to b in the trees $T_{i j}$

Theorem

A graph G is generically d-isostatic graph if it has a shellable semi-simplicial map to the d-simplex.

Maps on Dependent Graphs

Figure: Non-shellable maps on a 3-dependent graph.

Converse, $d=2$

For $d=2$: Any non-shellable map
has an obstacle to shelling
in the form of a set of 3 or more vertices
co-spanned by sub-trees of two trees.
This is a dependent subgraph.

Converse, $d=2$

Theorem:
A graph G is generically 2-isostatic graph
if and only if
it has a shellable semi-simplicial map to the triangle,
if and only if
all semi-simplicial maps to the triangle are shellable.

Converse, $d=3$?

This is far from being the case in dimension 3.
A 3-isostatic graph may have many non-shellable maps to the tetrahedron.

Converse, $d=3$?

Existence of a non-shellable map establishes only that there is a subset Q of some vertex packet i that is spanned by sub-trees of any pair of the three trees $T_{i j}$ for $j \neq i$.

Converse, $d=3$?

Figure: The packet V_{1} contains an obstacle to shelling.

These are the only two edge maps with this vertex map.

Converse, $d=3$?

Figure: A change of one vertex image produces a shellable map.

This vertex map has a unique compatible edge map.

Eliminate Obstacles - Eliminate Shelling

Perhaps the best way to deal with obstacles to shelling will be to look for maps in which obstacles cannot occur,

Eliminate Obstacles - Eliminate Shelling

that is, those for which the vertex packets induce independent subgraphs, that is, cycle-free subgraphs, or forests.

Eliminate Obstacles - Eliminate Shelling

These maps are freely shellable:

Eliminate Obstacles - Eliminate Shelling

Simply proceed edge by edge,
each single edge being a monochromatic cut!

Eliminate Obstacles - Eliminate Shelling

Simply proceed edge by edge, each single edge being a monochromatic cut!

Figure: A forest as induced subgraph of packet V_{2}.

Eliminate Obstacles - Eliminate Shelling

Conjecture:

A graph G is generically 3-isostatic if and only if it has a semi-simplicial map to the tetrahedron in which all vertex packets induce subgraphs that are independent (ie: forests) as subgraphs of G.

Eliminate Obstacles - Eliminate Shelling

There are four interesting classes of such maps: those in which the vertex packets induce:
\mathcal{F} forests
\mathcal{T} trees
\mathcal{B} broken paths
\mathcal{P} paths

Eliminate Obstacles - Eliminate Shelling

Figure: Vertex packets are trees (I), paths (r).

Eliminate Obstacles - Eliminate Shelling

Figure: Vertex packets are trees (I), paths (r).

Understanding these drawings:

Figure: These drawings may seem complicated, but are easily analyzed.

Understanding these drawings:

Figure: Trees T_{12}, T_{34}.

Understanding these drawings:

Figure: Trees T_{13}, T_{24}.

Understanding these drawings:

Figure: Trees T_{14}, T_{23}.

The vertex set can not always be partitioned into paths.

Figure: A hinged ring of tetrahedra.

3-isostatic graphs do not necessarily have maps to K_{4} in which
$(\mathcal{P}) \quad$ induced graphs on vertex packets are paths.

The vertex set can not always be partitioned into paths.

There must be a path of length ≥ 3, not within a single tetrahedron.
The vertex b is isolated with its image 3 .
There must be a path of length ≥ 4.

The vertex set can not always be partitioned into paths.

I must be 4, otherwise there is no 2-path from d to I.
Then values 3 and 4 are isolated at b and I, So only 1 and 2 are available for tetrahedron efgh.

Freely shellable semi-simplicial maps

In practice, freely-shellable maps seem to abound, and seem much easier to find "by hand"
than more general maps for which you must check shellability.

Freely shellable semi-simplicial maps

What is more, freely-shellable maps
have relatively few loops that need to be assigned.

Partitions that Produce Freely Shellable Maps

To prove a graph $G(V, E)$ is isostatic, it suffices to exhibit a partition π of the vertex set V having three properties \mathcal{P}_{i} (see below).

The main criterion \mathcal{P}_{3} is Richard Rado's matroid basis matching condition.

Partitions that Produce Freely Shellable Maps

Theorem: Rado's Basis Matching Theorem
Given any relation R from a set X to a set S of elements of a matroid $M(S)$,
then there is matching in R from X
to a basis for the matroid $M(S)$
if and only if
the cardinality $|X|=\operatorname{rank} \rho(S)$ of the matroid M,
and, for every subset $A \subset X$,
the cardinality $|A| \leq \rho(A)$,
the rank of its image $R(A)$ in $M(S)$.

Bibliography on Matroid Matching

Richard Rado,
A Theorem on Independence Relations,
Quarterly J. of mathematics, Oxford 13 (1942), 83-89.

Bibliography on Matroid Matching

Joseph P. S. Kung, Gian-Carlo Rota, Catherine H. Yan, Combinatorics: The Rota Way,
Cambridge University Press, 2009.

Bibliography on Matroid Matching

Kazuo Murota,
Matrices and Matroids for Systems Analysis
Springer Verlag,
Algorithms and Combinatorics20 (2000),(revised 2010).

Bibliography on Matroid Matching

And an article which led us to the possibility of insisting that vertex packets induce paths:

Roger K. S. Poh,
On the Linear Vertex-Arboricity of a Planar Graph Journal of Graph Theory, 14 No. 1 (1990), 73-75.

A Matroid Union

Given a partition of the vertex set of G, define bridges and loops,
and for each ij construct the matroid minor: restrict to the induced subgraph on the union of the two packets, and contract by its bridges.

Then take the matroid union over all pairs ij

A Matroid Union

Figure: The bridges of a map on the icosahedron.

A Matroid Union

Figure: Restrictions to packet unions $V_{1} \cup V_{4}$ and $V_{2} \cup V_{3}$.

Characterization of Partitions for Freely-Shellable Maps

Theorem: A partition π of the vertex set of a graph $G(V, E)$ is the inverse image partition of a freely-shellable semi-simplicial map $f: G \rightarrow K_{d+1}$ if and only if the partition π has the following three properties \mathcal{P}_{i}

Characterization of Partitions for Freely-Shellable Maps

Theorem: A partition π of the vertex set of a graph $G(V, E)$ is the inverse image partition of a freely-shellable semi-simplicial map $f: G \rightarrow K_{d+1}$ if and only if the partition π has the following three properties \mathcal{P}_{i}
$\left(\mathcal{P}_{1}\right)$ The induced subgraph G_{i} on any part π_{i} of π is independent (circuit-free).

Characterization of Partitions for Freely-Shellable Maps

Theorem: A partition π of the vertex set of a graph $G(V, E)$
is the inverse image partition
of a freely-shellable semi-simplicial map
$f: G \rightarrow K_{d+1}$ if and only if the partition π has the following three properties \mathcal{P}_{i}
$\left(\mathcal{P}_{1}\right)$ The induced subgraph G_{i} on any part π_{i} of π is independent (circuit-free).
$\left(\mathcal{P}_{2}\right)$ For any pair $i j$, the bridge subgraph $G\left(V_{i} \cup V_{j}, B_{i j}\right)$ is independent.

Characterization of Partitions for Freely-Shellable Maps

Theorem: A partition π of the vertex set of a graph $G(V, E)$
is the inverse image partition
of a freely-shellable semi-simplicial map
$f: G \rightarrow K_{d+1}$ if and only if the partition π has the following three properties \mathcal{P}_{i}
$\left(\mathcal{P}_{1}\right)$ The induced subgraph G_{i} on any part π_{i} of π is independent (circuit-free).
$\left(\mathcal{P}_{2}\right)$ For any pair $i j$, the bridge subgraph $G\left(V_{i} \cup V_{j}, B_{i j}\right)$ is independent.
$\left(\mathcal{P}_{3}\right)$ The relation \mathcal{R} between the set of loops of G and the set of elements of the matroid union M satisfies the Rado condition for basis matching:
$|L|=\rho(M)$ and

$$
\forall A \subseteq E,|A| \leq \rho(\mathcal{R}(\mathcal{A}))
$$

A Partition Not Satisfying the Rado Condition

Figure: Partition $(a)(b e f h i)(c d)(g)$ does not satisfy the Rado condition.

A Partition Not Satisfying the Rado Condition

Figure: Partition $(a)(b e f h i)(c d)(g)$ has 2 compatible loop maps.

A Partition Not Satisfying the Rado Condition

Figure: A non-Rado partition for $K_{6,6}$ less 6 edges. (edge di!)

A Partition Not Satisfying the Rado Condition

Figure: The Rado relation \mathcal{R} for that partition.

A Partition Satisfying the Rado Condition

Figure: A partition with 32 compatible loop maps.

A Partition Satisfying the Rado Condition

Figure: The Rado relation \mathcal{R} for that partition.

A Partition Satisfying the Rado Condition

Figure: The symmetry of \mathcal{R} is perhaps more visible here.

A Partition Satisfying the Rado Condition

Figure: Four independent binary choices,

A Partition Satisfying the Rado Condition

Figure: After four independent binary choices, a cycle remains.

The Road Ahead

It remains to prove that any 3-isostatic graph has a freely-shellable semi-simplicial map to the simplex K_{4}.

The Road Ahead

This has always been the hard part of the problem!

The Road Ahead

What is likely to happen?

The Road Ahead

What is likely to happen?

Either:

There will be a relatively simple proof, I would guess during the next few months, ...

The Road Ahead

What is likely to happen?

Either:

There will be a relatively simple proof, I would guess during the next few months, ...

Or Jackson and Jordán will hit us with another magnificent counterexample,
like the biplane
(an example on the complete graph K_{56}) that hit the three towers.

The Road Ahead

What is likely to happen?

Either:

There will be a relatively simple proof, I would guess during the next few months, ...

Or Jackson and Jordán will hit us with another magnificent counterexample, like the biplane
(an example on the complete graph K_{56}) that hit the three towers.

Followed by a rapid retreat from an untenable position!

The Road Ahead

Which properties of isostatic graphs might permit us to prove the conjecture?

The Road Ahead

Which properties of isostatic graphs might permit us to prove the conjecture?

We lean toward an analogue in $d=3$ of Tay's proof for $d=2$.

Toward an Analogue of Tay's Proof for $d=2$

We use the $(3 v-6) \times 6 v$
projective rigidity matrix R, and the $(3 v+6) \times 6 v$ matrix S
whose rows span the orthogonal complementary subspace.

Toward an Analogue of Tay's Proof for $d=2$

By Hodge star complementation, the determinants of full-size minors of R are equal to the determinants of the complementary full-size minors of S up to a sign ± 1 of the bipartition of the column set, and up to a fixed polynomial quantity Q, called the pure condition or resolving bracket, which is non-zero exactly when the graph is isostatic.

Toward an Analogue of Tay's Proof for $d=2$

The column matroids of R and of S are dual to one another, and are independent of the graph G in question!

Toward an Analogue of Tay's Proof for $d=2$

The column matroids of R and of S are dual to one another, and are independent of the graph G in question!
($Q \neq 0$ exactly when the rows of R form a basis for the space of external equilibrium loads
on the set V of vertices of G, regarded as a single rigid body.)

The Orthogonal Complementary Matrices S and R

a12	b12				a13			d13	e13	a14			d14	e14				d23	e23	a24	b24	c24	d24	e24	a34	b34	c34	d34	e34	
1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C12
0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	,	0	0	0	0	0	0	0	0	0	C 13
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C14
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0	θ	0	0	0	0	0	0	0	θ	C23
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	C24
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	C34
a3	0	0	0	0	- a^{2}	0	0	0	0	0	0	0	0	0	al	0	0	0	0	0	0	0	0	0	0	0	0	0	0	a123
$\square{ }^{4}$	0	0	0	0	0	0	0	0	0	-a2	0	0	0	0	0	0	0	0	0	al	0	0	0	0	0	0	0	0	0	a124
0	0	0	0	0	a4	0	0	0	0	-3^{3}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	${ }^{1}$	0	0	0	θ	${ }^{1} 134$
0	b3	0	0	0	0	-b2	0	0	0	0	0	0	0	0	0	b1	0	0	0	0	0	0	0	0	0	0	0	0	0	b123
0	b4	0	0	0	0	0	0	0	0	0	-b2	0	0	0	0	0	0	0	0	0	b1	0	0	0	0	0	0	0	0	b124
0	0	0	0	0	0	b4	0	0	0	0	-b3	0	0	0	0	-	0	0	0	0	0	0	0	0	0	b1	0	0	0	b134
0	0	c3	0	0	0	0	-c2	0	0	0	0	0	0	0	0	0	cl	0	0	0	θ	0	0	0	0	0	0	0	0	c123
0	0	c4	0	0	0	0	0	0	0	0	0	$-c 2$	0	0	0	0	0	0	0	0	0	cl	0	0	0	0	0	0	0	c124
0	0	0	0	0	0	0	c4	0	0	-	0	$-c^{3}$	0	0	0	0	0	-	,	-	0	0	0	-	0	0	cl	0	0	c134
0	0	0	d3	0	0	0	0	-d2	0	0	0	0	0	0	0	0	0	d1	0	0	0	0	0	0	0	0	0	0	0	d123
0	0	0	d4	0	0	0	0	0	0	0	0	0	-d2	0	0	,	0	0	0	0	0	0	d1	0	0	0	0	0	0	d124
0	0	0	0	0	0	${ }_{0}$	0	d4	0	0	0	0		0	0	0	0	0	0	a	-	0		0	0	0	0	d1	0	d134
0	0	0	0	e3	0	0	0	0	-2	0	0	0	0	0	0	0	0	0	el	0	0	0	0	0	0	0	0	0	0	e123
	0	0		e4	0	0	0			0		0		-e2					0	0				e1		0		0		e124
0	0	0	0	0	0	0	0	0	e4	0	0	0	0	e3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	el	e134
ac12	2	-ac12	0	0	ac13	0	-ac13	30	0	acl4	0.	-ac14	0	0	ac23	0	-ac23	0	0	ac24	0	-ac24		0	ac34	0	-ac34	0	0	ac
\square ad12	20	0	-ad12	0	ad13	0	0	-ad13	0	ad14	0	0.	-ad14	0	ad23	0	0	-ad23	0	ad24	0	0	$-\mathrm{ad} 24$	0	ad34	0	0	$-\mathrm{ad} 34$	0	ad
- ael2	20	0	0	-ae12	ael3	0	0	0	-ae13	ael4	0	0	0	-ael4	${ }^{\text {ae23 }} 3$	0		0 .	$-\mathrm{ae} 23$	ae24	0	0	0	$-\mathrm{ae} 24$	ae34	0	0	0	-ae34	ar
0	be12	-bel2	0	0	0	be13	bel 13	30	0	0	bel4 -b	-be14	0	0	0 -	be 23 -	-be 23	0	0	0	be24.	-be24	0	0	0	be 34	-bc 34	0	0	
0	bd12	2	-bd12	0	0	bd13	30	-bd13	0	0	bdi4	0	-bd14		0	bd23	0 -	-bd23		0	bd24	0	-bd24	0	0	bd 34	0	-bd34	0	bd
0	be12	0		-be12	0	bel3	0		-bel3	0	bel4	0		-be14	0	be 23			-be23	0	be24			-be24		be34			-be34	
0	0	cd12	-cd12	0	0	0	cd13	3 -cd13	0	0	0 c	cd14	-cd14	0	0	0 0	cd23	-cd23	0	0	0	cd24	-cd24		0	0	cd34	-cd34		ct
0	0	cel2		-ce12	0	0	cel3	30	-ce13	0	0	cel4		-cel4	0	0	ce23		-ce23	0	0	ce24		$-\mathrm{ce24}$	0	0	ce34	0	-ce34	ce
0	0	0	de 12	-del2	0	0	0	de13	-de13	0	0	0	del4	-de 14	0	0		de23	-de23	0	0		de24-	de24				de34-d	-de34	de

Figure: Columns grouped by trees $T_{i j}$.

The Orthogonal Complementary Matrices S and R

Figure: Columns grouped by vertices v.

The Orthogonal Complementary Matrices S and R

Any set of columns in R labeled by a single vertex, say by a
and by a circuit in K_{4},
such as $12,23,34,14$, are dependent.

The Orthogonal Complementary Matrices S and R

Any set of columns in R labeled by a single vertex, say by a
and by a circuit in K_{4},
such as $12,23,34,14$,
are dependent.
Any set of columns in R labeled by a edge of K_{4}, say by 12
and by all vertices a, are dependent.

The Orthogonal Complementary Matrices S and R

Figure: From a non-zero diagonal to a (rooted) freely shellable map.

The Orthogonal Complementary Matrices S and R

Figure: The corresponding rooting of a freely shellable map.

An analogue of Henneberg reduction?

Is it possible to reduce any isostatic graph to an isostatic graph on one fewer vertex, by a procedure that, when repeated, leads, step-by-step, to a map?

Grazie

Thank you for your attention.

This paper should be up on the arXiv soon:

Isostatic Structures:
Using Richard Rado's Independent Matchings

