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Maps

Map

cellular decomposition of a closed surface into
vertices, edges, and faces

Equivalently,

map = connected graph 2-cell embedded in a surface

Oriented map

map on an orientable surface with chosen orientation

Map automorphism

incidence-preserving self-homeomorphism of the underlying surface

orientation-preserving, if the map is oriented
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Regular maps

Flags of a map M
mutually incident (vertex,edge,face) triples of M

By connectivity of the surface, for any two flags f1, f2 of a map M
there exists at most one map automorphism s. t. f1 7→ f2

=⇒

|Aut(M)| ≤ #flags = 4#edges

Definition

A map M is called regular if

|Aut(M)| = #flags = 4#edges.
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Orientably regular maps

If M is orientable, then

|Aut+(M)| ≤ 1
2 (#flags) = 2#edges

Definition

A map M is called orientably regular if

|Aut+(M)| = 1
2 (#flags) = 2#edges.

An orientably regular map that is not regular is chiral.
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Algebraic regular maps

Every regular map M can be represented as a quadruple (G ; ρ, λ, τ)
where

G = 〈ρ, λ, τ〉 is a finite 2-generated group with ρ2 = λ2 = τ2 = 1
and λτ = τλ.

Given an algebraic map M = (G ; ρ, λ, τ), one can reconstruct
the topological map as follows:

vertices . . . orbits of ρτ

edges . . . orbits of τλ

faces . . . orbits of ρλ, all acting on the left

incidence . . . non-empty intersection

automorphisms = right translations σg : g 7→ xg , g ∈ G .

Martin Škoviera (Bratislava) Nilpotent regular maps Fields 2011 5 / 26



Algebraic regular maps

Every regular map M can be represented as a quadruple (G ; ρ, λ, τ)
where

G = 〈ρ, λ, τ〉 is a finite 2-generated group with ρ2 = λ2 = τ2 = 1
and λτ = τλ.

Given an algebraic map M = (G ; ρ, λ, τ), one can reconstruct
the topological map as follows:

vertices . . . orbits of ρτ

edges . . . orbits of τλ

faces . . . orbits of ρλ, all acting on the left

incidence . . . non-empty intersection

automorphisms = right translations σg : g 7→ xg , g ∈ G .
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Algebraic orientably regular maps

Every orientably regular map M can be represented as a triple (G ; r , l)
where

G = 〈r , l〉 is a finite 2-generated group with l2 = 1

Given an algebraic map M = (G ; r , l), one can reconstruct
the topological map as follows:

vertices . . . orbits of r

edges . . . orbits of l

faces . . . orbits of rl , all acting on the left

incidence . . . non-empty intersection

automorphisms = right translations σg : g 7→ xg , g ∈ G .
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Regular maps with given automorphism group

Problem. Given a finite group G = 〈ρ, λ, τ〉 with ρ2 = λ2 = τ2 = 1
and λτ = τλ, classify all regular maps M with Aut(M) ∼= G .

Isomorphism classes of regular maps M with Aut(M) ∼= G correspond to
the orbits of Aut(G ) on the generating triples (ρ, λ, τ) of G .

Problem+. Given a group G = 〈r , l〉 with l2 = 1, classify all
orientably regular maps M with Aut+(M) ∼= G .

Again, isomorphism classes of orientably regular maps M with
Aut(M) ∼= G correspond to the orbits of Aut+(G ) on the generating
pairs (r , l) of G .
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Regular maps with given automorphism group

(Malle, Saxl & Weigel, 1994)
Every non-abelian finite simple group can be generated by
two elements of which one is an involution.
(Situation regarding three involutions two of which commute is more
complicated, but known.)

Classification results have been obtained for certain infinite classes of
finite simple or almost simple groups:

- PSL(2, q) and PGL(2, q) (Sah, 1969)
- Suzuki groups (Jones & Silver, 1993)

Little is known about regular maps arising from solvable groups.
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Nilpotent regular maps
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Nilpotent regular maps: nonorientable surfaces

Theorem

Let M be a regular map on a nonorientable surface such that Aut(M) is
nilpotent. Then M is a regular embedding of the bouquet B̃2n of 2n loops
in the projective plane, or its dual, and Aut(M) ∼= D2n+1 .

B̃4 B̃∗4

Let Aut(M) = G = 〈ρ, λ, τ〉 be nilpotent.

G must be a 2-group.

By induction on n, every nonorientable regular map with 2n edges is
either B̃2n or B̃∗2n [Wilson, 1985].
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Nilpotent regular maps: nonorientable surfaces

Theorem

Let M be a regular map on a nonorientable surface such that Aut(M) is
nilpotent. Then M is a regular embedding of the bouquet B̃2n of 2n loops
in the projective plane, or its dual, and Aut(M) ∼= D2n+1 .

B̃4 B̃∗4

=⇒ We can restrict to orientably regular maps!
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FROM NOW ON:

regular map means orientably regular map

Aut(M) means Aut+(M)
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Orientable surfaces: abelian regular maps

Theorem

Let M be a regular map whose automorphism group is an abelian group of
order n. Then either M∼= Sn, or n = 2m and M∼= Bm, or M∼= D(m, 1).
The respective groups are Zn, and for n = 2m, Z2m and Zm × Z2.

x

z

y z

Sn

R = (xyz ...)

Bm, n = 2m

R = (xyz ...x−1y−1z−1...)

D(m,1),n = 2m

R = (xyz ...)(x−1y−1z−1...)

x

y

z

x y
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Dipole maps

An n-dipole map is a regular embedding of the graph Dn having two
vertices u and v joined by n parallel edges.

Theorem

Every regular embedding of Dn arises from the metacyclic group
G (n, e) = 〈x , y ; xn = y 2 = 1, yxy = xe〉 as the algebraic map
D(n, e) = (G (n, e); x , y).
Furthermore, D(n, e) ∼= D(n, f ) ⇐⇒ e ≡ f (mod n).

Combinatorial description:

The cyclic order of edges at v is the e-th power of the order at u.

It follows from the relations that e2 ≡ 1 (mod n).
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Nilpotent regular maps: Decomposition Theorem

Theorem (Malnič, Nedela & S.)

Every regular map with nilpotent automorphism group can be uniquely
decomposed into a direct product of two regular maps, a regular map
whose automorphism group is a 2-group and a star Sm of odd valency.

Definition. Let M1 = (G1; r1, l1) and M1 = (G2; r2, l2) be regular maps.
Then M1 ×M2 = (G ; r , l) where r = (r1, r2) and l = (l1, l2) and
G = 〈r , l〉 ≤ G1 × G2.

If r1 and r2 have coprime orders and the maps are not both bipartite, then
G = G1 × G2 and the underlying graph of M1 ×M2 coincides with the
direct (categorial) product of the underlying graphs of M1 and M2.
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Consequences of decomposition

Corollaries

Let M be a regular map with Aut(M) nilpotent. The following hold:

Both # of vertices and # of faces are powers of 2.

Vertex-valency and face-size are both even;
if M is simple, both are powers of 2.

M is simple only when Aut(M) is a 2-group.

If Aut(M) is non-abelian, then M is bipartite;

Apart from two families of dipole maps and their duals,
both vertex-valency and face-size are multiples of 4.
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Nilpotent regular maps of class 2: the groups

By Decomposition Theorem, it is sufficient to classify maps arising from
2-groups.

Theorem A (Malnič, Nedela & S.)

Let G = 〈x , y〉 be a 2-group of class 2, where |x | = 2n, |y | = 2 and n ≥ 2.
Then G is one of the following two groups:

G1(n) = 〈x , y ; x2n
= y 2 = 1, [x , y ] = x2n−1〉

G2(n) = 〈x , y , z ; x2n
= y 2 = z2 = [z , x ] = [z , y ] = 1, z = [x , y ]〉.

Moreover,
G2(n)/〈zx2n−1〉 ∼= G1(n).
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Nilpotent regular maps of class 2: the maps

Theorem B (Malnič, Nedela & S.)

Every regular map with automorphism group a 2-group of class 2 is
isomorphic to

M1(n) = (G1(n); x , y) for some n ≥ 2, or to

M2(n) = (G2(n); x , y) for some n ≥ 1.

M2(n + 1)

��

//M2(n)

����
��

��
��

��
��

��
��

��
��

��

��

//M2(n − 1)

����
��

��
��

��
��

��
��

��
��

��

��
M1(n + 1) ∼=
D(2n+1, 2n + 1)

M1(n) ∼=
D(2n, 2n−1 + 1)

M1(n − 1) ∼=
D(2n−1, 2n−2 + 1)

�� �� ��
D(2n, 1) // D(2n−1, 1) // D(2n−2, 1)
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Nilpotent regular maps of class 2: description of maps

M1(n) ∼= D(2n, 2n−1 + 1). For n ≥ 3 it is self-dual of type {2n, 2n}
and genus 2n−1 − 1. For n = 2 it is the spherical map of type {2, 4}.

M2(n) is a regular embedding of a 4-cycle with multiplicity 2n−1.
For n ≥ 2 it is self-dual of type {2n, 2n} and genus 2n − 3.
For n = 1 it has type {4, 2} and is dual to M1(2).

Since the maps are uniquely determined by the groups, they admit all
orientation-preserving “external” symmetries: they are invariant under
all Wilson’s operations Hj , j odd. In particular, they are all reflexible
and the exponent group is all of Z∗2n . That is, they are kaleidoscopic.
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Nilpotent regular maps of maximal class: the groups

Every 2-group of order 2n+1 and nilpotency class n is one of the following
[Taussky, 1937]:

(i) dihedral group
D2n = 〈a, b; x2n

= y 2 = 1, y−1xy = x−1〉,
(ii) quasi-dihedral group

QD2n = 〈x , y ; x2n
= y 2 = 1, y−1xy = x2n−1−1〉,

(iii) generalised quaternion group
GQ2n = 〈x , y ; x2n

= 1, y 2 = x2n−1
, y−1xy = x−1〉.
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Nilpotent regular maps of maximal class: the maps

Theorem (Hu, Wang)

Let M be a regular map whose automorphism group is a 2-group of order
2n+1 and nilpotency class n. Then M is one of the following:

(i) the spherical dipole D(2n,−1) with Aut(M) ∼= D2n or its dual,

(ii) the dipole D(2n, 2n−1 − 1) of genus 2n−2 with Aut(M) ∼= QD2n or
its dual.

(iii) There are no regular maps whose automorphism group is the
generalised quaternion group.
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Nilpotent regular maps of class 3

Theorem (Ban, Du, Liu, Nedela & S.)

Let G = 〈x , y〉 be a 2-group of class 3, where |x | = 2n, |y | = 2 and n ≥ 2.
Then G is one of seven infinite classes of groups

H1(n) = 〈x , y ; x2n
= y 2 = 1, [x , y ] = z , [z , x ] = [z , y ] = w ,

[w , x ] = [w , y ] = 1〉, . . . ,

H7(n) = 〈x , y ; x2n−1
= t, y 2 = t2 = 1, [x , y ] = z , [z , x ] = w ,

[z , y ] = t, [w , x ] = [w , y ] = [t, x ] = [t, y ] = 1〉
and two additional groups

H8(2) = 〈x , y ; x4 = wt, y 2 = t2 = 1, [x , y ] = z , [z , x ] = w , [z , y ] = t,
[w , x ] = [w , y ] = [t, x ] = [t, y ] = 1〉

H9(2) = 〈x , y ; x4 = y 2 = 1, [x , y ] = z , [z , x ] = 1, [z , y ] = t,
[t, x ] = [t, y ] = 1〉.

Each group Hi (n) gives rise to two exactly non-isomorphic maps,

Mi ,n = (Hi (n); x , y) and the dual M∗i ,n = (Hi (n); xy , y).
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Nilpotent maps with simple underlying graph

Theorem (Du, Nedela & S.)

Let M = (G ; x , y) be a regular map where G is nilpotent of class c. Then
M has at most 22c−1

vertices.

Corollary

For each nilpotency class c ≥ 1 there exist only finitely many simple
nilpotent regular maps of class c.

Proof.

By Decomposition Theorem, we may assume that G is a 2-group.

It is sufficient to show that |G : 〈x〉| ≤ 22c−1
, since

|G : 〈x〉| = #vertices.

Induction on c along the lower central series; involves a lot of
commutator calculations.
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Reduction to simple nilpotent maps

Theorem

Let M = (G ; x , y) be a regular map of valency d and multiplicity m
with underlying graph K (m). Set A = 〈xd/m〉 and B = 〈xd/m, y〉. Then:

A � G and M′ = (G/A; xA, yA) is a regular embedding of K.

M′′ = (B; xd/m, y) is a dipole map isomorphic to D(m, e) for some
e2 ≡ 1 (mod m).

If M is nilpotent, then both M′ and M′′ are nilpotent.

In that case, since M′ = (G/A; xA, yA) has a simple underlying
graph, G/A is a 2-group.

M′′ is a nilpotent dipole – and these can be easily characterised.
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If M is nilpotent, then both M′ and M′′ are nilpotent.

In that case, since M′ = (G/A; xA, yA) has a simple underlying
graph, G/A is a 2-group.

M′′ is a nilpotent dipole – and these can be easily characterised.
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Reduction to simple nilpotent maps: nilpotent dipoles

Theorem (Malnič, Nedela & S.)

Let m = 2st where t ≥ 1 is odd and s ≥ 0.

If s ≤ 1, then D(m, 1) is the only nilpotent regular embedding of Dm.

For s = 2 there are two regular embeddings of Dm:
D(m, 1) and D(m, 1 + m/2) .

For s ≥ 3 there are four nilpotent regular embeddings of Dm:
D(m, 1), D(m, 1 + m/2), D(m, e), and D(m, e + m/2), where e is
the unique solution of the system e ≡ −1 (mod 2s), e ≡ 1 (mod t).

Problem. How can a general nilpotent regular map M arise from the
corresponding simple map M′ and the dipole map M′′?
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THE END

THANK YOU!
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