External symmetries of regular and orientably regular maps

Jozef Širáň

OU and STU

Workshop on Symmetry in Graphs, Maps and Polytopes
Fields Institute 2011

Highly symmetric maps

Highly symmetric maps

Platonic

 solids:
Highly symmetric maps

Platonic solids:

Tetrahedron ctahedron

Cube

[Hexahedron]

Dodecahedron

Highly symmetric maps

Platonic solids:

Regular maps are generalizations of Platonic solids to arbitrary surfaces.

Maps and tessellations

Maps and tessellations

A map is a 2-cell embedded graph on a surface.

Maps and tessellations

A map is a 2-cell embedded graph on a surface.
A map M is of type (d, ℓ) if d and ℓ are the least common multiples of vertex degrees and face boundary lengths of M.

Maps and tessellations

A map is a 2-cell embedded graph on a surface.
A map M is of type (d, ℓ) if d and ℓ are the least common multiples of vertex degrees and face boundary lengths of M.

We allow one or both d, ℓ to be infinity.

Maps and tessellations

A map is a 2-cell embedded graph on a surface.
A map M is of type (d, ℓ) if d and ℓ are the least common multiples of vertex degrees and face boundary lengths of M.

We allow one or both d, ℓ to be infinity.
The smallest universal cover of all maps M of type (d, ℓ) is a tessellation $U(d, \ell)$ of a simply connected surface (a sphere or a plane) formed by ℓ-gons, d of which meet at every vertex.

Maps and tessellations

A map is a 2-cell embedded graph on a surface.
A map M is of type (d, ℓ) if d and ℓ are the least common multiples of vertex degrees and face boundary lengths of M.

We allow one or both d, ℓ to be infinity.
The smallest universal cover of all maps M of type (d, ℓ) is a tessellation $U(d, \ell)$ of a simply connected surface (a sphere or a plane) formed by ℓ-gons, d of which meet at every vertex.

The tessellation $U(d, \ell)$ lives on a sphere if and only if $1 / d+1 / \ell>1 / 2$.

Maps and tessellations

A map is a 2-cell embedded graph on a surface.
A map M is of type (d, ℓ) if d and ℓ are the least common multiples of vertex degrees and face boundary lengths of M.

We allow one or both d, ℓ to be infinity.
The smallest universal cover of all maps M of type (d, ℓ) is a tessellation $U(d, \ell)$ of a simply connected surface (a sphere or a plane) formed by ℓ-gons, d of which meet at every vertex.

The tessellation $U(d, \ell)$ lives on a sphere if and only if $1 / d+1 / \ell>1 / 2$.
In the remaining cases, the geometry of the underlying plane for $U(d, \ell)$ is Euclidean if $1 / d+1 / \ell=1 / 2$, and hyperbolic if $1 / d+1 / \ell<1 / 2$.

Tessellations

Tessellations

Examples of tessellations $U(d, \ell): \quad U(6,3)$ and $U(5,4)$

Tessellations

Examples of tessellations $U(d, \ell)$: $\quad U(6,3)$ and $U(5,4)$

Orientation preserving automorphisms of tessellations

Orientation preserving automorphisms of tessellations

Orientation preserving automorphisms of tessellations

The group $A u t_{\text {or }}(U(d, \ell))$ is the ($2, d, \ell$)-triangle group $T(d, \ell)$ with presentation

$$
\left\langle X, Y ; X^{d}=Y^{2}=(X Y)^{\ell}=1\right\rangle
$$

Orientation preserving automorphisms of tessellations

The group $A u t_{\text {or }}(U(d, \ell))$ is the ($2, d, \ell$)-triangle group $T(d, \ell)$ with presentation

$$
\left\langle X, Y ; X^{d}=Y^{2}=(X Y)^{\ell}=1\right\rangle
$$

where $X, X Y, Y$ are a rotation about a vertex v, about the centre of a face F incident to v, and about the mid point of an edge incident to v and F, by $2 \pi / d, 2 \pi / \ell$, and π.

Orientation preserving automorphisms of tessellations

The group $A u t_{\text {or }}(U(d, \ell))$ is the ($2, d, \ell$)-triangle group $T(d, \ell)$ with presentation

$$
\left\langle X, Y ; X^{d}=Y^{2}=(X Y)^{\ell}=1\right\rangle
$$

where $X, X Y, Y$ are a rotation about a vertex v, about the centre of a face F incident to v, and about the mid point of an edge incident to v and F, by $2 \pi / d, 2 \pi / \ell$, and π.

The group acts regularly on directed edges of $U(d, \ell)$.

Full automorphism groups of tessellations

Full automorphism groups of tessellations

Full automorphism groups of tessellations

The (full) group $\operatorname{Aut}(U(d, \ell))$ is the extended $(2, d, \ell)$-triangle group $E T(d, \ell)$ with presentation

$$
\begin{gathered}
\left\langle A, B, C ; A^{2}=B^{2}=C^{2}=\right. \\
\left.(B C)^{2}=(A C)^{d}=(A B)^{\ell}=1\right\rangle
\end{gathered}
$$

Full automorphism groups of tessellations

The (full) group $\operatorname{Aut}(U(d, \ell))$ is the extended ($2, d, \ell$)-triangle group $E T(d, \ell)$ with presentation

$$
\begin{gathered}
\left\langle A, B, C ; A^{2}=B^{2}=C^{2}=\right. \\
\left.(B C)^{2}=(A C)^{d}=(A B)^{\ell}=1\right\rangle
\end{gathered}
$$

where C, B, A are flips across a fixed edge, along the same edge, and across the axis of symmetry of a 'corner' incident with the edge.

Full automorphism groups of tessellations

The (full) group $\operatorname{Aut}(U(d, \ell))$ is the extended ($2, d, \ell$)-triangle group $E T(d, \ell)$ with presentation

$$
\begin{gathered}
\left\langle A, B, C ; A^{2}=B^{2}=C^{2}=\right. \\
\left.(B C)^{2}=(A C)^{d}=(A B)^{\ell}=1\right\rangle
\end{gathered}
$$

where C, B, A are flips across a fixed edge, along the same edge, and across the axis of symmetry of a 'corner' incident with the edge.
The group acts regularly on flags, or on edges with longitudinal and transverse directions.

Full automorphism groups of tessellations

The (full) group $\operatorname{Aut}(U(d, \ell))$ is the extended ($2, d, \ell$)-triangle group $E T(d, \ell)$ with presentation

$$
\begin{gathered}
\left\langle A, B, C ; A^{2}=B^{2}=C^{2}=\right. \\
\left.(B C)^{2}=(A C)^{d}=(A B)^{\ell}=1\right\rangle
\end{gathered}
$$

where C, B, A are flips across a fixed edge, along the same edge, and across the axis of symmetry of a 'corner' incident with the edge.
The group acts regularly on flags, or on edges with longitudinal and transverse directions.
Note: $T(d, \ell) \triangleleft_{2} E T(d, \ell)$.

Regular and orientably regular maps

Regular and orientably regular maps

Universality of tessellations:

Regular and orientably regular maps

Universality of tessellations:
For fixed (d, ℓ), all maps of type $\left(d^{\prime}, \ell^{\prime}\right)$ with $d^{\prime} \mid d$ and $\ell^{\prime} \mid \ell$ can be identified with quotient spaces $U(d, \ell) / H$ of tessellations by subgroups $H<E T(d, \ell)$.

Regular and orientably regular maps

Universality of tessellations:
For fixed (d, ℓ), all maps of type $\left(d^{\prime}, \ell^{\prime}\right)$ with $d^{\prime} \mid d$ and $\ell^{\prime} \mid \ell$ can be identified with quotient spaces $U(d, \ell) / H$ of tessellations by subgroups $H<E T(d, \ell)$. Orientable maps: Replace $E T(d, \ell)$ with $T(d, \ell)$.

Regular and orientably regular maps

Universality of tessellations:
For fixed (d, ℓ), all maps of type $\left(d^{\prime}, \ell^{\prime}\right)$ with $d^{\prime} \mid d$ and $\ell^{\prime} \mid \ell$ can be identified with quotient spaces $U(d, \ell) / H$ of tessellations by subgroups $H<E T(d, \ell)$. Orientable maps: Replace $E T(d, \ell)$ with $T(d, \ell)$. $* * * \quad$ True even if one or both of d, ℓ are equal to ∞.

Regular and orientably regular maps

Universality of tessellations:
For fixed (d, ℓ), all maps of type $\left(d^{\prime}, \ell^{\prime}\right)$ with $d^{\prime} \mid d$ and $\ell^{\prime} \mid \ell$ can be identified with quotient spaces $U(d, \ell) / H$ of tessellations by subgroups $H<E T(d, \ell)$. Orientable maps: Replace $E T(d, \ell)$ with $T(d, \ell)$. $* * * \quad$ True even if one or both of d, ℓ are equal to ∞. $\quad * * *$ Projection of automorphisms:

Regular and orientably regular maps

Universality of tessellations:
For fixed (d, ℓ), all maps of type $\left(d^{\prime}, \ell^{\prime}\right)$ with $d^{\prime} \mid d$ and $\ell^{\prime} \mid \ell$ can be identified with quotient spaces $U(d, \ell) / H$ of tessellations by subgroups $H<E T(d, \ell)$. Orientable maps: Replace $E T(d, \ell)$ with $T(d, \ell)$.
$* * * \quad$ True even if one or both of d, ℓ are equal to ∞. $* * *$
Projection of automorphisms:
If $H<E T(d, \ell)$, then the group $\operatorname{Aut}(U(d, \ell)) \cong E T(d, \ell)$ projects onto the map $M=U(d, \ell) / H$ if and only if H is normal in $E T(d, \ell)$, and then $A u t(M) \cong E T(d, \ell) / H$.

Regular and orientably regular maps

Universality of tessellations:
For fixed (d, ℓ), all maps of type $\left(d^{\prime}, \ell^{\prime}\right)$ with $d^{\prime} \mid d$ and $\ell^{\prime} \mid \ell$ can be identified with quotient spaces $U(d, \ell) / H$ of tessellations by subgroups $H<E T(d, \ell)$. Orientable maps: Replace $E T(d, \ell)$ with $T(d, \ell)$.
$* * * \quad$ True even if one or both of d, ℓ are equal to ∞. $* * *$
Projection of automorphisms:
If $H<E T(d, \ell)$, then the group $\operatorname{Aut}(U(d, \ell)) \cong E T(d, \ell)$ projects onto the map $M=U(d, \ell) / H$ if and only if H is normal in $E T(d, \ell)$, and then $\operatorname{Aut}(M) \cong E T(d, \ell) / H$. In this case M is a regular map.

Regular and orientably regular maps

Universality of tessellations:
For fixed (d, ℓ), all maps of type $\left(d^{\prime}, \ell^{\prime}\right)$ with $d^{\prime} \mid d$ and $\ell^{\prime} \mid \ell$ can be identified with quotient spaces $U(d, \ell) / H$ of tessellations by subgroups $H<E T(d, \ell)$. Orientable maps: Replace $E T(d, \ell)$ with $T(d, \ell)$.
$* * * \quad$ True even if one or both of d, ℓ are equal to ∞. $\quad * * *$
Projection of automorphisms:
If $H<E T(d, \ell)$, then the group $\operatorname{Aut}(U(d, \ell)) \cong E T(d, \ell)$ projects onto the map $M=U(d, \ell) / H$ if and only if H is normal in $E T(d, \ell)$, and then $\operatorname{Aut}(M) \cong E T(d, \ell) / H$. In this case M is a regular map. Equivalently, a map M on some surface is regular if $\operatorname{Aut}(M)$ is regular on flags of M.

Regular and orientably regular maps

Universality of tessellations:
For fixed (d, ℓ), all maps of type $\left(d^{\prime}, \ell^{\prime}\right)$ with $d^{\prime} \mid d$ and $\ell^{\prime} \mid \ell$ can be identified with quotient spaces $U(d, \ell) / H$ of tessellations by subgroups $H<E T(d, \ell)$. Orientable maps: Replace $E T(d, \ell)$ with $T(d, \ell)$.
$* * * \quad$ True even if one or both of d, ℓ are equal to ∞. $* * *$
Projection of automorphisms:
If $H<E T(d, \ell)$, then the group $\operatorname{Aut}(U(d, \ell)) \cong E T(d, \ell)$ projects onto the map $M=U(d, \ell) / H$ if and only if H is normal in $E T(d, \ell)$, and then $\operatorname{Aut}(M) \cong E T(d, \ell) / H$. In this case M is a regular map. Equivalently, a map M on some surface is regular if $\operatorname{Aut}(M)$ is regular on flags of M. Similarly, orientably regular maps arise as above by replacing $E T(d, \ell)$ with $T(d, \ell)$ throughout, and a map M on an orientable surface is orientably regular if $A u t_{\text {or }}(M)$ is regular on darts of M.

Regular and orientably regular maps

Universality of tessellations:
For fixed (d, ℓ), all maps of type $\left(d^{\prime}, \ell^{\prime}\right)$ with $d^{\prime} \mid d$ and $\ell^{\prime} \mid \ell$ can be identified with quotient spaces $U(d, \ell) / H$ of tessellations by subgroups $H<E T(d, \ell)$. Orientable maps: Replace $E T(d, \ell)$ with $T(d, \ell)$.
$* * * \quad$ True even if one or both of d, ℓ are equal to ∞. $* * *$
Projection of automorphisms:
If $H<E T(d, \ell)$, then the group $\operatorname{Aut}(U(d, \ell)) \cong E T(d, \ell)$ projects onto the map $M=U(d, \ell) / H$ if and only if H is normal in $E T(d, \ell)$, and then $\operatorname{Aut}(M) \cong E T(d, \ell) / H$. In this case M is a regular map. Equivalently, a map M on some surface is regular if $\operatorname{Aut}(M)$ is regular on flags of M.

Similarly, orientably regular maps arise as above by replacing $E T(d, \ell)$ with $T(d, \ell)$ throughout, and a map M on an orientable surface is orientably regular if $A u t_{\text {or }}(M)$ is regular on darts of M.

Are regular maps the 'most symmetric maps'?

Regular and orientably regular maps

Universality of tessellations:
For fixed (d, ℓ), all maps of type $\left(d^{\prime}, \ell^{\prime}\right)$ with $d^{\prime} \mid d$ and $\ell^{\prime} \mid \ell$ can be identified with quotient spaces $U(d, \ell) / H$ of tessellations by subgroups $H<E T(d, \ell)$. Orientable maps: Replace $E T(d, \ell)$ with $T(d, \ell)$.
$* * * \quad$ True even if one or both of d, ℓ are equal to ∞. $* * *$
Projection of automorphisms:
If $H<E T(d, \ell)$, then the group $\operatorname{Aut}(U(d, \ell)) \cong E T(d, \ell)$ projects onto the map $M=U(d, \ell) / H$ if and only if H is normal in $E T(d, \ell)$, and then $\operatorname{Aut}(M) \cong E T(d, \ell) / H$. In this case M is a regular map. Equivalently, a map M on some surface is regular if $\operatorname{Aut}(M)$ is regular on flags of M.

Similarly, orientably regular maps arise as above by replacing $E T(d, \ell)$ with $T(d, \ell)$ throughout, and a map M on an orientable surface is orientably regular if $A u t_{\text {or }}(M)$ is regular on darts of M.

Are regular maps the 'most symmetric maps'? External symmetries ?

External symmetries: Self-dualities

External symmetries: Self-dualities

A regular map M of type (d, ℓ) is $\cong U(d, \ell) / N$ for $N \triangleleft E T(d, \ell)$ where

$$
E T(d, \ell)=\left\langle A, B, C ; A^{2}=B^{2}=C^{2}=(B C)^{2}=(C A)^{d}=(A B)^{\ell}=1\right\rangle
$$

External symmetries: Self-dualities

A regular map M of type (d, ℓ) is $\cong U(d, \ell) / N$ for $N \triangleleft E T(d, \ell)$ where

$$
E T(d, \ell)=\left\langle A, B, C ; A^{2}=B^{2}=C^{2}=(B C)^{2}=(C A)^{d}=(A B)^{\ell}=1\right\rangle
$$

and so it can be identified with $\operatorname{Aut}(M):=G$ with presentation

$$
G=\left\langle a, b, c ; a^{2}=b^{2}=c^{2}=(b c)^{2}=(c a)^{d}=(a b)^{\ell}=\ldots=1\right\rangle
$$

where $a=A N, b=B N$, and $c=C N$.

External symmetries: Self-dualities

A regular map M of type (d, ℓ) is $\cong U(d, \ell) / N$ for $N \triangleleft E T(d, \ell)$ where

$$
E T(d, \ell)=\left\langle A, B, C ; A^{2}=B^{2}=C^{2}=(B C)^{2}=(C A)^{d}=(A B)^{\ell}=1\right\rangle
$$

and so it can be identified with $\operatorname{Aut}(M):=G$ with presentation

$$
G=\left\langle a, b, c ; a^{2}=b^{2}=c^{2}=(b c)^{2}=(c a)^{d}=(a b)^{\ell}=\ldots=1\right\rangle
$$

where $a=A N, b=B N$, and $c=C N$.
The map M is self-dual if G admits an automorphism D that fixes a and interchanges b with c.

External symmetries: Self-dualities

A regular map M of type (d, ℓ) is $\cong U(d, \ell) / N$ for $N \triangleleft E T(d, \ell)$ where

$$
E T(d, \ell)=\left\langle A, B, C ; A^{2}=B^{2}=C^{2}=(B C)^{2}=(C A)^{d}=(A B)^{\ell}=1\right\rangle
$$

and so it can be identified with $\operatorname{Aut}(M):=G$ with presentation

$$
G=\left\langle a, b, c ; a^{2}=b^{2}=c^{2}=(b c)^{2}=(c a)^{d}=(a b)^{\ell}=\ldots=1\right\rangle
$$

where $a=A N, b=B N$, and $c=C N$.
The map M is self-dual if G admits an automorphism D that fixes a and interchanges b with c. Further, the map M is self-Petrie-dual if G has an automorphism P interchanging b with $b c$ and fixing a and c.

External symmetries: Self-dualities

A regular map M of type (d, ℓ) is $\cong U(d, \ell) / N$ for $N \triangleleft E T(d, \ell)$ where

$$
E T(d, \ell)=\left\langle A, B, C ; A^{2}=B^{2}=C^{2}=(B C)^{2}=(C A)^{d}=(A B)^{\ell}=1\right\rangle
$$

and so it can be identified with $\operatorname{Aut}(M):=G$ with presentation

$$
G=\left\langle a, b, c ; a^{2}=b^{2}=c^{2}=(b c)^{2}=(c a)^{d}=(a b)^{\ell}=\ldots=1\right\rangle
$$

where $a=A N, b=B N$, and $c=C N$.
The map M is self-dual if G admits an automorphism D that fixes a and interchanges b with c. Further, the map M is self-Petrie-dual if G has an automorphism P interchanging b with $b c$ and fixing a and c.

If M is self-dual and self-Petrie-dual, we say that M has trinity symmetry.

External symmetries: Self-dualities

A regular map M of type (d, ℓ) is $\cong U(d, \ell) / N$ for $N \triangleleft E T(d, \ell)$ where

$$
E T(d, \ell)=\left\langle A, B, C ; A^{2}=B^{2}=C^{2}=(B C)^{2}=(C A)^{d}=(A B)^{\ell}=1\right\rangle
$$

and so it can be identified with $\operatorname{Aut}(M):=G$ with presentation

$$
G=\left\langle a, b, c ; a^{2}=b^{2}=c^{2}=(b c)^{2}=(c a)^{d}=(a b)^{\ell}=\ldots=1\right\rangle
$$

where $a=A N, b=B N$, and $c=C N$.
The map M is self-dual if G admits an automorphism D that fixes a and interchanges b with c. Further, the map M is self-Petrie-dual if G has an automorphism P interchanging b with $b c$ and fixing a and c.

If M is self-dual and self-Petrie-dual, we say that M has trinity symmetry. The two self-dualities then generate the group $\langle D, P\rangle \cong A u t\langle b, c\rangle \cong S_{3}$.

External symmetries: Self-dualities

A regular map M of type (d, ℓ) is $\cong U(d, \ell) / N$ for $N \triangleleft E T(d, \ell)$ where

$$
E T(d, \ell)=\left\langle A, B, C ; A^{2}=B^{2}=C^{2}=(B C)^{2}=(C A)^{d}=(A B)^{\ell}=1\right\rangle
$$

and so it can be identified with $\operatorname{Aut}(M):=G$ with presentation

$$
G=\left\langle a, b, c ; a^{2}=b^{2}=c^{2}=(b c)^{2}=(c a)^{d}=(a b)^{\ell}=\ldots=1\right\rangle
$$

where $a=A N, b=B N$, and $c=C N$.
The map M is self-dual if G admits an automorphism D that fixes a and interchanges b with c. Further, the map M is self-Petrie-dual if G has an automorphism P interchanging b with $b c$ and fixing a and c.

If M is self-dual and self-Petrie-dual, we say that M has trinity symmetry. The two self-dualities then generate the group $\langle D, P\rangle \cong A u t\langle b, c\rangle \cong S_{3}$. Also, then $d=\ell$ and $(a b c)^{d}$ is a relator in the presentation of G.

Constructing regular maps with trinity symmetry

Constructing regular maps with trinity symmetry

Theorem [Richter, Š., Wang, '11] There exist infinitely many finite regular maps with trinity symmetry.

Constructing regular maps with trinity symmetry

Theorem [Richter, Š., Wang, '11] There exist infinitely many finite regular maps with trinity symmetry.

Proof. We begin with the triangle group

$$
E T(\infty, \infty)=\left\langle A, B, C ; A^{2}=B^{2}=C^{2}=(B C)^{2}=1\right\rangle
$$

Constructing regular maps with trinity symmetry

Theorem [Richter, Š., Wang, '11] There exist infinitely many finite regular maps with trinity symmetry.

Proof. We begin with the triangle group

$$
E T(\infty, \infty)=\left\langle A, B, C ; A^{2}=B^{2}=C^{2}=(B C)^{2}=1\right\rangle
$$

Since this group is residually finite, it contains infinitely many normal, torsion-free subgroups of finite index.

Constructing regular maps with trinity symmetry

Theorem [Richter, Š., Wang, '11] There exist infinitely many finite regular maps with trinity symmetry.

Proof. We begin with the triangle group

$$
E T(\infty, \infty)=\left\langle A, B, C ; A^{2}=B^{2}=C^{2}=(B C)^{2}=1\right\rangle
$$

Since this group is residually finite, it contains infinitely many normal, torsion-free subgroups of finite index. Let N be such a subgroup and let

$$
K=\bigcap_{\pi \in S_{3}} \pi(N)
$$

where $\pi \in S_{3}$ ranges over all automorphisms of $E T(\infty, \infty)$ fixing A and permuting the set $\{B, C, B C\}$.

Constructing regular maps with trinity symmetry

Theorem [Richter, Š., Wang, '11] There exist infinitely many finite regular maps with trinity symmetry.

Proof. We begin with the triangle group

$$
E T(\infty, \infty)=\left\langle A, B, C ; A^{2}=B^{2}=C^{2}=(B C)^{2}=1\right\rangle
$$

Since this group is residually finite, it contains infinitely many normal, torsion-free subgroups of finite index. Let N be such a subgroup and let

$$
K=\bigcap_{\pi \in S_{3}} \pi(N)
$$

where $\pi \in S_{3}$ ranges over all automorphisms of $\operatorname{ET}(\infty, \infty)$ fixing A and permuting the set $\{B, C, B C\}$. Then, $U(\infty, \infty) / K$ is a finite regular map with trinity symmetry.

Constructing regular maps with trinity symmetry

Theorem [Richter, Š., Wang, '11] There exist infinitely many finite regular maps with trinity symmetry.

Proof. We begin with the triangle group

$$
E T(\infty, \infty)=\left\langle A, B, C ; A^{2}=B^{2}=C^{2}=(B C)^{2}=1\right\rangle
$$

Since this group is residually finite, it contains infinitely many normal, torsion-free subgroups of finite index. Let N be such a subgroup and let

$$
K=\bigcap_{\pi \in S_{3}} \pi(N)
$$

where $\pi \in S_{3}$ ranges over all automorphisms of $E T(\infty, \infty)$ fixing A and permuting the set $\{B, C, B C\}$. Then, $U(\infty, \infty) / K$ is a finite regular map with trinity symmetry.

Theorem [Jones, Poulton, '10] There exist infinitely many finite regular maps admitting the external symmetry $P D$ (triality) but no duality.

More external symmetries: Exponents

More external symmetries: Exponents

Orientably regular maps M come from $U(d, \ell) / N$ by $N \triangleleft T(d, \ell)$,

$$
T(d, \ell)=\left\langle X, Y ; X^{d}=Y^{2}=(X Y)^{\ell}=1\right\rangle
$$

More external symmetries: Exponents

Orientably regular maps M come from $U(d, \ell) / N$ by $N \triangleleft T(d, \ell)$,

$$
T(d, \ell)=\left\langle X, Y ; X^{d}=Y^{2}=(X Y)^{\ell}=1\right\rangle
$$

and can be identified with $A u t_{\text {or }}(M):=G$ with partial presentation
$G=\left\langle x, y ; x^{d}=y^{2}=(x y)^{\ell}=\ldots=1\right\rangle$ where $\quad x=X N$ and $y=Y N$.

More external symmetries: Exponents

Orientably regular maps M come from $U(d, \ell) / N$ by $N \triangleleft T(d, \ell)$,

$$
T(d, \ell)=\left\langle X, Y ; X^{d}=Y^{2}=(X Y)^{\ell}=1\right\rangle
$$

and can be identified with $A u t_{\text {or }}(M):=G$ with partial presentation $G=\left\langle x, y ; x^{d}=y^{2}=(x y)^{\ell}=\ldots=1\right\rangle$ where $x=X N$ and $y=Y N$.
Exponents of maps [Nedela and Škoviera, about 20 years ago]:

More external symmetries: Exponents

Orientably regular maps M come from $U(d, \ell) / N$ by $N \triangleleft T(d, \ell)$,

$$
T(d, \ell)=\left\langle X, Y ; X^{d}=Y^{2}=(X Y)^{\ell}=1\right\rangle
$$

and can be identified with $A u t_{\text {or }}(M):=G$ with partial presentation

$$
G=\left\langle x, y ; x^{d}=y^{2}=(x y)^{\ell}=\ldots=1\right\rangle \text { where } \quad x=X N \text { and } y=Y N .
$$

Exponents of maps [Nedela and Škoviera, about 20 years ago]: The map M has exponent $j \in Z_{d}^{*}$ if G admits an automorphism that fixes y and takes x onto x^{j}. [Wilson - hole operators.]

More external symmetries: Exponents

Orientably regular maps M come from $U(d, \ell) / N$ by $N \triangleleft T(d, \ell)$,

$$
T(d, \ell)=\left\langle X, Y ; X^{d}=Y^{2}=(X Y)^{\ell}=1\right\rangle
$$

and can be identified with $A u t_{\text {or }}(M):=G$ with partial presentation

$$
G=\left\langle x, y ; x^{d}=y^{2}=(x y)^{\ell}=\ldots=1\right\rangle \text { where } \quad x=X N \text { and } y=Y N .
$$

Exponents of maps [Nedela and Škoviera, about 20 years ago]: The map M has exponent $j \in Z_{d}^{*}$ if G admits an automorphism that fixes y and takes x onto x^{j}. [Wilson - hole operators.] The collection of all exponents is a subgroup of Z_{d}^{*} and is the exponent group of M.

More external symmetries: Exponents

Orientably regular maps M come from $U(d, \ell) / N$ by $N \triangleleft T(d, \ell)$,

$$
T(d, \ell)=\left\langle X, Y ; X^{d}=Y^{2}=(X Y)^{\ell}=1\right\rangle
$$

and can be identified with $A u t_{\text {or }}(M):=G$ with partial presentation $G=\left\langle x, y ; x^{d}=y^{2}=(x y)^{\ell}=\ldots=1\right\rangle$ where $x=X N$ and $y=Y N$.
Exponents of maps [Nedela and Škoviera, about 20 years ago]: The map M has exponent $j \in Z_{d}^{*}$ if G admits an automorphism that fixes y and takes x onto x^{j}. [Wilson - hole operators.] The collection of all exponents is a subgroup of Z_{d}^{*} and is the exponent group of M.
Consequence: If $j \in Z_{d}^{*}$ is an exponent of M, then the relator $\left(x^{j} y\right)^{\ell}$ appears in the presentation of G.

More external symmetries: Exponents

Orientably regular maps M come from $U(d, \ell) / N$ by $N \triangleleft T(d, \ell)$,

$$
T(d, \ell)=\left\langle X, Y ; X^{d}=Y^{2}=(X Y)^{\ell}=1\right\rangle
$$

and can be identified with $A u t_{\text {or }}(M):=G$ with partial presentation $G=\left\langle x, y ; x^{d}=y^{2}=(x y)^{\ell}=\ldots=1\right\rangle$ where $x=X N$ and $y=Y N$.
Exponents of maps [Nedela and Škoviera, about 20 years ago]: The map M has exponent $j \in Z_{d}^{*}$ if G admits an automorphism that fixes y and takes x onto x^{j}. [Wilson - hole operators.] The collection of all exponents is a subgroup of Z_{d}^{*} and is the exponent group of M.
Consequence: If $j \in Z_{d}^{*}$ is an exponent of M, then the relator $\left(x^{j} y\right)^{\ell}$ appears in the presentation of G. Note: Exponent -1 means reflexibility.

More external symmetries: Exponents

Orientably regular maps M come from $U(d, \ell) / N$ by $N \triangleleft T(d, \ell)$,

$$
T(d, \ell)=\left\langle X, Y ; X^{d}=Y^{2}=(X Y)^{\ell}=1\right\rangle
$$

and can be identified with $A u t_{\text {or }}(M):=G$ with partial presentation $G=\left\langle x, y ; x^{d}=y^{2}=(x y)^{\ell}=\ldots=1\right\rangle$ where $x=X N$ and $y=Y N$.
Exponents of maps [Nedela and Škoviera, about 20 years ago]: The map M has exponent $j \in Z_{d}^{*}$ if G admits an automorphism that fixes y and takes x onto x^{j}. [Wilson - hole operators.] The collection of all exponents is a subgroup of Z_{d}^{*} and is the exponent group of M.
Consequence: If $j \in Z_{d}^{*}$ is an exponent of M, then the relator $\left(x^{j} y\right)^{\ell}$ appears in the presentation of G. Note: Exponent -1 means reflexibility.

Orientably regular maps with the 'full' \exp group Z_{d}^{*} are kaleidoscopic.

(Almost) no exponents vs kaleidoscopic maps

(Almost) no exponents vs kaleidoscopic maps

Theorem [Archdeacon, Gvozdjak, Š. '97] For any $d \geq 3$ there are infinitely many finite orientably regular maps of degree d with a trivial exp group.

(Almost) no exponents vs kaleidoscopic maps

Theorem [Archdeacon, Gvozdjak, Š. '97] For any $d \geq 3$ there are infinitely many finite orientably regular maps of degree d with a trivial exp group. Theorem [Olejár, Staneková, Š. '11] For any $d, \ell \geq 3$ there exist infinitely many finite orientably regular maps of type (d, ℓ) with exp group $\{ \pm 1\}$.

(Almost) no exponents vs kaleidoscopic maps

Theorem [Archdeacon, Gvozdjak, Š. '97] For any $d \geq 3$ there are infinitely many finite orientably regular maps of degree d with a trivial exp group. Theorem [Olejár, Staneková, Š. '11] For any $d, \ell \geq 3$ there exist infinitely many finite orientably regular maps of type (d, ℓ) with exp group $\{ \pm 1\}$. Proof. In $T(d, \ell)=\left\langle X, Y ; X^{d}=Y^{2}=(X Y)^{\ell}=1\right\rangle$ we have, by residual finiteness, a normal subgroup of finite index avoiding all 'small' powers and avoiding all $\left(X^{j} Y\right)^{\ell}$ for all $j \in Z_{d}^{*}, j \neq \pm 1$.

(Almost) no exponents vs kaleidoscopic maps

Theorem [Archdeacon, Gvozdjak, Š. '97] For any $d \geq 3$ there are infinitely many finite orientably regular maps of degree d with a trivial exp group. Theorem [Olejár, Staneková, Š. '11] For any $d, \ell \geq 3$ there exist infinitely many finite orientably regular maps of type (d, ℓ) with exp group $\{ \pm 1\}$. Proof. In $T(d, \ell)=\left\langle X, Y ; X^{d}=Y^{2}=(X Y)^{\ell}=1\right\rangle$ we have, by residual finiteness, a normal subgroup of finite index avoiding all 'small' powers and avoiding all $\left(X^{j} Y\right)^{\ell}$ for all $j \in Z_{d}^{*}, j \neq \pm 1$. \square
Theorem [Š., Wang, '10] For any $d \geq 2$ there exist infinitely many finite orientably regular kaleidoscopic maps of degree d.

(Almost) no exponents vs kaleidoscopic maps

Theorem [Archdeacon, Gvozdjak, Š. '97] For any $d \geq 3$ there are infinitely many finite orientably regular maps of degree d with a trivial exp group. Theorem [Olejár, Staneková, Š. '11] For any $d, \ell \geq 3$ there exist infinitely many finite orientably regular maps of type (d, ℓ) with exp group $\{ \pm 1\}$. Proof. In $T(d, \ell)=\left\langle X, Y ; X^{d}=Y^{2}=(X Y)^{\ell}=1\right\rangle$ we have, by residual finiteness, a normal subgroup of finite index avoiding all 'small' powers and avoiding all $\left(X^{j} Y\right)^{\ell}$ for all $j \in Z_{d}^{*}, j \neq \pm 1$. \square
Theorem [Š., Wang, '10] For any $d \geq 2$ there exist infinitely many finite orientably regular kaleidoscopic maps of degree d.
Proof. Take $T(d, \infty)=\left\langle X, Y ; X^{d}=Y^{2}=1\right\rangle$ and a normal, torsion-free subgroup N of $T(d, \infty)$ of finite index (residual finiteness).

(Almost) no exponents vs kaleidoscopic maps

Theorem [Archdeacon, Gvozdjak, Š. '97] For any $d \geq 3$ there are infinitely many finite orientably regular maps of degree d with a trivial exp group. Theorem [Olejár, Staneková, Š. '11] For any $d, \ell \geq 3$ there exist infinitely many finite orientably regular maps of type (d, ℓ) with exp group $\{ \pm 1\}$. Proof. In $T(d, \ell)=\left\langle X, Y ; X^{d}=Y^{2}=(X Y)^{\ell}=1\right\rangle$ we have, by residual finiteness, a normal subgroup of finite index avoiding all 'small' powers and avoiding all $\left(X^{j} Y\right)^{\ell}$ for all $j \in Z_{d}^{*}, j \neq \pm 1$. \square
Theorem [Š., Wang, '10] For any $d \geq 2$ there exist infinitely many finite orientably regular kaleidoscopic maps of degree d.
Proof. Take $T(d, \infty)=\left\langle X, Y ; X^{d}=Y^{2}=1\right\rangle$ and a normal, torsion-free subgroup N of $T(d, \infty)$ of finite index (residual finiteness). Let

$$
K=\bigcap_{j \in Z_{d}^{*}} \alpha_{j}(N)
$$

where α_{j} is the automorphism of $T(d, \infty)$ fixing Y and taking X onto X^{j}.

(Almost) no exponents vs kaleidoscopic maps

Theorem [Archdeacon, Gvozdjak, Š. '97] For any $d \geq 3$ there are infinitely many finite orientably regular maps of degree d with a trivial exp group. Theorem [Olejár, Staneková, Š. '11] For any $d, \ell \geq 3$ there exist infinitely many finite orientably regular maps of type (d, ℓ) with exp group $\{ \pm 1\}$. Proof. In $T(d, \ell)=\left\langle X, Y ; X^{d}=Y^{2}=(X Y)^{\ell}=1\right\rangle$ we have, by residual finiteness, a normal subgroup of finite index avoiding all 'small' powers and avoiding all $\left(X^{j} Y\right)^{\ell}$ for all $j \in Z_{d}^{*}, j \neq \pm 1$. \square
Theorem [Š., Wang, '10] For any $d \geq 2$ there exist infinitely many finite orientably regular kaleidoscopic maps of degree d.
Proof. Take $T(d, \infty)=\left\langle X, Y ; X^{d}=Y^{2}=1\right\rangle$ and a normal, torsion-free subgroup N of $T(d, \infty)$ of finite index (residual finiteness). Let

$$
K=\bigcap_{j \in Z_{d}^{*}} \alpha_{j}(N)
$$

where α_{j} is the automorphism of $T(d, \infty)$ fixing Y and taking X onto X^{j}. Then, $U(d, \infty) / K$ is a finite kaleidoscopic orientably regular map.

Kaleidoscopic regular maps with trinity symmetry?

Kaleidoscopic regular maps with trinity symmetry?

First: Extension of exponents to maps on arbitrary surfaces [Hužvar]:

Kaleidoscopic regular maps with trinity symmetry?

First: Extension of exponents to maps on arbitrary surfaces [Hužvar]:
A regular map M of type (d, ℓ) identified with the group

$$
G=\left\langle a, b, c ; a^{2}=b^{2}=c^{2}=(b c)^{2}=(c a)^{d}=(a b)^{\ell}=\ldots=1\right\rangle
$$

is kaleidoscopic if G admits, for any $j \in Z_{d}^{*}$, an automorphism E_{j} that fixes b and c and takes $c a$ onto $(c a)^{j}$. (M has the 'full' exponent group.)

Kaleidoscopic regular maps with trinity symmetry?

First: Extension of exponents to maps on arbitrary surfaces [Hužvar]:
A regular map M of type (d, ℓ) identified with the group

$$
G=\left\langle a, b, c ; a^{2}=b^{2}=c^{2}=(b c)^{2}=(c a)^{d}=(a b)^{\ell}=\ldots=1\right\rangle
$$

is kaleidoscopic if G admits, for any $j \in Z_{d}^{*}$, an automorphism E_{j} that fixes b and c and takes $c a$ onto $(c a)^{j}$. (M has the 'full' exponent group.)

Construction of finite kaleidoscopic regular maps with trinity symmetry of degree $d=\ell$ is therefore equivalent to finding finite groups as above that admit the exponent automorphisms E_{j} for every $j \in Z_{d}^{*}$ together with the self-duality and the self-Petrie-duality automorphisms D and P.

Kaleidoscopic regular maps with trinity symmetry?

First: Extension of exponents to maps on arbitrary surfaces [Hužvar]:
A regular map M of type (d, ℓ) identified with the group

$$
G=\left\langle a, b, c ; a^{2}=b^{2}=c^{2}=(b c)^{2}=(c a)^{d}=(a b)^{\ell}=\ldots=1\right\rangle
$$

is kaleidoscopic if G admits, for any $j \in Z_{d}^{*}$, an automorphism E_{j} that fixes b and c and takes $c a$ onto $(c a)^{j}$. (M has the 'full' exponent group.)

Construction of finite kaleidoscopic regular maps with trinity symmetry of degree $d=\ell$ is therefore equivalent to finding finite groups as above that admit the exponent automorphisms E_{j} for every $j \in Z_{d}^{*}$ together with the self-duality and the self-Petrie-duality automorphisms D and P.

Problem: Incompatibility of the 'universal' groups $E T(\infty, \infty)$ and ($E) T(d, \infty)$;

Kaleidoscopic regular maps with trinity symmetry?

First: Extension of exponents to maps on arbitrary surfaces [Hužvar]:
A regular map M of type (d, ℓ) identified with the group

$$
G=\left\langle a, b, c ; a^{2}=b^{2}=c^{2}=(b c)^{2}=(c a)^{d}=(a b)^{\ell}=\ldots=1\right\rangle
$$

is kaleidoscopic if G admits, for any $j \in Z_{d}^{*}$, an automorphism E_{j} that fixes b and c and takes $c a$ onto $(c a)^{j}$. (M has the 'full' exponent group.)

Construction of finite kaleidoscopic regular maps with trinity symmetry of degree $d=\ell$ is therefore equivalent to finding finite groups as above that admit the exponent automorphisms E_{j} for every $j \in Z_{d}^{*}$ together with the self-duality and the self-Petrie-duality automorphisms D and P.

Problem: Incompatibility of the 'universal' groups $E T(\infty, \infty)$ and $(E) T(d, \infty)$; equivalently, $E T(\infty, \infty) \rtimes\langle D, P\rangle$ and $(E) T(d, \infty) \rtimes\left\langle E_{j}\right\rangle$.

Kaleidoscopic regular maps with trinity symmetry?

First: Extension of exponents to maps on arbitrary surfaces [Hužvar]:
A regular map M of type (d, ℓ) identified with the group

$$
G=\left\langle a, b, c ; a^{2}=b^{2}=c^{2}=(b c)^{2}=(c a)^{d}=(a b)^{\ell}=\ldots=1\right\rangle
$$

is kaleidoscopic if G admits, for any $j \in Z_{d}^{*}$, an automorphism E_{j} that fixes b and c and takes $c a$ onto $(c a)^{j}$. (M has the 'full' exponent group.)

Construction of finite kaleidoscopic regular maps with trinity symmetry of degree $d=\ell$ is therefore equivalent to finding finite groups as above that admit the exponent automorphisms E_{j} for every $j \in Z_{d}^{*}$ together with the self-duality and the self-Petrie-duality automorphisms D and P.

Problem: Incompatibility of the 'universal' groups $E T(\infty, \infty)$ and $(E) T(d, \infty)$; equivalently, $E T(\infty, \infty) \rtimes\langle D, P\rangle$ and $(E) T(d, \infty) \rtimes\left\langle E_{j}\right\rangle$. (Endomorphism group of $\operatorname{ET}(\infty, \infty)$?)

Kaleidoscopic maps with trinity symmetry by lifting

Kaleidoscopic maps with trinity symmetry by lifting

[Archdeacon, Conder, Š., submitted]

Kaleidoscopic maps with trinity symmetry by lifting

[Archdeacon, Conder, Š., submitted]

Theorem A. If there is an oriented kaleidoscopic map M of degree d with trinity symmetry, then for any positive integer $n \geq 2$ there is an oriented kaleidoscopic map M_{n} of degree $d n$ with trinity symmetry.

Kaleidoscopic maps with trinity symmetry by lifting

[Archdeacon, Conder, Š., submitted]

Theorem A. If there is an oriented kaleidoscopic map M of degree d with trinity symmetry, then for any positive integer $n \geq 2$ there is an oriented kaleidoscopic map M_{n} of degree $d n$ with trinity symmetry.

Theorem B. For every $n \geq 1$ there is an oriented map of degree $2 n$ with $2 n^{2}$ vertices such that:

Kaleidoscopic maps with trinity symmetry by lifting

[Archdeacon, Conder, Š., submitted]

Theorem A. If there is an oriented kaleidoscopic map M of degree d with trinity symmetry, then for any positive integer $n \geq 2$ there is an oriented kaleidoscopic map M_{n} of degree $d n$ with trinity symmetry.

Theorem B. For every $n \geq 1$ there is an oriented map of degree $2 n$ with $2 n^{2}$ vertices such that:

- the map is kaleidoscopic and has trinity symmetry,

Kaleidoscopic maps with trinity symmetry by lifting

[Archdeacon, Conder, Š., submitted]

Theorem A. If there is an oriented kaleidoscopic map M of degree d with trinity symmetry, then for any positive integer $n \geq 2$ there is an oriented kaleidoscopic map M_{n} of degree $d n$ with trinity symmetry.

Theorem B. For every $n \geq 1$ there is an oriented map of degree $2 n$ with $2 n^{2}$ vertices such that:

- the map is kaleidoscopic and has trinity symmetry,
- its automorphism group has order $8 n^{3}$ and presentation $\left\langle a, b, c, z \mid a^{2}, b^{2}, c^{2}, z^{2}, a b c,(a z)^{2 n},(b z)^{2 n},(c z)^{2 n},(a z b z c z)^{2}\right\rangle$.

Kaleidoscopic maps with trinity symmetry by lifting

[Archdeacon, Conder, Š., submitted]

Theorem A. If there is an oriented kaleidoscopic map M of degree d with trinity symmetry, then for any positive integer $n \geq 2$ there is an oriented kaleidoscopic map M_{n} of degree $d n$ with trinity symmetry.

Theorem B. For every $n \geq 1$ there is an oriented map of degree $2 n$ with $2 n^{2}$ vertices such that:

- the map is kaleidoscopic and has trinity symmetry,
- its automorphism group has order $8 n^{3}$ and presentation $\left\langle a, b, c, z \mid a^{2}, b^{2}, c^{2}, z^{2}, a b c,(a z)^{2 n},(b z)^{2 n},(c z)^{2 n},(a z b z c z)^{2}\right\rangle$.

This solves Wilson's conjecture.

Method and consequences

Method and consequences

Method:

Method and consequences

Method: Homological voltage assignments mod n on corners of a map,

Method and consequences

Method: Homological voltage assignments mod n on corners of a map, equivalent to "unit vector" assignments in $\left(Z_{n}\right)^{\beta}$ where β is the Betti number of the medial graph of the map;

Method and consequences

Method: Homological voltage assignments mod n on corners of a map, equivalent to "unit vector" assignments in $\left(Z_{n}\right)^{\beta}$ where β is the Betti number of the medial graph of the map; $\beta=1+|A u t(M)| / 4$.

Method and consequences

Method: Homological voltage assignments mod n on corners of a map, equivalent to "unit vector" assignments in $\left(Z_{n}\right)^{\beta}$ where β is the Betti number of the medial graph of the map; $\beta=1+|A u t(M)| / 4$.

Consequences:

Method and consequences

Method: Homological voltage assignments mod n on corners of a map, equivalent to "unit vector" assignments in $\left(Z_{n}\right)^{\beta}$ where β is the Betti number of the medial graph of the map; $\beta=1+|A u t(M)| / 4$.
Consequences: $\operatorname{Aut}\left(M_{n}\right) \cong\left(Z_{n}\right)^{\beta} \rtimes \operatorname{Aut}(M)$

Method and consequences

Method: Homological voltage assignments mod n on corners of a map, equivalent to "unit vector" assignments in $\left(Z_{n}\right)^{\beta}$ where β is the Betti number of the medial graph of the map; $\beta=1+|A u t(M)| / 4$.
Consequences: $\operatorname{Aut}\left(M_{n}\right) \cong\left(Z_{n}\right)^{\beta} \rtimes \operatorname{Aut}(M)$
Theorem A and Conder's list give kaleidoscopic regular maps with trinity symmetry for the following degrees and orders of automorphism groups:

$2 n$	$6 n$	$8 n$	$8 n$	$10 n$	$12 n$	$16 n$
$8 n^{3}$	$480 n^{121}$	$128 n^{33}$	$512 n^{129}$	$1000 n^{251}$	$960 n^{241}$	$1024 n^{257}$

Method and consequences

Method: Homological voltage assignments mod n on corners of a map, equivalent to "unit vector" assignments in $\left(Z_{n}\right)^{\beta}$ where β is the Betti number of the medial graph of the map; $\beta=1+|A u t(M)| / 4$.
Consequences: $\operatorname{Aut}\left(M_{n}\right) \cong\left(Z_{n}\right)^{\beta} \rtimes \operatorname{Aut}(M)$
Theorem A and Conder's list give kaleidoscopic regular maps with trinity symmetry for the following degrees and orders of automorphism groups:

$2 n$	$6 n$	$8 n$	$8 n$	$10 n$	$12 n$	$16 n$
$8 n^{3}$	$480 n^{121}$	$128 n^{33}$	$512 n^{129}$	$1000 n^{251}$	$960 n^{241}$	$1024 n^{257}$

Theorem A extends to nonorientable maps;

Method and consequences

Method: Homological voltage assignments mod n on corners of a map, equivalent to "unit vector" assignments in $\left(Z_{n}\right)^{\beta}$ where β is the Betti number of the medial graph of the map; $\beta=1+|A u t(M)| / 4$.
Consequences: $\operatorname{Aut}\left(M_{n}\right) \cong\left(Z_{n}\right)^{\beta} \rtimes \operatorname{Aut}(M)$
Theorem A and Conder's list give kaleidoscopic regular maps with trinity symmetry for the following degrees and orders of automorphism groups:

$2 n$	$6 n$	$8 n$	$8 n$	$10 n$	$12 n$	$16 n$
$8 n^{3}$	$480 n^{121}$	$128 n^{33}$	$512 n^{129}$	$1000 n^{251}$	$960 n^{241}$	$1024 n^{257}$

Theorem A extends to nonorientable maps; here Conder's list gives a few such maps of degree $6,10,12$.

Method and consequences

Method: Homological voltage assignments mod n on corners of a map, equivalent to "unit vector" assignments in $\left(Z_{n}\right)^{\beta}$ where β is the Betti number of the medial graph of the map; $\beta=1+|A u t(M)| / 4$.
Consequences: $\operatorname{Aut}\left(M_{n}\right) \cong\left(Z_{n}\right)^{\beta} \rtimes \operatorname{Aut}(M)$
Theorem A and Conder's list give kaleidoscopic regular maps with trinity symmetry for the following degrees and orders of automorphism groups:

$2 n$	$6 n$	$8 n$	$8 n$	$10 n$	$12 n$	$16 n$
$8 n^{3}$	$480 n^{121}$	$128 n^{33}$	$512 n^{129}$	$1000 n^{251}$	$960 n^{241}$	$1024 n^{257}$

Theorem A extends to nonorientable maps; here Conder's list gives a few such maps of degree $6,10,12$. The smallest one starts an infinite family of maps of degree $6 n$ and group order $120 n^{31}$ for odd n.

Method and consequences

Method: Homological voltage assignments mod n on corners of a map, equivalent to "unit vector" assignments in $\left(Z_{n}\right)^{\beta}$ where β is the Betti number of the medial graph of the map; $\beta=1+|A u t(M)| / 4$.
Consequences: $\operatorname{Aut}\left(M_{n}\right) \cong\left(Z_{n}\right)^{\beta} \rtimes \operatorname{Aut}(M)$
Theorem A and Conder's list give kaleidoscopic regular maps with trinity symmetry for the following degrees and orders of automorphism groups:

$2 n$	$6 n$	$8 n$	$8 n$	$10 n$	$12 n$	$16 n$
$8 n^{3}$	$480 n^{121}$	$128 n^{33}$	$512 n^{129}$	$1000 n^{251}$	$960 n^{241}$	$1024 n^{257}$

Theorem A extends to nonorientable maps; here Conder's list gives a few such maps of degree $6,10,12$. The smallest one starts an infinite family of maps of degree $6 n$ and group order $120 n^{31}$ for odd n.

Groups generated by exponents and self-dualities

Groups generated by exponents and self-dualities

For a kaleidoscopic regular map M of degree d with trinity symmetry, given by the group

$$
G=\left\langle a, b, c ; a^{2}=b^{2}=c^{2}=(b c)^{2}=(c a)^{d}=(a b)^{d}=\ldots=1\right\rangle,
$$

what can be said about the group $\operatorname{Ext}(M)=\left\langle D, P, E_{j}\left(j \in Z_{d}^{*}\right)\right\rangle$?

Groups generated by exponents and self-dualities

For a kaleidoscopic regular map M of degree d with trinity symmetry, given by the group

$$
G=\left\langle a, b, c ; a^{2}=b^{2}=c^{2}=(b c)^{2}=(c a)^{d}=(a b)^{d}=\ldots=1\right\rangle,
$$

what can be said about the group $\operatorname{Ext}(M)=\left\langle D, P, E_{j}\left(j \in Z_{d}^{*}\right)\right\rangle$?
Here is a taster:

Groups generated by exponents and self-dualities

For a kaleidoscopic regular map M of degree d with trinity symmetry, given by the group

$$
G=\left\langle a, b, c ; a^{2}=b^{2}=c^{2}=(b c)^{2}=(c a)^{d}=(a b)^{d}=\ldots=1\right\rangle,
$$

what can be said about the group $\operatorname{Ext}(M)=\left\langle D, P, E_{j}\left(j \in Z_{d}^{*}\right)\right\rangle$?
Here is a taster:
Theorem. [Conder, Kwon, Š., in prep.] Let δ be the number of distinct prime factors of n. The group $\operatorname{Ext}\left(M_{n}\right)$ of the Archdeacon-Conder-Š kaleidoscopic regular map of degree $d=2 n$ with trinity symmetry has order $6(\varphi(2 n))^{3} / 2^{\alpha}$ where α is equal to $\delta+2, \delta+1$, and δ, depending on whether $n \equiv 0 \bmod 8, n \equiv 4 \bmod 8$, and $n \equiv 2 \bmod 4$ or n is odd. Moreover, $\operatorname{Ext}\left(M_{n}\right) \cong F_{n} \rtimes\langle D, P\rangle$ where F_{n} is a quotient of $\left(Z_{2 n}^{*}\right)^{3}$.

Groups generated by exponents and self-dualities

For a kaleidoscopic regular map M of degree d with trinity symmetry, given by the group

$$
G=\left\langle a, b, c ; a^{2}=b^{2}=c^{2}=(b c)^{2}=(c a)^{d}=(a b)^{d}=\ldots=1\right\rangle,
$$

what can be said about the group $\operatorname{Ext}(M)=\left\langle D, P, E_{j}\left(j \in Z_{d}^{*}\right)\right\rangle$?
Here is a taster:
Theorem. [Conder, Kwon, Š., in prep.] Let δ be the number of distinct prime factors of n. The group $\operatorname{Ext}\left(M_{n}\right)$ of the Archdeacon-Conder-S kaleidoscopic regular map of degree $d=2 n$ with trinity symmetry has order $6(\varphi(2 n))^{3} / 2^{\alpha}$ where α is equal to $\delta+2, \delta+1$, and δ, depending on whether $n \equiv 0 \bmod 8, n \equiv 4 \bmod 8$, and $n \equiv 2 \bmod 4$ or n is odd. Moreover, $\operatorname{Ext}\left(M_{n}\right) \cong F_{n} \rtimes\langle D, P\rangle$ where F_{n} is a quotient of $\left(Z_{2 n}^{*}\right)^{3}$.

Question. Is the order of $\operatorname{Ext}(M)$ bounded by a function of d ?

Groups generated by exponents and self-dualities

For a kaleidoscopic regular map M of degree d with trinity symmetry, given by the group

$$
G=\left\langle a, b, c ; a^{2}=b^{2}=c^{2}=(b c)^{2}=(c a)^{d}=(a b)^{d}=\ldots=1\right\rangle,
$$

what can be said about the group $\operatorname{Ext}(M)=\left\langle D, P, E_{j}\left(j \in Z_{d}^{*}\right)\right\rangle$?
Here is a taster:
Theorem. [Conder, Kwon, Š., in prep.] Let δ be the number of distinct prime factors of n. The group $\operatorname{Ext}\left(M_{n}\right)$ of the Archdeacon-Conder-S kaleidoscopic regular map of degree $d=2 n$ with trinity symmetry has order $6(\varphi(2 n))^{3} / 2^{\alpha}$ where α is equal to $\delta+2, \delta+1$, and δ, depending on whether $n \equiv 0 \bmod 8, n \equiv 4 \bmod 8$, and $n \equiv 2 \bmod 4$ or n is odd. Moreover, $\operatorname{Ext}\left(M_{n}\right) \cong F_{n} \rtimes\langle D, P\rangle$ where F_{n} is a quotient of $\left(Z_{2 n}^{*}\right)^{3}$.

Question. Is the order of $\operatorname{Ext}(M)$ bounded by a function of d ? NO.

'Unbounded' groups generated by exponents and dualities

'Unbounded' groups generated by exponents and dualities

Theorem. [Conder, Kwon, Š., in prep.] There exists an infinite family of finite kaleidoscopic regular maps of degree 8 with trinity symmetry, whose external symmetry groups have orders tending to infinity.

'Unbounded' groups generated by exponents and dualities

Theorem. [Conder, Kwon, Š., in prep.] There exists an infinite family of finite kaleidoscopic regular maps of degree 8 with trinity symmetry, whose external symmetry groups have orders tending to infinity.

These findings generate a number of open problems, e.g.:

'Unbounded' groups generated by exponents and dualities

Theorem. [Conder, Kwon, Š., in prep.] There exists an infinite family of finite kaleidoscopic regular maps of degree 8 with trinity symmetry, whose external symmetry groups have orders tending to infinity.

These findings generate a number of open problems, e.g.:

- What is a 'natural' definition of external symmetries of regular maps?

'Unbounded' groups generated by exponents and dualities

Theorem. [Conder, Kwon, Š., in prep.] There exists an infinite family of finite kaleidoscopic regular maps of degree 8 with trinity symmetry, whose external symmetry groups have orders tending to infinity.

These findings generate a number of open problems, e.g.:

- What is a 'natural' definition of external symmetries of regular maps?
- Are there finite kaleidoscopic regular map with trinity symmetry of every odd degree?

'Unbounded' groups generated by exponents and dualities

Theorem. [Conder, Kwon, Š., in prep.] There exists an infinite family of finite kaleidoscopic regular maps of degree 8 with trinity symmetry, whose external symmetry groups have orders tending to infinity.

These findings generate a number of open problems, e.g.:

- What is a 'natural' definition of external symmetries of regular maps?
- Are there finite kaleidoscopic regular map with trinity symmetry of every odd degree?
- Can the above Theorem be extended to every even degree $d \geq 8$?

'Unbounded' groups generated by exponents and dualities

Theorem. [Conder, Kwon, Š., in prep.] There exists an infinite family of finite kaleidoscopic regular maps of degree 8 with trinity symmetry, whose external symmetry groups have orders tending to infinity.

These findings generate a number of open problems, e.g.:

- What is a 'natural' definition of external symmetries of regular maps?
- Are there finite kaleidoscopic regular map with trinity symmetry of every odd degree?
- Can the above Theorem be extended to every even degree $d \geq 8$?
- What can be said about the structure of $\operatorname{Ext}(M)$?

'Unbounded' groups generated by exponents and dualities

Theorem. [Conder, Kwon, Š., in prep.] There exists an infinite family of finite kaleidoscopic regular maps of degree 8 with trinity symmetry, whose external symmetry groups have orders tending to infinity.

These findings generate a number of open problems, e.g.:

- What is a 'natural' definition of external symmetries of regular maps?
- Are there finite kaleidoscopic regular map with trinity symmetry of every odd degree?
- Can the above Theorem be extended to every even degree $d \geq 8$?
- What can be said about the structure of $\operatorname{Ext}(M)$?

THANK YOU.

