REGULAR MAPS WITH NILPOTENT AUTOMORPHISM GROUPS

Martin Škoviera

Comenius University, Bratislava

(includes joint work with S. F. Du, A. Malnič & R. Nedela, and others)

Workshop on Symmetry in Graphs, Maps, and Polytopes Fields Institute Toronto, October 24–27, 2011

Martin Škoviera (Bratislava)

Nilpotent regular maps

Maps

Map

• cellular decomposition of a closed surface into vertices, edges, and faces

Equivalently,

map = connected graph 2-cell embedded in a surface

Oriented map

• map on an orientable surface with chosen orientation

Map automorphism

- incidence-preserving self-homeomorphism of the underlying surface
- orientation-preserving, if the map is oriented

Flags of a map ${\mathcal M}$

 $\bullet\,$ mutually incident (vertex,edge,face) triples of ${\cal M}$

By connectivity of the surface, for any two flags f_1 , f_2 of a map \mathcal{M} there exists at most one map automorphism s. t. $f_1 \mapsto f_2$

•
$$|Aut(\mathcal{M})| \le #flags = 4#edges$$

Flags of a map ${\mathcal M}$

 $\bullet\,$ mutually incident (vertex,edge,face) triples of ${\cal M}$

By connectivity of the surface, for any two flags f_1 , f_2 of a map \mathcal{M} there exists at most one map automorphism s. t. $f_1 \mapsto f_2$

•
$$|Aut(\mathcal{M})| \le #flags = 4#edges$$

Definition

A map \mathcal{M} is called regular if

$$|\operatorname{Aut}(\mathcal{M})| = \# \mathsf{flags} = 4 \# \mathsf{edges}.$$

Martin Škoviera (Bratislava)

Orientably regular maps

If $\ensuremath{\mathcal{M}}$ is orientable, then

$$|\operatorname{Aut}^+(\mathcal{M})| \leq \frac{1}{2}(\#\mathsf{flags}) = 2\#\mathsf{edges}$$

Orientably regular maps

If \mathcal{M} is orientable, then

$$|\operatorname{Aut}^+(\mathcal{M})| \leq \frac{1}{2}(\#\mathsf{flags}) = 2\#\mathsf{edges}$$

Definition

A map ${\mathcal M}$ is called orientably regular if

$$|\operatorname{Aut}^+(\mathcal{M})| = \frac{1}{2}(\#\operatorname{flags}) = 2\#\operatorname{edges}.$$

An orientably regular map that is not regular is chiral.

Martin Škoviera (Bratislava)

Algebraic regular maps

Every regular map \mathcal{M} can be represented as a quadruple (G; ρ, λ, τ) where

• $G = \langle \rho, \lambda, \tau \rangle$ is a finite 2-generated group with $\rho^2 = \lambda^2 = \tau^2 = 1$ and $\lambda \tau = \tau \lambda$.

Algebraic regular maps

Every regular map \mathcal{M} can be represented as a quadruple (G; ρ, λ, τ) where

• $G = \langle \rho, \lambda, \tau \rangle$ is a finite 2-generated group with $\rho^2 = \lambda^2 = \tau^2 = 1$ and $\lambda \tau = \tau \lambda$.

Given an algebraic map $\mathcal{M} = (G; \rho, \lambda, \tau)$, one can reconstruct the topological map as follows:

- vertices \ldots orbits of ho au
- edges ... orbits of $\tau \lambda$
- faces ... orbits of $\rho\lambda$, all acting on the left
- incidence ... non-empty intersection

automorphisms = right translations $\sigma_g : g \mapsto xg$, $g \in G$.

Algebraic orientably regular maps

Every orientably regular map M can be represented as a triple (G; r, l) where

• $G = \langle r, l \rangle$ is a finite 2-generated group with $l^2 = 1$

Given an algebraic map $\mathcal{M} = (G; r, l)$, one can reconstruct the topological map as follows:

- vertices ... orbits of r
- edges ... orbits of /
- faces ... orbits of rl, all acting on the left
- incidence ... non-empty intersection

automorphisms = right translations $\sigma_g : g \mapsto xg$, $g \in G$.

Problem. Given a finite group $G = \langle \rho, \lambda, \tau \rangle$ with $\rho^2 = \lambda^2 = \tau^2 = 1$ and $\lambda \tau = \tau \lambda$, classify all regular maps \mathcal{M} with $\operatorname{Aut}(\mathcal{M}) \cong G$.

Isomorphism classes of regular maps \mathcal{M} with $\operatorname{Aut}(\mathcal{M}) \cong G$ correspond to the orbits of $\operatorname{Aut}(G)$ on the generating triples (ρ, λ, τ) of G.

Problem. Given a finite group $G = \langle \rho, \lambda, \tau \rangle$ with $\rho^2 = \lambda^2 = \tau^2 = 1$ and $\lambda \tau = \tau \lambda$, classify all regular maps \mathcal{M} with $\operatorname{Aut}(\mathcal{M}) \cong G$.

Isomorphism classes of regular maps \mathcal{M} with $\operatorname{Aut}(\mathcal{M}) \cong G$ correspond to the orbits of $\operatorname{Aut}(G)$ on the generating triples (ρ, λ, τ) of G.

Problem⁺. Given a group $G = \langle r, l \rangle$ with $l^2 = 1$, classify all orientably regular maps \mathcal{M} with $\operatorname{Aut}^+(\mathcal{M}) \cong G$.

Again, isomorphism classes of orientably regular maps \mathcal{M} with $\operatorname{Aut}(\mathcal{M}) \cong G$ correspond to the orbits of $\operatorname{Aut}^+(G)$ on the generating pairs (r, l) of G.

• (Malle, Saxl & Weigel, 1994)

Every non-abelian finite simple group can be generated by two elements of which one is an involution. (Situation regarding three involutions two of which commute is more complicated, but known.)

• (Malle, Saxl & Weigel, 1994)

Every non-abelian finite simple group can be generated by two elements of which one is an involution. (Situation regarding three involutions two of which commute is more complicated, but known.)

- Classification results have been obtained for certain infinite classes of finite simple or almost simple groups:
 - PSL(2, q) and PGL(2, q) (Sah, 1969)
 - Suzuki groups (Jones & Silver, 1993)

• (Malle, Saxl & Weigel, 1994)

Every non-abelian finite simple group can be generated by two elements of which one is an involution. (Situation regarding three involutions two of which commute is more complicated, but known.)

- Classification results have been obtained for certain infinite classes of finite simple or almost simple groups:
 - PSL(2, q) and PGL(2, q) (Sah, 1969)
 - Suzuki groups (Jones & Silver, 1993)
- Little is known about regular maps arising from solvable groups.

Nilpotent regular maps

Nilpotent regular maps: nonorientable surfaces

Theorem

Let \mathcal{M} be a regular map on a nonorientable surface such that $\operatorname{Aut}(\mathcal{M})$ is nilpotent. Then \mathcal{M} is a regular embedding of the bouquet $\widetilde{\mathcal{B}}_{2^n}$ of 2^n loops in the projective plane, or its dual, and $\operatorname{Aut}(\mathcal{M}) \cong \mathbb{D}_{2^{n+1}}$.

Nilpotent regular maps: nonorientable surfaces

Theorem

Let \mathcal{M} be a regular map on a nonorientable surface such that $\operatorname{Aut}(\mathcal{M})$ is nilpotent. Then \mathcal{M} is a regular embedding of the bouquet $\widetilde{\mathcal{B}}_{2^n}$ of 2^n loops in the projective plane, or its dual, and $\operatorname{Aut}(\mathcal{M}) \cong \mathbb{D}_{2^{n+1}}$.

Let $Aut(\mathcal{M}) = G = \langle \rho, \lambda, \tau \rangle$ be nilpotent.

- G must be a 2-group.
- By induction on *n*, every nonorientable regular map with 2ⁿ edges is either *B̃*_{2ⁿ} or *B̃*_{2ⁿ}^{*} [Wilson, 1985].

Martin Škoviera (Bratislava)

Nilpotent regular maps: nonorientable surfaces

Theorem

Let \mathcal{M} be a regular map on a nonorientable surface such that $\operatorname{Aut}(\mathcal{M})$ is nilpotent. Then \mathcal{M} is a regular embedding of the bouquet $\widetilde{\mathcal{B}}_{2^n}$ of 2^n loops in the projective plane, or its dual, and $\operatorname{Aut}(\mathcal{M}) \cong \mathbb{D}_{2^{n+1}}$.

⇒ We can restrict to orientably regular maps!

FROM NOW ON:

- regular map means orientably regular map
- $\operatorname{Aut}(\mathcal{M})$ means $\operatorname{Aut}^+(\mathcal{M})$

Orientable surfaces: abelian regular maps

Theorem

Let \mathcal{M} be a regular map whose automorphism group is an abelian group of order n. Then either $\mathcal{M} \cong S_n$, or n = 2m and $\mathcal{M} \cong \mathcal{B}_m$, or $\mathcal{M} \cong \mathcal{D}(m, 1)$. The respective groups are \mathbb{Z}_n , and for n = 2m, \mathbb{Z}_{2m} and $\mathbb{Z}_m \times \mathbb{Z}_2$.

Dipole maps

An *n*-dipole map is a regular embedding of the graph D_n having two vertices u and v joined by *n* parallel edges.

Dipole maps

An *n*-dipole map is a regular embedding of the graph D_n having two vertices u and v joined by *n* parallel edges.

Theorem

Every regular embedding of D_n arises from the metacyclic group $G(n, e) = \langle x, y; x^n = y^2 = 1, yxy = x^e \rangle$ as the algebraic map $\mathcal{D}(n, e) = (G(n, e); x, y).$ Furthermore, $\mathcal{D}(n, e) \cong \mathcal{D}(n, f) \iff e \equiv f \pmod{n}.$ An *n*-dipole map is a regular embedding of the graph D_n having two vertices u and v joined by *n* parallel edges.

Theorem

Every regular embedding of D_n arises from the metacyclic group $G(n, e) = \langle x, y; x^n = y^2 = 1, yxy = x^e \rangle$ as the algebraic map $\mathcal{D}(n, e) = (G(n, e); x, y).$ Furthermore, $\mathcal{D}(n, e) \cong \mathcal{D}(n, f) \iff e \equiv f \pmod{n}.$

Combinatorial description:

- The cyclic order of edges at v is the e-th power of the order at u.
- It follows from the relations that $e^2 \equiv 1 \pmod{n}$.

Every regular map with nilpotent automorphism group can be uniquely decomposed into a direct product of two regular maps, a regular map whose automorphism group is a 2-group and a star S_m of odd valency.

Every regular map with nilpotent automorphism group can be uniquely decomposed into a direct product of two regular maps, a regular map whose automorphism group is a 2-group and a star S_m of odd valency.

Definition. Let $\mathcal{M}_1 = (G_1; r_1, l_1)$ and $\mathcal{M}_1 = (G_2; r_2, l_2)$ be regular maps. Then $\mathcal{M}_1 \times \mathcal{M}_2 = (G; r, l)$ where $r = (r_1, r_2)$ and $l = (l_1, l_2)$ and $G = \langle r, l \rangle \leq G_1 \times G_2$.

Every regular map with nilpotent automorphism group can be uniquely decomposed into a direct product of two regular maps, a regular map whose automorphism group is a 2-group and a star S_m of odd valency.

Definition. Let $\mathcal{M}_1 = (G_1; r_1, l_1)$ and $\mathcal{M}_1 = (G_2; r_2, l_2)$ be regular maps. Then $\mathcal{M}_1 \times \mathcal{M}_2 = (G; r, l)$ where $r = (r_1, r_2)$ and $l = (l_1, l_2)$ and $G = \langle r, l \rangle \leq G_1 \times G_2$.

If r_1 and r_2 have coprime orders and the maps are not both bipartite, then $G = G_1 \times G_2$ and the underlying graph of $\mathcal{M}_1 \times \mathcal{M}_2$ coincides with the direct (categorial) product of the underlying graphs of \mathcal{M}_1 and \mathcal{M}_2 .

Martin Škoviera (Bratislava)

Consequences of decomposition

Corollaries

Let \mathcal{M} be a regular map with $Aut(\mathcal{M})$ nilpotent. The following hold:

- Both # of vertices and # of faces are powers of 2.
- Vertex-valency and face-size are both even; if \mathcal{M} is simple, both are powers of 2.
- \mathcal{M} is simple only when $\operatorname{Aut}(\mathcal{M})$ is a 2-group.
- If $Aut(\mathcal{M})$ is non-abelian, then \mathcal{M} is bipartite;
- Apart from two families of dipole maps and their duals, both vertex-valency and face-size are multiples of 4.

Nilpotent regular maps of class 2: the groups

Nilpotent regular maps of class 2: the groups

By Decomposition Theorem, it is sufficient to classify maps arising from 2-groups.

Nilpotent regular maps of class 2: the groups

By Decomposition Theorem, it is sufficient to classify maps arising from 2-groups.

Theorem A (Malnič, Nedela & S.)

Let $G = \langle x, y \rangle$ be a 2-group of class 2, where $|x| = 2^n$, |y| = 2 and $n \ge 2$. Then G is one of the following two groups: $G_1(n) = \langle x, y; x^{2^n} = y^2 = 1, [x, y] = x^{2^{n-1}} \rangle$ $G_2(n) = \langle x, y, z; x^{2^n} = y^2 = z^2 = [z, x] = [z, y] = 1, z = [x, y] \rangle$.

Moreover,

$$G_2(n)/\langle zx^{2^{n-1}}\rangle \cong G_1(n).$$

Nilpotent regular maps of class 2: the maps

Theorem B (Malnič, Nedela & S.)

Every regular map with automorphism group a 2-group of class 2 is isomorphic to

 $\mathcal{M}_1(n) = (G_1(n); x, y)$ for some $n \ge 2$, or to

 $\mathcal{M}_{2}(n) = (G_{2}(n); x, y)$ for some $n \ge 1$.

Nilpotent regular maps of class 2: the maps

Theorem B (Malnič, Nedela & S.)

Every regular map with automorphism group a 2-group of class 2 is isomorphic to

 $\mathcal{M}_1(n) = (G_1(n); x, y) \text{ for some } n \ge 2, \text{ or to}$ $\mathcal{M}_2(n) = (G_2(n); x, y) \text{ for some } n \ge 1.$

• $\mathcal{M}_1(n) \cong \mathcal{D}(2^n, 2^{n-1}+1)$. For $n \ge 3$ it is self-dual of type $\{2^n, 2^n\}$ and genus $2^{n-1} - 1$. For n = 2 it is the spherical map of type $\{2, 4\}$.

Nilpotent regular maps of class 2: description of maps

- $\mathcal{M}_1(n) \cong \mathcal{D}(2^n, 2^{n-1}+1)$. For $n \ge 3$ it is self-dual of type $\{2^n, 2^n\}$ and genus $2^{n-1} - 1$. For n = 2 it is the spherical map of type $\{2, 4\}$.
- M₂(n) is a regular embedding of a 4-cycle with multiplicity 2ⁿ⁻¹.
 For n ≥ 2 it is self-dual of type {2ⁿ, 2ⁿ} and genus 2ⁿ 3.
 For n = 1 it has type {4,2} and is dual to M₁(2).

Nilpotent regular maps of class 2: description of maps

- $\mathcal{M}_1(n) \cong \mathcal{D}(2^n, 2^{n-1}+1)$. For $n \ge 3$ it is self-dual of type $\{2^n, 2^n\}$ and genus $2^{n-1} - 1$. For n = 2 it is the spherical map of type $\{2, 4\}$.
- M₂(n) is a regular embedding of a 4-cycle with multiplicity 2ⁿ⁻¹.
 For n ≥ 2 it is self-dual of type {2ⁿ, 2ⁿ} and genus 2ⁿ 3.
 For n = 1 it has type {4,2} and is dual to M₁(2).
- Since the maps are uniquely determined by the groups, they admit all orientation-preserving "external" symmetries: they are invariant under all Wilson's operations H_j, j odd. In particular, they are all reflexible and the exponent group is all of Z^{*}₂. That is, they are kaleidoscopic.

- Every 2-group of order 2^{n+1} and nilpotency class *n* is one of the following [Taussky, 1937]:
 - (i) dihedral group $\mathbb{D}_{2^n} = \langle a, b; x^{2^n} = y^2 = 1, y^{-1}xy = x^{-1} \rangle$,
- (ii) quasi-dihedral group $Q\mathbb{D}_{2^n} = \langle x, y; x^{2^n} = y^2 = 1, y^{-1}xy = x^{2^{n-1}-1} \rangle$,
- (iii) generalised quaternion group $GQ_{2^n} = \langle x, y; x^{2^n} = 1, y^2 = x^{2^{n-1}}, y^{-1}xy = x^{-1} \rangle.$

Theorem (Hu, Wang)

Let \mathcal{M} be a regular map whose automorphism group is a 2-group of order 2^{n+1} and nilpotency class n. Then \mathcal{M} is one of the following:

- (i) the spherical dipole $\mathcal{D}(2^n, -1)$ with $\operatorname{Aut}(\mathcal{M}) \cong \mathbb{D}_{2^n}$ or its dual,
- (ii) the dipole $\mathcal{D}(2^n, 2^{n-1}-1)$ of genus 2^{n-2} with $Aut(\mathcal{M}) \cong Q\mathbb{D}_{2^n}$ or its dual.
- (iii) There are no regular maps whose automorphism group is the generalised quaternion group.

Nilpotent regular maps of class 3

Theorem (Ban, Du, Liu, Nedela & S.)

Let $G = \langle x, y \rangle$ be a 2-group of class 3, where $|x| = 2^n$, |y| = 2 and $n \ge 2$. Then G is one of seven infinite classes of groups

$$\begin{aligned} & H_1(n) = \langle x, y; \, x^{2^n} = y^2 = 1, [x, y] = z, [z, x] = [z, y] = w, \\ & [w, x] = [w, y] = 1 \rangle, \\ & H_7(n) = \langle x, y; \, x^{2^{n-1}} = t, y^2 = t^2 = 1, [x, y] = z, [z, x] = w, \\ & [z, y] = t, [w, x] = [w, y] = [t, x] = [t, y] = 1 \rangle \end{aligned}$$

and two additional groups

$$\begin{split} H_8(2) &= \langle x, y; \ x^4 = wt, y^2 = t^2 = 1, [x, y] = z, [z, x] = w, [z, y] = t, \\ & [w, x] = [w, y] = [t, x] = [t, y] = 1 \rangle \\ H_9(2) &= \langle x, y; \ x^4 = y^2 = 1, [x, y] = z, [z, x] = 1, [z, y] = t, \\ & [t, x] = [t, y] = 1 \rangle. \end{split}$$

Each group $H_i(n)$ gives rise to two exactly non-isomorphic maps,

$$\mathcal{M}_{i,n} = (H_i(n); x, y)$$
 and the dual $\mathcal{M}^*_{i,n} = (H_i(n); xy, y)$.

Nilpotent maps with simple underlying graph

Theorem (Du, Nedela & S.)

Let $\mathcal{M} = (G; x, y)$ be a regular map where G is nilpotent of class c. Then \mathcal{M} has at most $2^{2^{c-1}}$ vertices.

Corollary

For each nilpotency class $c \ge 1$ there exist only finitely many simple nilpotent regular maps of class c.

Nilpotent maps with simple underlying graph

Theorem (Du, Nedela & S.)

Let $\mathcal{M} = (G; x, y)$ be a regular map where G is nilpotent of class c. Then \mathcal{M} has at most $2^{2^{c-1}}$ vertices.

Corollary

For each nilpotency class $c \ge 1$ there exist only finitely many simple nilpotent regular maps of class c.

Proof.

- By Decomposition Theorem, we may assume that G is a 2-group.
- It is sufficient to show that $|G:\langle x\rangle| \le 2^{2^{c-1}}$, since $|G:\langle x\rangle| = \#$ vertices.
- Induction on c along the lower central series; involves a lot of commutator calculations.

Reduction to simple nilpotent maps

Theorem

Let $\mathcal{M} = (G; x, y)$ be a regular map of valency d and multiplicity m with underlying graph $\mathcal{K}^{(m)}$. Set $A = \langle x^{d/m} \rangle$ and $B = \langle x^{d/m}, y \rangle$. Then:

- $A \trianglelefteq G$ and M' = (G/A; xA, yA) is a regular embedding of K.
- *M*["] = (B; x^{d/m}, y) is a dipole map isomorphic to D(m, e) for some e² ≡ 1 (mod m).

Reduction to simple nilpotent maps

Theorem

Let $\mathcal{M} = (G; x, y)$ be a regular map of valency d and multiplicity mwith underlying graph $K^{(m)}$. Set $A = \langle x^{d/m} \rangle$ and $B = \langle x^{d/m}, y \rangle$. Then: • $A \leq G$ and $\mathcal{M}' = (G/A; xA, yA)$ is a regular embedding of K.

M["] = (B; x^{d/m}, y) is a dipole map isomorphic to D(m, e) for some e² ≡ 1 (mod m).

- If \mathcal{M} is nilpotent, then both \mathcal{M}' and \mathcal{M}'' are nilpotent.
- In that case, since M' = (G/A; xA, yA) has a simple underlying graph, G/A is a 2-group.
- \mathcal{M}'' is a nilpotent dipole and these can be easily characterised.

Let $m = 2^{s}t$ where $t \ge 1$ is odd and $s \ge 0$.

- If $s \leq 1$, then $\mathcal{D}(m, 1)$ is the only nilpotent regular embedding of D_m .
- For s = 2 there are two regular embeddings of D_m : $\mathcal{D}(m, 1)$ and $\mathcal{D}(m, 1 + m/2)$.
- For s ≥ 3 there are four nilpotent regular embeddings of D_m: D(m,1), D(m,1+m/2), D(m,e), and D(m,e+m/2), where e is the unique solution of the system e ≡ −1 (mod 2^s), e ≡ 1 (mod t).

Let $m = 2^{s}t$ where $t \ge 1$ is odd and $s \ge 0$.

- If $s \leq 1$, then $\mathcal{D}(m, 1)$ is the only nilpotent regular embedding of D_m .
- For s = 2 there are two regular embeddings of D_m : $\mathcal{D}(m, 1)$ and $\mathcal{D}(m, 1 + m/2)$.
- For s ≥ 3 there are four nilpotent regular embeddings of D_m: D(m,1), D(m,1+m/2), D(m,e), and D(m,e+m/2), where e is the unique solution of the system e ≡ −1 (mod 2^s), e ≡ 1 (mod t).

Problem. How can a general nilpotent regular map \mathcal{M} arise from the corresponding simple map \mathcal{M}' and the dipole map \mathcal{M}'' ?

THE END

THANK YOU!