REGULAR MAPS
WITH NILPOTENT AUTOMORPHISM GROUPS

Martin Škoviera
Comenius University, Bratislava

(includes joint work with S. F. Du, A. Malnič & R. Nedela, and others)

Workshop on Symmetry in Graphs, Maps, and Polytopes
Fields Institute
Toronto, October 24–27, 2011
Maps

Map

- cellular decomposition of a closed surface into vertices, edges, and faces

Equivalently,

\[\text{map} = \text{connected graph 2-cell embedded in a surface} \]

Oriented map

- map on an orientable surface with chosen orientation

Map automorphism

- incidence-preserving self-homeomorphism of the underlying surface
- orientation-preserving, if the map is oriented
Regular maps

Flags of a map M
 - mutually incident (vertex, edge, face) triples of M

By connectivity of the surface, for any two flags f_1, f_2 of a map M there exists at most one map automorphism s such that $f_1 \mapsto f_2$

\implies

- $|\text{Aut}(M)| \leq \#\text{flags} = 4\#\text{edges}$
Regular maps

Flags of a map \mathcal{M}

- mutually incident (vertex, edge, face) triples of \mathcal{M}

By connectivity of the surface, for any two flags f_1, f_2 of a map \mathcal{M} there exists at most one map automorphism s such that $f_1 \mapsto f_2$

\implies

- $|\text{Aut}(\mathcal{M})| \leq \#\text{flags} = 4\#\text{edges}$

Definition

A map \mathcal{M} is called regular if

$$|\text{Aut}(\mathcal{M})| = \#\text{flags} = 4\#\text{edges}.$$
Orientably regular maps

If \mathcal{M} is orientable, then

$$|\text{Aut}^+(\mathcal{M})| \leq \frac{1}{2}(\# \text{flags}) = 2\# \text{edges}$$
Orientably regular maps

If \mathcal{M} is orientable, then

$$|\text{Aut}^+(\mathcal{M})| \leq \frac{1}{2}(\#\text{flags}) = 2\#\text{edges}$$

Definition

A map \mathcal{M} is called **orientably regular** if

$$|\text{Aut}^+(\mathcal{M})| = \frac{1}{2}(\#\text{flags}) = 2\#\text{edges}.$$

An orientably regular map that is not regular is chiral.
Algebraic regular maps

Every regular map \mathcal{M} can be represented as a quadruple $(G; \rho, \lambda, \tau)$ where

- $G = \langle \rho, \lambda, \tau \rangle$ is a finite 2-generated group with $\rho^2 = \lambda^2 = \tau^2 = 1$ and $\lambda\tau = \tau\lambda$.

Given an algebraic map $\mathcal{M} = (G; \rho, \lambda, \tau)$, one can reconstruct the topological map as follows:
- vertices . . . orbits of $\rho\tau$
- edges . . . orbits of $\tau\lambda$
- faces . . . orbits of $\rho\lambda$, all acting on the left
- incidence . . . non-empty intersection
- automorphisms = right translations $\sigma_g: g \mapsto xg$, $g \in G$.

Algebraic regular maps

Every regular map \mathcal{M} can be represented as a quadruple $(G; \rho, \lambda, \tau)$ where

- $G = \langle \rho, \lambda, \tau \rangle$ is a finite 2-generated group with $\rho^2 = \lambda^2 = \tau^2 = 1$ and $\lambda \tau = \tau \lambda$.

Given an algebraic map $\mathcal{M} = (G; \rho, \lambda, \tau)$, one can reconstruct the topological map as follows:

- vertices ... orbits of $\rho \tau$
- edges ... orbits of $\tau \lambda$
- faces ... orbits of $\rho \lambda$, all acting on the left
- incidence ... non-empty intersection

automorphisms = right translations $\sigma_g : g \mapsto xg$, $g \in G$.

Algebraic orientably regular maps

Every **orientably regular** map \mathcal{M} can be represented as a triple $(G; r, l)$ where

- $G = \langle r, l \rangle$ is a finite 2-generated group with $l^2 = 1$

Given an algebraic map $\mathcal{M} = (G; r, l)$, one can reconstruct the **topological map** as follows:

- **vertices** ... orbits of r
- **edges** ... orbits of l
- **faces** ... orbits of rl, all acting on the **left**
- **incidence** ... non-empty intersection

Automorphisms = **right** translations $\sigma_g : g \mapsto xg, \quad g \in G$.
Regular maps with given automorphism group

Problem. Given a finite group $G = \langle \rho, \lambda, \tau \rangle$ with $\rho^2 = \lambda^2 = \tau^2 = 1$ and $\lambda \tau = \tau \lambda$, classify all regular maps M with $\text{Aut}(M) \cong G$.

Isomorphism classes of regular maps M with $\text{Aut}(M) \cong G$ correspond to the orbits of $\text{Aut}(G)$ on the generating triples (ρ, λ, τ) of G.

Martin Škoviera (Bratislava)
Regular maps with given automorphism group

Problem. Given a finite group $G = \langle \rho, \lambda, \tau \rangle$ with $\rho^2 = \lambda^2 = \tau^2 = 1$ and $\lambda \tau = \tau \lambda$, classify all regular maps \mathcal{M} with $\text{Aut}(\mathcal{M}) \cong G$.

Isomorphism classes of regular maps \mathcal{M} with $\text{Aut}(\mathcal{M}) \cong G$ correspond to the orbits of $\text{Aut}(G)$ on the generating triples (ρ, λ, τ) of G.

Problem$^+$. Given a group $G = \langle r, l \rangle$ with $l^2 = 1$, classify all orientably regular maps \mathcal{M} with $\text{Aut}^+(\mathcal{M}) \cong G$.

Again, isomorphism classes of orientably regular maps \mathcal{M} with $\text{Aut}(\mathcal{M}) \cong G$ correspond to the orbits of $\text{Aut}^+(G)$ on the generating pairs (r, l) of G.
Regular maps with given automorphism group

- (Malle, Saxl & Weigel, 1994)
 Every non-abelian finite simple group can be generated by two elements of which one is an involution.
 (Situation regarding three involutions two of which commute is more complicated, but known.)
(Malle, Saxl & Weigel, 1994)
Every non-abelian finite simple group can be generated by two elements of which one is an involution.
(Situation regarding three involutions two of which commute is more complicated, but known.)

Classification results have been obtained for certain infinite classes of finite simple or almost simple groups:
- $PSL(2, q)$ and $PGL(2, q)$ (Sah, 1969)
- Suzuki groups (Jones & Silver, 1993)
Regular maps with given automorphism group

- (Malle, Saxl & Weigel, 1994)
 Every non-abelian finite simple group can be generated by two elements of which one is an involution.
 (Situation regarding three involutions two of which commute is more complicated, but known.)

- Classification results have been obtained for certain infinite classes of finite simple or almost simple groups:
 - $\text{PSL}(2, q)$ and $\text{PGL}(2, q)$ (Sah, 1969)
 - Suzuki groups (Jones & Silver, 1993)

- Little is known about regular maps arising from solvable groups.
Nilpotent regular maps
Nilpotent regular maps: nonorientable surfaces

Theorem

Let \mathcal{M} be a regular map on a nonorientable surface such that $\text{Aut}(\mathcal{M})$ is nilpotent. Then \mathcal{M} is a regular embedding of the bouquet $\tilde{\mathcal{B}}_{2^n}$ of 2^n loops in the projective plane, or its dual, and $\text{Aut}(\mathcal{M}) \cong \mathbb{D}_{2n+1}$.

Let $\text{Aut}(\mathcal{M}) = G = \langle \rho, \lambda, \tau \rangle$ be nilpotent. G must be a 2-group. By induction on n, every nonorientable regular map with 2^n edges is either $\tilde{\mathcal{B}}_{2^n}$ or $\tilde{\mathcal{B}}^*_{2^n}$ [Wilson, 1985].

Martin Škoviera (Bratislava)
Theorem

Let \mathcal{M} be a regular map on a nonorientable surface such that $\text{Aut}(\mathcal{M})$ is nilpotent. Then \mathcal{M} is a regular embedding of the bouquet \tilde{B}_{2^n} of 2^n loops in the projective plane, or its dual, and $\text{Aut}(\mathcal{M}) \cong \mathbb{D}_{2n+1}$.

Let $\text{Aut}(\mathcal{M}) = G = \langle \rho, \lambda, \tau \rangle$ be nilpotent.

- G must be a 2-group.
- By induction on n, every nonorientable regular map with 2^n edges is either \tilde{B}_{2^n} or $\tilde{B}_{2^n}^*$ [Wilson, 1985].
Nilpotent regular maps: nonorientable surfaces

Theorem

Let M be a regular map on a nonorientable surface such that $\text{Aut}(M)$ is nilpotent. Then M is a regular embedding of the bouquet \tilde{B}_{2^n} of 2^n loops in the projective plane, or its dual, and $\text{Aut}(M) \cong D_{2^{n+1}}$.

We can restrict to orientably regular maps!
FROM NOW ON:

- regular map means orientably regular map

- \(\text{Aut}(\mathcal{M}) \) means \(\text{Aut}^+ (\mathcal{M}) \)
Theorem

Let \mathcal{M} be a regular map whose automorphism group is an abelian group of order n. Then either $\mathcal{M} \cong S_n$, or $n = 2m$ and $\mathcal{M} \cong B_m$, or $\mathcal{M} \cong D(m, 1)$. The respective groups are \mathbb{Z}_n, and for $n = 2m$, \mathbb{Z}_{2m} and $\mathbb{Z}_m \times \mathbb{Z}_2$.

S_n

$R = (xyz...)$

$B_m, n = 2m$

$R = (xyz...x^{-1}y^{-1}z^{-1}...)$

$D(m, 1), n = 2m$

$R = (xyz...)(x^{-1}y^{-1}z^{-1}...)$
An \textit{n-dipole map} is a regular embedding of the graph D_n having two vertices u and v joined by n parallel edges.
Dipole maps

An \(n \)-dipole map is a regular embedding of the graph \(D_n \) having two vertices \(u \) and \(v \) joined by \(n \) parallel edges.

Theorem

Every regular embedding of \(D_n \) arises from the metacyclic group
\[G(n, e) = \langle x, y; x^n = y^2 = 1, yxy = x^e \rangle \text{ as the algebraic map} \]
\[D(n, e) = (G(n, e); x, y). \]
Furthermore, \(D(n, e) \cong D(n, f) \iff e \equiv f \pmod{n}. \)
An \textit{n-dipole map} is a regular embedding of the graph D_n having two vertices u and v joined by n parallel edges.

\textbf{Theorem}

Every regular embedding of D_n arises from the metacyclic group $G(n, e) = \langle x, y; x^n = y^2 = 1, yxy = x^e \rangle$ as the algebraic map $D(n, e) = (G(n, e); x, y)$.

Furthermore, $D(n, e) \cong D(n, f) \iff e \equiv f \pmod{n}$.

\textbf{Combinatorial description:}

- The cyclic order of edges at v is the e-th power of the order at u.
- It follows from the relations that $e^2 \equiv 1 \pmod{n}$.

Every regular map with nilpotent automorphism group can be uniquely decomposed into a direct product of two regular maps, a regular map whose automorphism group is a 2-group and a star \(S_m \) of odd valency.
Nilpotent regular maps: Decomposition Theorem

Theorem (Malnič, Nedela & S.)

Every regular map with nilpotent automorphism group can be uniquely decomposed into a direct product of two regular maps, a regular map whose automorphism group is a 2-group and a star S_m of odd valency.

Definition. Let $\mathcal{M}_1 = (G_1; r_1, l_1)$ and $\mathcal{M}_1 = (G_2; r_2, l_2)$ be regular maps. Then $\mathcal{M}_1 \times \mathcal{M}_2 = (G; r, l)$ where $r = (r_1, r_2)$ and $l = (l_1, l_2)$ and $G = \langle r, l \rangle \leq G_1 \times G_2$.
Nilpotent regular maps: Decomposition Theorem

Theorem (Malnič, Nedela & S.)

Every regular map with nilpotent automorphism group can be uniquely decomposed into a **direct product of two regular maps**, a regular map whose automorphism group is a 2-group and a star S_m of odd valency.

Definition. Let $\mathcal{M}_1 = (G_1; r_1, l_1)$ and $\mathcal{M}_2 = (G_2; r_2, l_2)$ be regular maps. Then $\mathcal{M}_1 \times \mathcal{M}_2 = (G; r, l)$ where $r = (r_1, r_2)$ and $l = (l_1, l_2)$ and $G = \langle r, l \rangle \leq G_1 \times G_2$.

If r_1 and r_2 have coprime orders and the maps are not both bipartite, then $G = G_1 \times G_2$ and the underlying graph of $\mathcal{M}_1 \times \mathcal{M}_2$ coincides with the direct (categorial) product of the underlying graphs of \mathcal{M}_1 and \mathcal{M}_2.
Consequences of decomposition

Corollaries

Let \mathcal{M} be a regular map with $\text{Aut}(\mathcal{M})$ nilpotent. The following hold:

- Both $\#$ of vertices and $\#$ of faces are powers of 2.
- Vertex-valency and face-size are both even; if \mathcal{M} is simple, both are powers of 2.
- \mathcal{M} is simple only when $\text{Aut}(\mathcal{M})$ is a 2-group.
- If $\text{Aut}(\mathcal{M})$ is non-abelian, then \mathcal{M} is bipartite;
- Apart from two families of dipole maps and their duals, both vertex-valency and face-size are multiples of 4.
Nilpotent regular maps of class 2: the groups

By Decomposition Theorem, it is sufficient to classify maps arising from 2-groups.

Theorem A (Malniˇ c, Nedela & S.)

Let \(G = \langle x, y \rangle \) be a 2-group of class 2, where \(|x| = 2^n \), \(|y| = 2^m \) and \(n \geq 2 \).

Then \(G \) is one of the following two groups:

\[
G_1(n) = \langle x, y; x^{2^n} = y^2 = 1, [x, y] = x^{2^n-1} \rangle
\]

\[
G_2(n) = \langle x, y, z; x^{2^n} = y^2 = z^2 = [z, x] = [z, y] = 1, z = [x, y] \rangle
\]

Moreover, \(G_2(n)/\langle z^x x^{2^n-1} \rangle \cong G_1(n) \).
Nilpotent regular maps of class 2: the groups

By Decomposition Theorem, it is sufficient to classify maps arising from 2-groups.

Theorem A (Malniˇc, Nedela & S.)

Let $G = \langle x, y \rangle$ be a 2-group of class 2, where $|x| = 2^n$, $|y| = 2$ and $n \geq 2$.

Then G is one of the following two groups:

$G_1(n) = \langle x, y; x^{2^n} = y^2 = 1, [x, y] = x^{2^n - 1} \rangle$

$G_2(n) = \langle x, y, z; x^{2^n} = y^2 = z^2 = [z, x] = [z, y] = 1, z = [x, y] \rangle$.

Moreover, $G_2(n) / \langle zx^{2^n - 1} \rangle \cong G_1(n)$.
Nilpotent regular maps of class 2: the groups

By Decomposition Theorem, it is sufficient to classify maps arising from 2-groups.

Theorem A (Malnič, Nedela & S.)

Let $G = \langle x, y \rangle$ be a 2-group of class 2, where $|x| = 2^n$, $|y| = 2$ and $n \geq 2$. Then G is one of the following two groups:

$G_1(n) = \langle x, y; x^{2^n} = y^2 = 1, [x, y] = x^{2^{n-1}} \rangle$

$G_2(n) = \langle x, y, z; x^{2^n} = y^2 = z^2 = [z, x] = [z, y] = 1, z = [x, y] \rangle$.

Moreover,

$G_2(n)/\langle zx^{2^{n-1}} \rangle \cong G_1(n)$.
Nilpotent regular maps of class 2: the maps

Theorem B (Malnič, Nedela & Š.)

Every regular map with automorphism group a 2-group of class 2 is isomorphic to

\[M_1(n) = (G_1(n); x, y) \] for some \(n \geq 2 \), or to

\[M_2(n) = (G_2(n); x, y) \] for some \(n \geq 1 \).
Nilpotent regular maps of class 2: the maps

Theorem B (Malnič, Nedela & S.)

Every regular map with automorphism group a 2-group of class 2 is isomorphic to

\[M_1(n) = (G_1(n); x, y) \text{ for some } n \geq 2, \text{ or to} \]

\[M_2(n) = (G_2(n); x, y) \text{ for some } n \geq 1. \]

\[\begin{align*}
M_2(n + 1) \rightarrow M_2(n) \rightarrow M_2(n - 1) \\
\downarrow \quad \downarrow \quad \downarrow \\
M_1(n + 1) \cong D(2^{n+1}, 2^n + 1) \quad M_1(n) \cong D(2^n, 2^{n-1} + 1) \quad M_1(n - 1) \cong D(2^{n-1}, 2^{n-2} + 1) \\
\downarrow \quad \downarrow \quad \downarrow \\
D(2^n, 1) \rightarrow D(2^{n-1}, 1) \rightarrow D(2^{n-2}, 1)
\end{align*} \]
Nilpotent regular maps of class 2: description of maps

- $\mathcal{M}_1(n) \cong D(2^n, 2^{n-1} + 1)$. For $n \geq 3$ it is self-dual of type $\{2^n, 2^n\}$ and genus $2^{n-1} - 1$. For $n = 2$ it is the spherical map of type $\{2, 4\}$.
Nilpotent regular maps of class 2: description of maps

- $\mathcal{M}_1(n) \cong \mathcal{D}(2^n, 2^{n-1} + 1)$. For $n \geq 3$ it is self-dual of type $\{2^n, 2^n\}$ and genus $2^{n-1} - 1$. For $n = 2$ it is the spherical map of type $\{2, 4\}$.

- $\mathcal{M}_2(n)$ is a regular embedding of a 4-cycle with multiplicity 2^{n-1}. For $n \geq 2$ it is self-dual of type $\{2^n, 2^n\}$ and genus $2^n - 3$. For $n = 1$ it has type $\{4, 2\}$ and is dual to $\mathcal{M}_1(2)$.

Nilpotent regular maps of class 2: description of maps

- $M_1(n) \cong D(2^n, 2^{n-1} + 1)$. For $n \geq 3$ it is self-dual of type $\{2^n, 2^n\}$ and genus $2^{n-1} - 1$. For $n = 2$ it is the spherical map of type $\{2, 4\}$.

- $M_2(n)$ is a regular embedding of a 4-cycle with multiplicity 2^{n-1}. For $n \geq 2$ it is self-dual of type $\{2^n, 2^n\}$ and genus $2^n - 3$. For $n = 1$ it has type $\{4, 2\}$ and is dual to $M_1(2)$.

- Since the maps are uniquely determined by the groups, they admit all orientation-preserving “external” symmetries: they are invariant under all Wilson’s operations H_j, j odd. In particular, they are all reflexible and the exponent group is all of $\mathbb{Z}_{2^n}^*$. That is, they are kaleidoscopic.
Nilpotent regular maps of maximal class: the groups

Every 2-group of order 2^{n+1} and nilpotency class n is one of the following [Taussky, 1937]:

(i) dihedral group
\[\mathbb{D}_{2^n} = \langle a, b; x^{2^n} = y^2 = 1, y^{-1}xy = x^{-1} \rangle, \]

(ii) quasi-dihedral group
\[Q\mathbb{D}_{2^n} = \langle x, y; x^{2^n} = y^2 = 1, y^{-1}xy = x^{2n-1-1} \rangle, \]

(iii) generalised quaternion group
\[GQ_{2^n} = \langle x, y; x^{2^n} = 1, y^2 = x^{2n-1}, y^{-1}xy = x^{-1} \rangle. \]
Nilpotent regular maps of maximal class: the maps

Theorem (Hu, Wang)

Let \mathcal{M} be a regular map whose automorphism group is a 2-group of order 2^{n+1} and nilpotency class n. Then \mathcal{M} is one of the following:

(i) the spherical dipole $\mathcal{D}(2^n, -1)$ with $\text{Aut}(\mathcal{M}) \cong \mathbb{D}_{2^n}$ or its dual,

(ii) the dipole $\mathcal{D}(2^n, 2^{n-1} - 1)$ of genus 2^{n-2} with $\text{Aut}(\mathcal{M}) \cong Q\mathbb{D}_{2^n}$ or its dual.

(iii) There are no regular maps whose automorphism group is the generalised quaternion group.
Nilpotent regular maps of class 3

Theorem (Ban, Du, Liu, Nedela & S.)

Let $G = \langle x, y \rangle$ be a 2-group of class 3, where $|x| = 2^n$, $|y| = 2$ and $n \geq 2$. Then G is one of seven infinite classes of groups

$$H_1(n) = \langle x, y; x^{2^n} = y^2 = 1, [x, y] = z, [z, x] = [z, y] = w, [w, x] = [w, y] = 1 \rangle,$$

$$H_7(n) = \langle x, y; x^{2^n-1} = t, y^2 = t^2 = 1, [x, y] = z, [z, x] = w, [z, y] = t, [w, x] = [w, y] = [t, x] = [t, y] = 1 \rangle,$$

and two additional groups

$$H_8(2) = \langle x, y; x^4 = wt, y^2 = t^2 = 1, [x, y] = z, [z, x] = w, [z, y] = t, [w, x] = [w, y] = [t, x] = [t, y] = 1 \rangle$$

$$H_9(2) = \langle x, y; x^4 = y^2 = 1, [x, y] = z, [z, x] = 1, [z, y] = t, [t, x] = [t, y] = 1 \rangle.$$

Each group $H_i(n)$ gives rise to two exactly non-isomorphic maps, $M_{i,n} = (H_i(n); x, y)$ and the dual $M_{i,n}^* = (H_i(n); xy, y)$.
Theorem (Du, Nedela & S.)

Let $\mathcal{M} = (G; x, y)$ be a regular map where G is nilpotent of class c. Then \mathcal{M} has at most $2^{2^{c-1}}$ vertices.

Corollary

For each nilpotency class $c \geq 1$ there exist only finitely many simple nilpotent regular maps of class c.

Theorem (Du, Nedela & S.)

Let $M = (G; x, y)$ be a regular map where G is nilpotent of class c. Then M has at most $2^{2^{c-1}}$ vertices.

Corollary

For each nilpotency class $c \geq 1$ there exist only finitely many simple nilpotent regular maps of class c.

Proof.

- By Decomposition Theorem, we may assume that G is a 2-group.
- It is sufficient to show that $|G : \langle x \rangle| \leq 2^{2^{c-1}}$, since $|G : \langle x \rangle| = \#\text{vertices}$.
- Induction on c along the lower central series; involves a lot of commutator calculations.
Reduction to simple nilpotent maps

Theorem

Let \(\mathcal{M} = (G; x, y) \) be a regular map of valency \(d \) and multiplicity \(m \) with underlying graph \(K^{(m)} \). Set \(A = \langle x^{d/m} \rangle \) and \(B = \langle x^{d/m}, y \rangle \). Then:

- \(A \trianglelefteq G \) and \(\mathcal{M}' = (G/A; xA, yA) \) is a regular embedding of \(K \).
- \(\mathcal{M}'' = (B; x^{d/m}, y) \) is a dipole map isomorphic to \(D(m, e) \) for some \(e^2 \equiv 1 \pmod{m} \).
Reduction to simple nilpotent maps

Theorem

Let $\mathcal{M} = (G; x, y)$ be a regular map of valency d and multiplicity m with underlying graph $K^{(m)}$. Set $A = \langle x^{d/m} \rangle$ and $B = \langle x^{d/m}, y \rangle$. Then:

- $A \subseteq G$ and $\mathcal{M}' = (G/A; xA, yA)$ is a regular embedding of K.
- $\mathcal{M}'' = (B; x^{d/m}, y)$ is a dipole map isomorphic to $\mathcal{D}(m, e)$ for some $e^2 \equiv 1 \pmod{m}$.

If \mathcal{M} is nilpotent, then both \mathcal{M}' and \mathcal{M}'' are nilpotent.

In that case, since $\mathcal{M}' = (G/A; xA, yA)$ has a simple underlying graph, G/A is a 2-group.

\mathcal{M}'' is a nilpotent dipole – and these can be easily characterised.
Theorem (Malnič, Nedela & S.)

Let \(m = 2^s t \) where \(t \geq 1 \) is odd and \(s \geq 0 \).

- If \(s \leq 1 \), then \(D(m, 1) \) is the only nilpotent regular embedding of \(D_m \).
- For \(s = 2 \) there are two regular embeddings of \(D_m \):
 \(D(m, 1) \) and \(D(m, 1 + m/2) \).
- For \(s \geq 3 \) there are four nilpotent regular embeddings of \(D_m \):
 \(D(m, 1) \), \(D(m, 1 + m/2) \), \(D(m, e) \), and \(D(m, e + m/2) \), where \(e \) is the unique solution of the system \(e \equiv -1 \pmod{2^s} \), \(e \equiv 1 \pmod{t} \).
Reduction to simple nilpotent maps: nilpotent dipoles

Theorem (Malnič, Nedela & S.)

Let \(m = 2^s t \) where \(t \geq 1 \) is odd and \(s \geq 0 \).

- If \(s \leq 1 \), then \(D(m, 1) \) is the only nilpotent regular embedding of \(D_m \).
- For \(s = 2 \) there are two regular embeddings of \(D_m \): \(D(m, 1) \) and \(D(m, 1 + m/2) \).
- For \(s \geq 3 \) there are four nilpotent regular embeddings of \(D_m \): \(D(m, 1) \), \(D(m, 1 + m/2) \), \(D(m, e) \), and \(D(m, e + m/2) \), where \(e \) is the unique solution of the system \(e \equiv -1 \pmod{2^s} \), \(e \equiv 1 \pmod{t} \).

Problem. How can a general nilpotent regular map \(\mathcal{M} \) arise from the corresponding simple map \(\mathcal{M}' \) and the dipole map \(\mathcal{M}'' \)?
THE END

THANK YOU!