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Outline

A “gap” is a surface (orientable, genus; nonorientable, Euler
characteristic) that fails to have some property, such as the
existence of a certain type of symmetric map on the surface.

1) Regular maps: non-orientable, reflexible, chiral, no multiple
edges

2) Edge-transitive maps: the 14 types

3) Group actions: symmetric and strong symmetric genus of a
group; Kulkarni’s Theorem
Two tasks:
Gap-filling: constructing a family for infinitely many surfaces
Gap-finding: finding infinitely many surfaces that are gaps
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“Regular” maps: can we talk?

1) (from Platonic solids) rotations at each vertex and center of
each face (Steve Wilson: rotary)

Two flavors: reflexible exists an orientation-reversing auto, but
better: there is an auto fixing an edge; otherwise chiral
All regular non-orientable maps are reflexible

2) transitive on flags: then regular are automatically reflexible. So
where does that leave rotary chiral?

3) transitive on arcs: for oriented, must specify Aut+(M).
CM(Q, (i , j , k ,−i ,−j ,−l ,−k)) has “corner” reflection
interchanging i and j and k and −k, which reverses edges. Vertex
stabilizer is D3 though.
Also: Petrie dual of chiral map can be non-orientable, transitive on
arcs, but not regular (by definition(1), lacks rotation on Petrie
cycles)
“orientably regular”?: but then that is different from “oriented
regular” or “regular oriented”
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Algebraic viewpoint

Algebraic viewpoint: a regular map is a group
A = 〈X ,Y : X k = Y m = (XY )2 = 1, . . .〉.

Vertices cosets of 〈X 〉, faces 〈Y 〉, edges 〈XY 〉
Reflexible: exists group auto inverting X and Y

Under the aegis of RH: 2g − 2 = |A|(1/2− 1/k − 1/m)
Then regular non-orientable if there is inner automorphism
inverting X and Y .
Alternative is to begin with regular as transitive on flags and then
A is generated by three involution etc.
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Nonorientable regular gaps

Conder and Everitt filled gaps for about 77% of non-orientable
surfaces (1995).

Then came first breakthrough in classifying regular maps by
surface:

Theorem
(Breda, Nedela, Širàň EJC 2007) Complete classification of all
regular maps on the surface χ = −p, where p is prime.

In particular, if p ≡ 1 (mod 12) there are none.
The proof involves some serious group theory from the 1950s
related to almost Sylow-cyclic groups (all Sylow p-subgroups are
cyclic, except for p = 2 have cyclic subgroup of index at most two).



Nonorientable regular gaps

Conder and Everitt filled gaps for about 77% of non-orientable
surfaces (1995).

Then came first breakthrough in classifying regular maps by
surface:

Theorem
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Chiral gaps

From the beginning, chirality seemed unusual:
1) none in the sphere
2) Conder and Dobscànyi computer lists showed gaps at
g − 1 = 1, 2, 3, 4, 5, 8, 12

Later lists of Conder showed gaps at g − 1 =
22(2.11), 23, 29, 35(5.7), 46(2.23), 47, 53, 59, 65(5.13), 83, 94(2.47), 107,
115(5.23), 119(7.17), 138(6.23), 149, 166(2.83), 167, 173, 179
Note that about half of these gaps are for g − 1 = p, a prime and
p 6= 1 (mod 6, 8, 10).
There may be other patterns here, which is why I’ve given them in
factored form.
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Classification of regular maps for g − 1 = p

The computer list of chiral gaps for g − 1 = p are completely
understood:

Theorem
(Conder,Širàň, Tucker JEMS 2010) If M regular and |Aut+(M)|
coprime to g − 1, then M is reflexible.

Theorem
(CST, JEMS 2010) If M is regular and g − 1 = p > 12 is prime
and divides |Aut+(M)|, then p ≡ 1 (mod 6, 8, 10) and M is chiral.
(Belolipetsky-Jones maps)

Corollary

There are no chiral maps for g − 1 = p when p 6= 1 (mod 6, 8, 10)
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(Conder,Širàň, Tucker JEMS 2010) If M regular and |Aut+(M)|
coprime to g − 1, then M is reflexible.

Theorem
(CST, JEMS 2010) If M is regular and g − 1 = p > 12 is prime
and divides |Aut+(M)|, then p ≡ 1 (mod 6, 8, 10) and M is chiral.
(Belolipetsky-Jones maps)

Corollary

There are no chiral maps for g − 1 = p when p 6= 1 (mod 6, 8, 10)



Classification of regular maps for g − 1 = p

The computer list of chiral gaps for g − 1 = p are completely
understood:

Theorem
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Multiple edges and degenerate regular maps

Fact: There is a regular map for every genus g : take sphere, put
vertices at north and south poles and join by 2n edges.

Twist each edge (Petrie dual): now instead of 2n faces you have 2
faces
Then χ = 2− 2n + 2 = −2n. Result is regular, reflexible map in
surface of genus n + 1.
Or A = Zn × Z2 with X = (−1, 0),Y = (1, 1) But that’s
CHEATING!
Call M degenerate if either M or its dual has multiple edges.

Is there a non-degenerate regular map for every g?

Theorem
(CST, JEMS 2010) The only non-degenerate maps M with
Aut+(M) coprime to g − 1 are the Platonic solids. (!!!!)

Corollary

All regular maps with g − 1 = p 6≡ 1 (mod 8, 10) are degenerate.
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Simple regular maps

Call M simple if the primal graph has no multiple edges ( but dual
may have multiple edges).

Open Question: Is there a simple regular map for every genus g?

Conder (computer): all g < 301 have a simple regular map.

Conder and Ma have constructed simple regular maps for all g 6≡ 2
(mod 12).
Moreover, one can modify the Belolipetsky-Jones map for p ≡ 1
(mod 6) to show if g ≡ 2 (mod 6) and every prime p ≡ 5 (mod 6)
in the prime power factorization of g − 1 has even exponent, then
there is a simple reg map for g .
But there are no simple (reflexible) regular maps for g − 1 = p ≡ 1
(mod 6) by CST.
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Algebra versus geometry: Kn

The whole issue of chiral maps has an interesting backstory, which
I heard from Jack Edmonds in 2008.

In the first edition of Coxeter and Moser, there was a conjecture
that there were no chiral regular maps of genus g > 1. Edmonds
(inspired by the algebra behind K7 in the torus) saw how to use
GF (q) to construct regular maps with underlying graph Kq and
showed they were all chiral. On the basis of this example, he
suggested the idea of rotation systems.

Leads to question about which Kn can underly a orientably regular
map
Biggs, Jones and James, Wilson (non-orientable)
In effect, the finite field examples are the only ones. And they are
all chiral except for K6 in projective plane and K3 and K4 in the
sphere (or Petrie duals). In particular, the only ones for
non-orientable surfaces are K3,K4,K6.
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New geometric proof, no algebra

An angle in a map is uvw where uv and vw are edges. The
measure, m(uvw) of angle uvw is the number m < d/2 of
intervening face corners between u and w around v .

An observation: in a regular map all triangles are equiangular since
all angles have a reflection.

Theorem
The only Kn underlying a (reflexible) regular map is for n = 3, 4, 6.

Proof Will show if valence n − 1 = d > 3, then d = 5 (so n = 6).
See next page.

This morning:

Theorem
If the graph G underlying a regular (reflexible) map contains K5,
then G = K6.
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Edge-transitive orientable maps

Graver-Watkins Types:

1: reg reflex; edge-stabilizer order 4

edge-stabilizer order 2: three of each type (primal, dual, Petrie
dual)
2: all corner ref
2ex: all vertex and face rot., but no corner ref(includes reg chiral)

edge-stabilizer order 1:
3: all corner ref (1 type)
4: two corner ref, one rot (3 types: vertex, face, or Petrie)
5: two rotations (3 types:vertex, face, or Petrie)
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Algebra for edge-transitive maps

Example Type 2 has reflection X on each edge and corner
reflections Y ,Z , but no map auto reversing edge

A = 〈X ,Y ,Z : X 2 = Y 2 = Z 2 = 1, . . .〉, but no group auto fixing
X and interchanging Y and Z .

Now assemble a pair of flags into a “fundamental domain” of the
action (on which group acts freely) and past together using the
group.

Širàň, Tucker, Watkins (2001): turns out Sn does the trick for
each type (nice because of Sn all autos are inner).
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Gaps for edge-transitive maps

Alen Orbanič thesis tables gaps:

2P : 2, 3
2ex (reflection instead of half turn): 2, 5, 8, 11, 13, 31
4P : 2, 3
5P : 2, 3, 4, 5, 6, 9, 10, 12, 13, 16
Looks like lack of reflections (especially at corners) causes problem

Conder claims for type 3, no gaps even for non-degenerate.
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Symmetric genus

The symmetric genus of a group A, denoted σ(A), is the smallest
genus surface on which A acts.

Question: Given genus g , is there a group A with σ(A) = g . That
is, for every g is there a group that acts on the surface of genus g
but no smaller g .
Same question where action must preserve orientation, May and
Zimmerman showed (JLMS) that answer is yes, just using the
group Dn × Dm (note that these group all act reversing orientation
on the torus).

Theorem
There is a group of genus g for all g 6≡ 8, 14 (mod 18) and also for
g such that in the prime power factorization of g − 1, all primes
p ≡ 5 (mod 6) have even exponent.

Proof Construct families for different congruence classes.
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The gap-filling families

g = 4k − 1:
〈X ,Y : X 4 = Y 4 = [X 2,Y ] = [Y 2,X ] = (XY )2k = X 2 = 1〉

g = 4k − 3: same but with (XY )2k = 1
g = 3k − 3, k odd: 〈X ,Y : X 2 = Y 3k = (XY )3k = [X ,Y 3] = 1〉
g = 3k + 1, k > 9 odd: Zk × S4 with type (0; 2; {2}

That leaves g ≡ 2, 8, 14 (mod 18). Have another more
complicated family for g = 9k − 7.
For all other g − 1 ≡ 1 (mod 6), there is a variation of the
Belolipetsky-Jones maps, which requires even exponent of all
p ≡ 5 (mod 6) in prime power factorization of g − 1.
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Big picture: groups acting on surfaces

The big questions:

1) How do different groups act on a given surface?
2) How does a given group act on different surfaces?

So far, we have been talking about question (1), since after all,
existence of types of maps on a surface is entirely a question about
groups acting on that surface
For example, whether an orientable surface S has a simple regular
map is equivalent to finding a group A = 〈x , y : (xy)2 = 1, · · · >
with Core(x) = {1} that acts on S preserving orientation.

Now we want to fix the group A and ask how it might act on
different surfaces.
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Surface symmetry in 3-space

Here is an easy, but apparently new, theorem concerning rotational
symmetry of surfaces in 3-space. It arose because of a question
Bojan Mohar asked about DeWitt Godfrey’s sculpture ”The group
of genus two”, which was the brainchild of Tomo Pisanski.

The sculpture shows a map with |Aut(M)| = 96 (a thickening of
the Mobius-Kantor regular map) which abstractly has rotations of
order 3 and 8, but the sculpture has only 2-fold rotational
symmetry.

Theorem
(Tucker 2009, unpublished) (S4: Seeing Surface Symmetry in
Space) The surface of genus g can be immersed in 3-space with
n-fold rotational symmetry if and only if g ≡ 1 (mod n) or
g = qn − r with 0 ≤ r < n − 1 and q ≥ r .

Example: for n = 8, we get g = 0, 1(2− 6)7− 9(10− 13)14−
17(18− 20)21− 25(26− 27)28− 33(34)35...
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Proof of S4: Sufficiency

Sufficiency:

g ≡ 1 (mod n): Attach n handles to a standard torus in 3-space:
it has n-fold rotational symmetry and hence also k-fold for k | n.
g ≡ 0 (mod n): thicken wheel in 3-space with n-spokes (surface
has genus g = n).
For r > 0: In general, let P be path of r edges. For first edge
make (q − r − 1)n mulitple edges. For remaining r − 1 edges, have
n multiple edges. Call this a “pendant”
Then thicken into surface with genus

E − r = [(q − r − 1)n + (r − 1)n]− r = qn − r

which has axis for n-fold rotation.
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Necessity

Everything about groups acting on surfaces comes down to the
Riemann-Hurwitz equation for A acting preserving orientation on
the surface of genus g :

2− 2g = n(2− 2h − 2k(1− 1/n) = n(2− 2h − 2k) + 2k

with 2k branch points all of order n, since axis of rotation meets
surface in even number of points.

Then

g−1 = n(h−1+k)−k so g = qn−r where q = gh+(k−1)), r = k−1

Clearly q ≥ r . If r ≥ n it is easy to subtract multiple of n from r
(notice here r could be −1.
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Other finite spatial actions on surfaces

Note that Cn acts on the surface of genus g for almost all g (all
but finitely many).

One can look at other finite, orientation-preserving subgroups of
euclidean 3-space (same as groups acting on sphere preserving
orientation, Dn, S4,A5.
By first expanding cube by subdividing faces into 4 square and
attaching pendants to vertices or face center or edge center, we
can show that all these groups act spatially on almost all surfaces.
Which g are gaps for spatial actions of Dn,S4,A5?
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Kulkarni’s Theorem

Given a group A, if pf |A| and the largest cyclic subgroup of a
Sylow p-group is pe , let pd = pf−e , the p-deficiency of A. Let P
be the product of the p deficiencies. Call A type II if in the Sylow
2-subgroup, the elements of order at most 2d−1 form an index two
subgroup (yes form, not generate). Call A type I otherwise. Then

Theorem
(Kulkarni, Topology 1987). If A acts preserving orientation on the
surface of genus g, then g ≡ 1 (mod P/2) if A is type I and g ≡ 1
(mod P) if A has type II. Moreover, such an action exists for
almost all such g.

Corollary

A acts on almost all surfaces preserving orientation if and only if A
is almost Sylow-cyclic and does not contain Z2 × Z4.
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Proof of Kulkarni’s Theorem

Proof If there are b branch points, then

2g − 2 = |A|(2g ′ − 2)− |A|b + Σ|A|/r ≡ 0 (mod P)

since for branch point of order r , we have P divides |A|/r and of
course P divides |A|.

If |A| is odd, just divide through by 2 (mod P). If |A| even, more
complicated. Depends on extra relation Π[ai , bi ]Πcj = 1 in A,
where ci correspond to branch points, which restricts slightly the
nature of the branch points.

Question: So what about the finitely-many gaps?
Jones (Glasgow, 1994) has studies the full genus spectrum for
Zp,Dp,Z2p. He also has spectra for free actions, and for actions
with guotient of genus h (there are Kulkarni-types theorems for
these spectra as well).
Open question: What about orientation-reserving actios or
non-orientable surfaces
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