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Dedication

I would like to dedicate this talk to two persons,
both of whom are architects and engineers.



Dedication

To Janos Baracs,



Dedication
To Janos Baracs,

instigator and cofounder of
the research group Topologie Structurale,

who learned projective geometry
from his high school math teacher in Budapest,

and who introduced Ivo Rosenberg and myself to
three dimensional space and rigidity

during a workshop for members of the
Centre de recherches mathématiques
in January 1973, over 38 years ago,



Dedication

. . . posing, among other problems:

to characterize generically 3-isostatic graphs

to predict special positions of non-rigidity
for generically 3-isostatic graphs,

to specify the correct placements of cross-braces
in grid frameworks.

to analyze the rigidity of tensegrity frameworks.

to analyze the relation between stresses and lifting
of plane polyedral frameworks.

to develop a theory of periodic filling of space
by copies of one or more associated zonohedra.
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To Richard Gage,



Dedication

To Richard Gage,

founder and leading member of
the association Architects and Engineers for 911 Truth,

who has brought a new level of intelligent and systematic inquiry,
a new level of organization and energetic public engagement,

to the quest for an independent inquiry into
the state crimes of 11/9/2001

and into this decade of their rain of miserable consequences.
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founder and leading member of
the association Architects and Engineers for 911 Truth,

who has brought a new level of intelligent and systematic inquiry,
a new level of organization and energetic public engagement,

to the quest for an independent inquiry into
the state crimes of 11/9/2001

and into this decade of their rain of miserable consequences.



Dedication

Everything you ever wanted to know
about the 9/11 conspiracy theory

in under 5 minutes.

http://www.informationclearinghouse.info/article29110.htm

(surely the central rigidity problem of our era)



Dedication

With special thanks to Walter Whiteley and Bob Connelly,
Ileana Streinu and Tibor Jordán,

who have so energetically
kept this beautiful subject alive and well,

expanding its horizons,
training the researchers of this new generation,

and making it possible for us to be together today.



Main Points

(1) If a graph G has a shellable semi-simplicial map
to the d-simplex Kd+1,
then it is generically d-isostatic.

(2) Conjecture: The converse is true.

(3) We offer a strengthened conjecture:
Conjecture: A graph is generically d-isostatic if and only if
it has a freely-shellable semi-simplicial map to the d-simplex.

(4) We investigate further restrictions of the class of maps
to maps that are fewer in number and easier to construct:
maps whose vertex packets are broken paths.
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Generically Isostatic Graphs

A graph G (V ,E ) is generically d-isostatic if and only if
it is edge-minimal among graphs that are rigid
in some (and therefore in almost every) position
in real Euclidean or projective space of dimension d .



Generically Isostatic Graphs

We shall deal only with generic behavior of graphs as structures,
so we will speak simply of “d-isostatic” graphs,
dropping the adjective “generic”.
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Generically Isostatic Graphs

A graph, as bar-and-joint structure, is isostatic:

in Statics, if and only if
all external equilibrium loads are uniquely resolvable in the edges.

in Mechanics, if and only if
it is edge-minimal among graphs with no internal motion.

in Matroid Theory, if and only if
it is a basis for the generic d-rigidity matroid on KV .



d-Isostatic Graphs
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Figure: d-Isostatic graphs, for d = 1, 2, 3.



Definition

A semi-simplicial map f : G (V ,E )→ Kd+1,

where
Kd+1 = K (I , J)

and
I = {1, 2, . . . }, J = {12, 13, . . . },

consists of a pair of maps

f0 : V → I , f1 : E → J,

that preserve incidence.

The subset f −1
0 (i), for any vertex i ∈ I ,

we call the i th vertex packet of f , denoted Vi .



Definition

That is, an edge e = ab whose vertices a and b
have distinct values f0(a) = i , f0(b) = j in I
must be sent by f1 to ij ∈ J.

We call such an edge e = ab an ij-bridge.

The subset f −1
0 (i), for any vertex i ∈ I ,

we call the i th vertex packet of f , denoted Vi .



Definition

An edge e = ab whose end vertices go to the same vertex,
say f0(a) = i = f0(b),
must be sent to an edge ij of K incident to i .

We call such an edge e = ab a loop at i toward j .

The subset f −1
0 (i), for any vertex i ∈ I ,

we call the i th vertex packet of f , denoted Vi .
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Definition

The subset f −1
0 (i), for any vertex i ∈ I ,

we call the i th vertex packet of f , denoted Vi .

(the combined statement:)

A semi-simplicial map f : G (V ,E )→ Kd+1(I , J),
consists of a pair of maps f0 : V → I , f1 : E → J,
that preserve incidence, and . . .

(P0) Edge independence: The inverse image f −1
1 (ij),

denoted Tij , of any edge ij of K
is a tree spanning the union Vi ∪ Vj

of its two related vertex packets.



Visual Representation of Maps

Semi-simplicial maps have very satisfactory visual representations,
using colors taken from a standard edge-coloring of Kd+1

to specify the images of each edge.
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Figure: A d-isostatic graph, with semi-simplicial map.



Visual Representation of Maps

The tree-decomposition is then easily comprehended.
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Figure: The trees T12 and T34.
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Figure: The trees T13 and T24.
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Figure: The trees T14 and T24.



Visual Representation of Maps
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Figure: All together now!.



Path Connectivity
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Figure: Paths between vertices having distinct/identical images.

If a and b have distinct images i , j under f0,
then a and b are connected along a unique path in the tree Tij .



Path Connectivity
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If a and b have the same image i under f0,
then they are connected along unique paths
in each of the d trees Tij , for j 6= i .



Shelling

A vertex packet can be shelled
if there is a sequence of monochromatic cuts
that reduces it to a subgraph with no edges.
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Figure: A sequence of monochromatic cuts.



Special Placement

In the special position given by a semi-simplicial map,
any external equilibrium test load
applied at two vertices a, b is uniquely resolvable.



Special Placement

In the special position given by a semi-simplicial map,
any external equilibrium test load
applied at two vertices a, b is uniquely resolvable.

If f (a) 6= f (b), the external load is resolved (and uniquely so)
along the path between a and b in the tree Tij ,
all those edges being collinear along the line i ∨ j .



Special Placement

In the special position given by a semi-simplicial map,
any external equilibrium test load
applied at two vertices a, b is uniquely resolvable.

If f (a) = f (b) = i , the external load
can be uniquely represented as a sum
of d + 1 equilibrium loads applied to a, b,
one in each of the (independent) directions i ∨ j at i .

These individual loads are then uniquely resolvable
along the paths from a to b in the trees Tij



Theorem

A graph G is generically d-isostatic graph if it
has a shellable semi-simplicial map to the d-simplex.



Maps on Dependent Graphs
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Figure: Non-shellable maps on a 3-dependent graph.



Converse, d = 2

For d = 2: Any non-shellable map
has an obstacle to shelling
in the form of a set of 3 or more vertices
co-spanned by sub-trees of two trees.

This is a dependent subgraph.



Converse, d = 2

Theorem:
A graph G is generically 2-isostatic graph

if and only if
it has a shellable semi-simplicial map to the triangle,

if and only if
all semi-simplicial maps to the triangle are shellable.



Converse, d = 3?

This is far from being the case in dimension 3.

A 3-isostatic graph may have
many non-shellable maps to the tetrahedron.



Converse, d = 3?

Existence of a non-shellable map establishes only that
there is a subset Q of some vertex packet i
that is spanned by sub-trees of any pair
of the three trees Tij for j 6= i .



Converse, d = 3?
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These are the only two edge maps with this vertex map.



Converse, d = 3?
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This vertex map has a unique compatible edge map.



Eliminate Obstacles - Eliminate Shelling

Perhaps the best way to deal with obstacles to shelling
will be to look for maps in which obstacles cannot occur,



Eliminate Obstacles - Eliminate Shelling

that is, those for which the vertex packets
induce independent subgraphs,
that is, cycle-free subgraphs, or forests.



Eliminate Obstacles - Eliminate Shelling

These maps are freely shellable:



Eliminate Obstacles - Eliminate Shelling

Simply proceed edge by edge,
each single edge being a monochromatic cut!



Eliminate Obstacles - Eliminate Shelling
Simply proceed edge by edge,
each single edge being a monochromatic cut!
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Figure: A forest as induced subgraph of packet V2.



Eliminate Obstacles - Eliminate Shelling

Conjecture:

A graph G is generically 3-isostatic if and only if
it has a semi-simplicial map to the tetrahedron
in which all vertex packets induce subgraphs
that are independent (ie: forests) as subgraphs of G .



Eliminate Obstacles - Eliminate Shelling

There are four interesting classes of such maps:
those in which the vertex packets induce:

F forests

T trees

B broken paths

P paths



Eliminate Obstacles - Eliminate Shelling
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Eliminate Obstacles - Eliminate Shelling
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Understanding these drawings:
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Figure: These drawings may seem complicated, but are easily analyzed.
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Figure: Trees T12, T34.
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Understanding these drawings:
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The vertex set can not always be partitioned into paths.
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3-isostatic graphs do not necessarily have
maps to K4 in which

(P) induced graphs on vertex packets are paths.



The vertex set can not always be partitioned into paths.
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The vertex set can not always be partitioned into paths.
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Freely shellable semi-simplicial maps

In practice, freely-shellable maps seem to abound,
and seem much easier to find “by hand”

than more general maps
for which you must check shellability.



Freely shellable semi-simplicial maps

What is more, freely-shellable maps
have relatively few loops that need to be assigned.



Partitions that Produce Freely Shellable Maps

To prove a graph G (V ,E ) is isostatic,
it suffices to exhibit a partition π of the vertex set V
having three properties Pi (see below).

The main criterion P3 is
Richard Rado’s matroid basis matching condition.



Partitions that Produce Freely Shellable Maps

Theorem: Rado’s Basis Matching Theorem
Given any relation R from a set X
to a set S of elements of a matroid M(S),
then there is matching in R from X
to a basis for the matroid M(S)
if and only if
the cardinality |X | = rank ρ(S) of the matroid M,
and, for every subset A ⊂ X ,
the cardinality |A| ≤ ρ(A),
the rank of its image R(A) in M(S).



Bibliography on Matroid Matching

Richard Rado,
A Theorem on Independence Relations,
Quarterly J. of mathematics, Oxford 13 (1942), 83-89.



Bibliography on Matroid Matching

Joseph P. S. Kung, Gian-Carlo Rota, Catherine H. Yan,
Combinatorics: The Rota Way,
Cambridge University Press, 2009.



Bibliography on Matroid Matching

Kazuo Murota,
Matrices and Matroids for Systems Analysis
Springer Verlag,
Algorithms and Combinatorics20 (2000),(revised 2010).



Bibliography on Matroid Matching

And an article which led us to the possibility of
insisting that vertex packets induce paths:

Roger K. S. Poh,
On the Linear Vertex-Arboricity of a Planar Graph
Journal of Graph Theory, 14 No. 1 (1990), 73-75.



A Matroid Union

Given a partition of the vertex set of G ,
define bridges and loops,

and for each ij construct the matroid minor:
restrict to the induced subgraph
on the union of the two packets,

and contract by its bridges.

Then take the matroid union over all pairs ij



A Matroid Union
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Figure: The bridges of a map on the icosahedron.



A Matroid Union
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Figure: Restrictions to packet unions V1 ∪ V4 and V2 ∪ V3.



Characterization of Partitions for Freely-Shellable Maps
Theorem: A partition π of the vertex set of a graph G (V ,E )
is the inverse image partition
of a freely-shellable semi-simplicial map
f : G → Kd+1 if and only if
the partition π has the following three properties Pi

(P1) The induced subgraph Gi on any part πi

of π is independent (circuit-free).

(P2) For any pair ij , the bridge subgraph G (Vi ∪ Vj ,Bij)
is independent.

(P3) The relation R between the set of loops of G
and the set of elements of the matroid union M
satisfies the Rado condition for basis matching:
|L| = ρ(M) and

∀A ⊆ E , |A| ≤ ρ(R(A)).
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A Partition Not Satisfying the Rado Condition
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Figure: Partition (a)(befhi)(cd)(g) does not satisfy the Rado condition.



A Partition Not Satisfying the Rado Condition
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A Partition Not Satisfying the Rado Condition
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Figure: A non-Rado partition for K6,6 less 6 edges. (edge di !)



A Partition Not Satisfying the Rado Condition
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Figure: A partition with 32 compatible loop maps.
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Figure: The symmetry of R is perhaps more visible here.
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Figure: After four independent binary choices, a cycle remains.



The Road Ahead

It remains to prove that any 3-isostatic graph
has a freely-shellable semi-simplicial map to the simplex K4.
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The Road Ahead

What is likely to happen?

Either:

There will be a relatively simple proof,
I would guess during the next few months, . . .

Or Jackson and Jordán will hit us
with another magnificent counterexample,

like the biplane
(an example on the complete graph K56)

that hit the three towers.

Followed by a rapid retreat
from an untenable position!



The Road Ahead

Which properties of isostatic graphs
might permit us to prove the conjecture?



The Road Ahead

Which properties of isostatic graphs
might permit us to prove the conjecture?

We lean toward an analogue in d = 3
of Tay’s proof for d = 2.



Toward an Analogue of Tay’s Proof for d = 2

We use the (3v − 6)× 6v
projective rigidity matrix R,

and the (3v + 6)× 6v matrix S
whose rows span the orthogonal complementary subspace.



Toward an Analogue of Tay’s Proof for d = 2

By Hodge star complementation,
the determinants of full-size minors of R

are equal to the determinants
of the complementary full-size minors of S

up to a sign ±1 of the bipartition of the column set,
and up to a fixed polynomial quantity Q,

called the pure condition or resolving bracket,
which is non-zero exactly when the graph is isostatic.



Toward an Analogue of Tay’s Proof for d = 2

The column matroids of R and of S are dual to one another,
and are independent of the graph G in question!



Toward an Analogue of Tay’s Proof for d = 2

The column matroids of R and of S are dual to one another,
and are independent of the graph G in question!

(Q 6= 0 exactly when the rows of R form a basis for
the space of external equilibrium loads

on the set V of vertices of G ,
regarded as a single rigid body.)



The Orthogonal Complementary Matrices S and R
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Figure: Columns grouped by trees Tij .
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Figure: Columns grouped by vertices v .
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The Orthogonal Complementary Matrices S and R

Any set of columns in R labeled by a single vertex,
say by a
and by a circuit in K4,
such as 12, 23, 34, 14,
are dependent.

Any set of columns in R labeled by a edge of K4,
say by 12
and by all vertices a,
are dependent.
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Figure: From a non-zero diagonal to a (rooted) freely shellable map.
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Figure: The corresponding rooting of a freely shellable map.



An analogue of Henneberg reduction?

Is it possible to reduce any isostatic graph
to an isostatic graph on one fewer vertex,
by a procedure that, when repeated,
leads, step-by-step, to a map?



Grazie

Thank you for your attention.

This paper should be up on the arXiv soon:

Isostatic Structures:
Using Richard Rado’s Independent Matchings
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