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Flavors of rigidity

• (Local) rigidity

• Infinitesimal rigidity = static rigidity

• Global rigidity

• Universal rigidity

• Generic (local, infinitesimal) rigidity

• Generic global rigidity

• Generic universal rigidity
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Rigid Objects

• Bar-and-joint frameworks

• Tensegrity frameworks (with struts and 

cables)

• Bar-and-body-frameworks

• Body-and-hinge frameworks

• Panel-and-hinge frameworks
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Applications

• Structural mechanics-Why things don’t fall down.

• Mechanical structures-Why linkages move.

• Stability of structures-How wiggly is my structure.

• Stability of packings-Why granular materials jam.

• Robot arm manipulation.

• Point location-Am I where I think I am?
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An application:

How can you find the most dense 

disk packings in Ed ?
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Questions to ask first

• What is the container?

• Can some sort of finiteness be assumed?

• Can locally most dense packings be used to 

simplify the analysis?

• Is there a finite algorithm to find a most 

dense packing? (Perhaps with an infeasible 

running time.) 
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What is the container?

One Answer:  The flat torus = Rd/Λ, where Λ is a 

lattice in Rd.  
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But which lattice/torus?

Take your favorite.  If you think that the best 

packing is achieved with a particular 

lattice/torus, and it works for all covers, 

then that is the best packing overall.

This leads to a subquestion:  For a fixed shape 

of a torus, and an integer n, what is the most 

dense packing of n (congruent) disks in that 

torus?  
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For example
For a square torus.  (Work of Will Dickinson)

Four disks Three disks

Two disksOne disk
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A better example: 

The triangular torus
The best packings of n disks in a triangular torus:

For n = a2 + ab + b2, a, b integers:  A similar sublattice.

n = 1, 3, 4, 7, 9, 12, 13, 16, 19, …= lattice triangle numbers

For n = a2 + ab + b2 - 1, n not a lattice triangle number: A similar sublattice 
minus one disk,  n = 2, 6, 8, 11, 15, 18, . . .
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The best packing of 5 disks in a 

triangular lattice
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The dimensions of the pentagon
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Conjecture

In the plane, when n + 1 is a lattice triangle number, 
but n is not a lattice triangle number, then the most 
dense packing of n congruent disks in a triangular 
torus is the lattice packing minus one packing 
disk.

Remark: This conjecture implies L. Fejes Toth’s 
conjecture that the only finite rearrangement of the 
best equal circle packing in the plane, with one 
disk removed, is the best packing with one disk 
removed. 
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Remark

The area of the pentagon above is 

(√11 + 2 √3)r2, where r is the radius of the disks.  

The area of the triangle is √3r2, so if there is more 

than 1 pentagon, then 

13.56…=2(√11 + 2 √3) > 6 √3=10.39… implies that 

when n+1 is a triangle lattice number, but n is not 

a triangle lattice number,  a counterexample to the 

conjecture has at most 1 pentagon as above.
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How to find best packings?

1. Find all graphs that are candidates for 

being graphs of a jammed packing.

2. Find a fixed distance realizations of the 

graphs in part 1.

3. Choose the packing graph with the largest 

edge length. 
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(A word from our sponsor)

Toroidal Bar Frameworks

A toroidal bar framework has an infinitesimal flex if 

there are vectors pi′ associated to each vertex pi

such that

(pi - pj) (pi′ - pj′) = 0

A toroidal bar framework is infinitesimally rigid if it 

has only the constant infinitesimal flexes. The 

term (pi - pj) depends on the (homotopy class of) 

path(s) (lifts) from pi to pj in the torus.
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Toroidal Strut Frameworks

A toroidal strut framework has an infinitesimal flex if 

there are vectors pi′ associated to each vertex pi

such that

(pi - pj) (pi′ - pj′) ≥ 0

A toroidal strut framework is infinitesimally rigid if 

it has only the constant infinitesimal flexes. The 

term (pi - pj) depends on the (homotopy class of) 

path(s) (lifts) from pi to pj in the torus.
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Self-stresses

A toroidal framework has a self-stress if there 

are scalars ωij associated to each edge {i,j} 

such that at each vertex the weighted vector 

sum

∑i ωij(pi - pj) = 0.
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A self-stress

This is a graphical interpretation of the equilibrium 

condition for a self-stress.  The picture on the right 

is a verification that the weighted sum of the stress 

vectors is zero.
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Infinitesimally rigid strut graphs

Think of a packing graph as a strut tensegrity.  That 

means that each edge of the graph is allowed to 

increase in length, but not decrease.

Theorem (Roth-Whiteley): A strut tensegrity on a 

torus is infinitesimally rigid if and only if it is 

infinitesimally rigid as a bar framework (i. e. with 

fixed lengths of edges), and it has a stress with all 

stresses non-zero of the same sign.
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The canonical push
Theorem: A toroidal strut tensegrity is (locally) 

rigid if and only if it is infinitesimally rigid.

The “if” direction is standard algebraic 
topology/geometry.   The “only if” direction is 
achieved by linearly extending the infinitesimal 
direction of the motion.

Proof:  If p′=(p1′, p2′. . . pn′ ) is an infinitesimal flex 
of the strut tensegrity, then for each {i, j} a strut,

pi(t) = pi + tpi′, for t ≥ 0, is a finite flex of the 
tensegrity (i.e. disk packing) because

|pi(t) - pj(t)|
2 = ((pi - pj) + t(pi′ - pj′))

2

=(pi - pj)
2 + 2t(pi - pj)(pi′ - pj′) + t2(pi′ - pj′)

2 ≥ 0.
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Counting

Corollary: Every locally maximally dense 

torus packing has a stressed infinitesimally 

rigid positively stressed subpacking, the 

spine, and the spine must have at least 

2n-2+1 = 2n -1 edges in its graph, for n disks.
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Method for 1. Finding the graphs

a. The vertex degree is bounded by the local 
kissing number.

b. The configuration for the graph realization has a 
self-stress with stresses all the same sign by 
local rigidity and the local maximal density.

c. The homotopy type of the graph is restricted by 
the length of short paths in the graph.

d. The self-stressed realizations are globally rigid 
in a given homotopy class.  
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Collectively Jammed Packings

A packing is collectively jammed if it is rigid with a 
fixed lattice defining the torus. 

(So by a canonical push its strut graph is infinitesimally 
rigid and e ≥ 2n-1.) 

Example:  The 5 disk packing above is collectively 
jammed.  Its graph has n=5 nodes, but only e=9=2n-1 
edges, the minimum needed to be collectively 
jammed. A k-fold cover, for k >1, will have kn nodes 
and ke=2kn-k < 2kn-1 edges, which is less than 
needed to be collectively jammed.
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Spider webs-global rigidity

A periodic positively stressed tensegrity of all cables has a 
globally rigid property.  

Theorem:  If a toroidal packing graph has a positive 
equilibrium stress, then any other realization in the same 
free homotopy class must have at least one cable that is 
longer.
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So …

Any locally maximally dense stressed packing 

of equal disks with that packing graph, in 

the same homotopy class, must have a disk 

radius less than the maximum of the edge 

lengths of any realization of G in that 

homotopy class.



27

An example of a flexible packing

The following is the Kagome lattice that has a motion in the fixed 
triangular lattice.  So this packing of n=3 disks in triangular torus is not 
even locally best, even though the graph has a positive self-stress and 
the bar framework is generically infinitesimally rigid.  
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Is this the graph of a collectively 

jammed packing?
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Evidence that this packing is 

collectively jammed

The number of nodes n=30; and

The number of edges (contacts) e=63=2n+3.

There is a (symmetric) positive self stress, 

non-zero on each edge.

(This packing was suggested by Ruggero 

Gabbrielli)

But . . . 
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Let’s make it harder by adding 

more disks
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Algorithms

These ideas could help with finding “interesting” 

packings.  Instead of choosing the packing 

elements and letting them “grow” until they jam, 

choose the graph of the packing and its homotopy 

class and “shrink” it until all the edge lengths are 

equal, adjusting the stresses as you go.

This could help with that plague of packing 

algorithms . . .
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Contact ambiguity

For computer simulations with large numbers 

of packing elements, how do you know if 

some pair of packing elements are in 

contact or if they overlap?  This can 

influence the role of that stresses play in the 

structural mechanics of the packing.  
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Is this part of a packing graph?

You have to decide where the contact cutoff distance  

is, but it can be inconsistent with the geometry.
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Conjectures and Questions

1. Can there exist a graph of a packing (in the 

plane) in a triangular torus that is locally rigid, 

but not saturated?  (That is can there be large 

enough holes to fit another packing disk inside?)  

Is there a limit to the number of “rattlers in a 

hole”?

2. For any 2-D torus that has a strictly jammed 

packing graph, do the “fault lines” necessarily 

span a non-trivial homology?  
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Conjectures and Questions

3. How big can the holes be in stressed locally maximally 
dense packing graph?

4. What is the limit to the maximal internal angle of a 
polygonal face in a stressed locally maximally dense 
packing graph? In other words, is there a Boroczky-type 
example in this context? 

5. For each k, what is the smallest number of n equal disks 
in the plane, such that the graph of the packing is a 
strictly convex polygon, and k disks are inside the ring 
of n disks and disjoint from them.  
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