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Jozef Širáň OU and STU External symmetries of regular and orientably regular maps



Highly symmetric maps

Platonic
solids:

Regular maps are generalizations of Platonic solids to arbitrary surfaces.
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Maps and tessellations

A map is a 2-cell embedded graph on a surface.

A map M is of type (d, `) if d and ` are the least common multiples of
vertex degrees and face boundary lengths of M .

We allow one or both d, ` to be infinity.

The smallest universal cover of all maps M of type (d, `) is a tessellation
U(d, `) of a simply connected surface (a sphere or a plane) formed by
`-gons, d of which meet at every vertex.

The tessellation U(d, `) lives on a sphere if and only if 1/d+ 1/` > 1/2.

In the remaining cases, the geometry of the underlying plane for U(d, `)
is Euclidean if 1/d+ 1/` = 1/2, and hyperbolic if 1/d+ 1/` < 1/2.
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Tessellations

Examples of tessellations U(d, `): U(6, 3) and U(5, 4)
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Orientation preserving automorphisms of tessellations

The group Autor(U(d, `)) is the
(2, d, `)-triangle group T (d, `) with
presentation

〈X,Y ; Xd = Y 2 = (XY )` = 1〉

where X, XY , Y are a rotation
about a vertex v, about the centre
of a face F incident to v, and about
the mid point of an edge incident to
v and F , by 2π/d, 2π/`, and π.

The group acts regularly on directed
edges of U(d, `).
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Full automorphism groups of tessellations

The (full) group Aut(U(d, `)) is the
extended (2, d, `)-triangle group
ET (d, `) with presentation

〈A,B,C; A2 = B2 = C2 =
(BC)2 = (AC)d = (AB)` = 1〉

where C, B, A are flips across a
fixed edge, along the same edge,
and across the axis of symmetry of
a ‘corner’ incident with the edge.

The group acts regularly on flags,
or on edges with longitudinal and
transverse directions.

Note: T (d, `) /2 ET (d, `).
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Regular and orientably regular maps

Universality of tessellations:
For fixed (d, `), all maps of type (d′, `′) with d′ | d and `′ | ` can be
identified with quotient spaces U(d, `)/H of tessellations by subgroups
H < ET (d, `). Orientable maps: Replace ET (d, `) with T (d, `).

∗ ∗ ∗ True even if one or both of d, ` are equal to ∞. ∗ ∗ ∗

Projection of automorphisms:
If H < ET (d, `), then the group Aut(U(d, `)) ∼= ET (d, `) projects onto
the map M = U(d, `)/H if and only if H is normal in ET (d, `), and then
Aut(M) ∼= ET (d, `)/H. In this case M is a regular map. Equivalently, a
map M on some surface is regular if Aut(M) is regular on flags of M .

Similarly, orientably regular maps arise as above by replacing ET (d, `)
with T (d, `) throughout, and a map M on an orientable surface is
orientably regular if Autor(M) is regular on darts of M .

Are regular maps the ‘most symmetric maps’? External symmetries ?
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External symmetries: Self-dualities

A regular map M of type (d, `) is ∼= U(d, `)/N for N / ET (d, `) where

ET (d, `) = 〈A,B,C; A2 = B2 = C2 = (BC)2 = (CA)d = (AB)` = 1〉

and so it can be identified with Aut(M) := G with presentation

G = 〈a, b, c; a2 = b2 = c2 = (bc)2 = (ca)d = (ab)` = . . . = 1〉

where a = AN , b = BN , and c = CN .

The map M is self-dual if G admits an automorphism D that fixes a and
interchanges b with c. Further, the map M is self-Petrie-dual if G has an
automorphism P interchanging b with bc and fixing a and c.

If M is self-dual and self-Petrie-dual, we say that M has trinity symmetry.
The two self-dualities then generate the group 〈D,P 〉 ∼= Aut〈b, c〉 ∼= S3.
Also, then d = ` and (abc)d is a relator in the presentation of G.
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Constructing regular maps with trinity symmetry

Theorem [Richter, Š., Wang, ’11] There exist infinitely many finite regular
maps with trinity symmetry.

Proof. We begin with the triangle group

ET (∞,∞) = 〈A,B,C; A2 = B2 = C2 = (BC)2 = 1〉

Since this group is residually finite, it contains infinitely many normal,
torsion-free subgroups of finite index. Let N be such a subgroup and let

K =
⋂
π∈S3

π(N)

where π ∈ S3 ranges over all automorphisms of ET (∞,∞) fixing A and
permuting the set {B,C,BC}. Then, U(∞,∞)/K is a finite regular map
with trinity symmetry. 2

Theorem [Jones, Poulton, ’10] There exist infinitely many finite regular
maps admitting the external symmetry PD (triality) but no duality.
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Jozef Širáň OU and STU External symmetries of regular and orientably regular maps



Constructing regular maps with trinity symmetry
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Jozef Širáň OU and STU External symmetries of regular and orientably regular maps



Constructing regular maps with trinity symmetry
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More external symmetries: Exponents

Orientably regular maps M come from U(d, `)/N by N / T (d, `),

T (d, `) = 〈X,Y ; Xd = Y 2 = (XY )` = 1〉

and can be identified with Autor(M) := G with partial presentation

G = 〈x, y; xd = y2 = (xy)` = . . . = 1〉 where x = XN and y = Y N .

Exponents of maps [Nedela and Škoviera, about 20 years ago]: The map
M has exponent j ∈ Z∗d if G admits an automorphism that fixes y and
takes x onto xj . [Wilson – hole operators.] The collection of all exponents
is a subgroup of Z∗d and is the exponent group of M .

Consequence: If j ∈ Z∗d is an exponent of M , then the relator (xjy)`

appears in the presentation of G. Note: Exponent −1 means reflexibility.

Orientably regular maps with the ‘full’ exp group Z∗d are kaleidoscopic.
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Exponents of maps [Nedela and Škoviera, about 20 years ago]:

The map
M has exponent j ∈ Z∗d if G admits an automorphism that fixes y and
takes x onto xj . [Wilson – hole operators.] The collection of all exponents
is a subgroup of Z∗d and is the exponent group of M .

Consequence: If j ∈ Z∗d is an exponent of M , then the relator (xjy)`

appears in the presentation of G. Note: Exponent −1 means reflexibility.

Orientably regular maps with the ‘full’ exp group Z∗d are kaleidoscopic.

Jozef Širáň OU and STU External symmetries of regular and orientably regular maps



More external symmetries: Exponents

Orientably regular maps M come from U(d, `)/N by N / T (d, `),

T (d, `) = 〈X,Y ; Xd = Y 2 = (XY )` = 1〉

and can be identified with Autor(M) := G with partial presentation

G = 〈x, y; xd = y2 = (xy)` = . . . = 1〉 where x = XN and y = Y N .
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(Almost) no exponents vs kaleidoscopic maps

Theorem [Archdeacon, Gvozdjak, Š. ’97] For any d ≥ 3 there are infinitely
many finite orientably regular maps of degree d with a trivial exp group.

Theorem [Olejár, Staneková, Š. ’11] For any d, ` ≥ 3 there exist infinitely
many finite orientably regular maps of type (d, `) with exp group {±1}.
Proof. In T (d, `) = 〈X,Y ; Xd = Y 2 = (XY )` = 1〉 we have, by residual
finiteness, a normal subgroup of finite index avoiding all ‘small’ powers and
avoiding all (XjY )` for all j ∈ Z∗d , j 6= ±1. 2

Theorem [Š., Wang, ’10] For any d ≥ 2 there exist infinitely many finite
orientably regular kaleidoscopic maps of degree d.

Proof. Take T (d,∞) = 〈X,Y ; Xd = Y 2 = 1〉 and a normal, torsion-free
subgroup N of T (d,∞) of finite index (residual finiteness). Let

K =
⋂
j∈Z∗

d
αj(N)

where αj is the automorphism of T (d,∞) fixing Y and taking X onto Xj .
Then, U(d,∞)/K is a finite kaleidoscopic orientably regular map. 2
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Theorem [Olejár, Staneková, Š. ’11] For any d, ` ≥ 3 there exist infinitely
many finite orientably regular maps of type (d, `) with exp group {±1}.
Proof. In T (d, `) = 〈X,Y ; Xd = Y 2 = (XY )` = 1〉 we have, by residual
finiteness, a normal subgroup of finite index avoiding all ‘small’ powers and
avoiding all (XjY )` for all j ∈ Z∗d , j 6= ±1. 2
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Theorem [Archdeacon, Gvozdjak, Š. ’97] For any d ≥ 3 there are infinitely
many finite orientably regular maps of degree d with a trivial exp group.
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Kaleidoscopic regular maps with trinity symmetry?

First: Extension of exponents to maps on arbitrary surfaces [Hužvar]:

A regular map M of type (d, `) identified with the group

G = 〈a, b, c; a2 = b2 = c2 = (bc)2 = (ca)d = (ab)` = . . . = 1〉
is kaleidoscopic if G admits, for any j ∈ Z∗d , an automorphism Ej that
fixes b and c and takes ca onto (ca)j . (M has the ‘full’ exponent group.)

Construction of finite kaleidoscopic regular maps with trinity symmetry of
degree d = ` is therefore equivalent to finding finite groups as above that
admit the exponent automorphisms Ej for every j ∈ Z∗d together with the
self-duality and the self-Petrie-duality automorphisms D and P .

Problem: Incompatibility of the ‘universal’ groups ET (∞,∞) and
(E)T (d,∞); equivalently, ET (∞,∞)o 〈D,P 〉 and (E)T (d,∞)o 〈Ej〉.
(Endomorphism group of ET (∞,∞)?)
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Kaleidoscopic maps with trinity symmetry by lifting

[Archdeacon, Conder, Š., submitted]

Theorem A. If there is an oriented kaleidoscopic map M of degree d with
trinity symmetry, then for any positive integer n ≥ 2 there is an oriented
kaleidoscopic map Mn of degree dn with trinity symmetry.

Theorem B. For every n ≥ 1 there is an oriented map of degree 2n with
2n2 vertices such that:

the map is kaleidoscopic and has trinity symmetry,

its automorphism group has order 8n3 and presentation
〈a, b, c, z | a2, b2, c2, z2, abc, (az)2n, (bz)2n, (cz)2n, (azbzcz)2〉 .

This solves Wilson’s conjecture.
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Jozef Širáň OU and STU External symmetries of regular and orientably regular maps



Kaleidoscopic maps with trinity symmetry by lifting

[Archdeacon, Conder, Š., submitted]
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Theorem A. If there is an oriented kaleidoscopic map M of degree d with
trinity symmetry, then for any positive integer n ≥ 2 there is an oriented
kaleidoscopic map Mn of degree dn with trinity symmetry.

Theorem B. For every n ≥ 1 there is an oriented map of degree 2n with
2n2 vertices such that:

the map is kaleidoscopic and has trinity symmetry,

its automorphism group has order 8n3 and presentation
〈a, b, c, z | a2, b2, c2, z2, abc, (az)2n, (bz)2n, (cz)2n, (azbzcz)2〉 .

This solves Wilson’s conjecture.
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Method and consequences

Method: Homological voltage assignments mod n on corners of a map,
equivalent to “unit vector” assignments in (Zn)

β where β is the Betti
number of the medial graph of the map; β = 1 + |Aut(M)|/4.

Consequences: Aut(Mn) ∼= (Zn)
β oAut(M)

Theorem A and Conder’s list give kaleidoscopic regular maps with trinity
symmetry for the following degrees and orders of automorphism groups:

2n 6n 8n 8n 10n 12n 16n

8n3 480n121 128n33 512n129 1000n251 960n241 1024n257

Theorem A extends to nonorientable maps; here Conder’s list gives a few
such maps of degree 6, 10, 12. The smallest one starts an infinite family
of maps of degree 6n and group order 120n31 for odd n. ???
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8n3 480n121 128n33 512n129 1000n251 960n241 1024n257

Theorem A extends to nonorientable maps;

here Conder’s list gives a few
such maps of degree 6, 10, 12. The smallest one starts an infinite family
of maps of degree 6n and group order 120n31 for odd n. ???
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Groups generated by exponents and self-dualities

For a kaleidoscopic regular map M of degree d with trinity symmetry,
given by the group

G = 〈a, b, c; a2 = b2 = c2 = (bc)2 = (ca)d = (ab)d = . . . = 1〉 ,

what can be said about the group Ext(M) = 〈D,P,Ej (j ∈ Z∗d)〉 ?

Here is a taster:

Theorem. [Conder, Kwon, Š., in prep.] Let δ be the number of distinct
prime factors of n. The group Ext(Mn) of the Archdeacon-Conder-Š
kaleidoscopic regular map of degree d = 2n with trinity symmetry has
order 6(ϕ(2n))3/2α where α is equal to δ + 2, δ + 1, and δ, depending on
whether n ≡ 0 mod 8, n ≡ 4 mod 8, and n ≡ 2 mod 4 or n is odd.
Moreover, Ext(Mn) ∼= Fn o 〈D,P 〉 where Fn is a quotient of (Z∗2n)

3.

Question. Is the order of Ext(M) bounded by a function of d? NO.
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‘Unbounded’ groups generated by exponents and dualities

Theorem. [Conder, Kwon, Š., in prep.] There exists an infinite family of
finite kaleidoscopic regular maps of degree 8 with trinity symmetry, whose
external symmetry groups have orders tending to infinity.

These findings generate a number of open problems, e.g.:

What is a ‘natural’ definition of external symmetries of regular maps?

Are there finite kaleidoscopic regular map with trinity symmetry of
every odd degree?

Can the above Theorem be extended to every even degree d ≥ 8?

What can be said about the structure of Ext(M)?

THANK YOU.
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