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Convex Regular Polytopes — Review

Platonic solids {3,3}, {3,4}, {4,3}, {3,5}, {5,3}

DIMENSION n ≥4
name symbol #facets group order

simplex {3,3,3} 5 S5 120

cross-polytope {3,3,4} 16 B4 384

cube {4,3,3} 8 B4 384

24-cell {3,4,3} 24 F4 1152

600-cell {3,3,5} 600 H4 14400

120-cell {5,3,3} 120 H4 14400
simplex {3,. . . ,3} n+1 Sn+1 (n+ 1)!

cross-polytope {3,. . . ,3,4} 2n Bn+1 2nn!

cube {4,3,. . . ,3} 2n Bn+1 2nn!



Abstract Polytopes P of rank n
(Grünbaum, Danzer, 70’s)

P ranked partially ordered set

i-faces elements of rank i ( = -1,0,1,...,n)

i=0 vertices

i=1 edges

i=n-1 facets

• Faces F−1, Fn (of ranks -1, n)

• Each flag of P contains exactly n+2 faces

• P is connected

• Intervals of rank 1 are diamonds:
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P is regular iff Γ(P) flag transitive.

P is chiral iff Γ(P) has two orbits on flags such that adjacent
flags always are in different orbits.

P is a 2-orbit polytope iff Γ(P) has two orbits on flags.

Nothing new in ranks 0, 1, 2 (points, segments, polygons)!

Rank 3: Maps (2-cell tessellations) on closed surfaces.

{4,4}(3,0)

(0,0) (3,0)

History: Klein,Dyck,Brahana,Coxeter .... and many people in the room.



regular polytopes ⇐⇒ C-groups

C-group Γ = 〈ρ0, . . . , ρn−1〉

• ρ2
i = 1

(ρiρj)
2 = 1 (|i− j| ≥ 2)

(ρ0ρ1)p1 = (ρ1ρ2)p2 = . . . = (ρn−2ρn−1)pn−1 = 1

& in general additional relations!

• 〈ρi | i ∈ I〉 ∩ 〈ρi | i ∈ J〉 = 〈ρi | i ∈ I ∩ J〉

• Quotient of the Coxeter group

•
p1

•
p2

• . . . . . . •
pn−1

•



Chirality (Weiss & S., late 80’s)

Local definition: P not regular, but for some base flag
Φ := {F1, F0, . . . , Fn} there exist σ1, . . . , σn−1 ∈ Γ(P) such
that σi fixes each face in Φ \ {Fi−1, Fi} and cyclically per-
mutes consecutive i-faces in the section Fi+1/Fi−2.
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σi cyclically permutes vertices (edges)

of the pi-gon

• Maximal rotational symmetry but no reflexive symmetry!

• No “classical” geometric objects to start from. Convex
polytopes cannot be chiral!



• Rank 3: Yes on 2-torus! Occurrence very sporadic, at
least for small genus g (next for g = 7).

Generators σ1, σ2 for type {p, q} in rank 3.

σ
p
1 = σ

q
2 = (σ1σ2)2 = 1

• Rank 4: Generators σ1, σ2, σ3 for type {p, q, r} in rank 4.

σ
p
1 = σ

q
2 = σr3 = (σ1σ2)2 = (σ2σ3)2 = (σ1σ2σ3)2 = 1

For {{4,4}(b,c), {4,3}}, single extra relation (σ−1
1 σ2)b(σ1σ

−1
2 )c = 1.



• Intersection property in rank 4

〈σ1〉 ∩ 〈σ2〉 = 〈ε〉 = 〈σ2〉 ∩ 〈σ3〉, 〈σ1, σ2〉 ∩ 〈σ2, σ3〉 = 〈σ2〉

• Two enantiomorphic forms: Chiral polytopes occur in a
“right-hand” and a “left-hand” version (choice of base flag).

• Two sets of generators: σ1, . . . , σn−1 for base flag, and
σ−1

1 , σ2
1σ2, σ3, . . . , σn−1 for 0-adjacent flag.

The key: not equivalent under an involutory group automorphism of the

group of the polytope!! You cannot think of σj as ρj−1ρj!

• Automorphism group is a quotient of the rotation sub-

group of the Coxeter group • p • q • r • by a normal

subgroup which is not normal in the full Coxeter group!



Polytopes associated with the groups

Regular polytopes: Γ generated by ρ0, . . . , ρn−1

j-faces: right cosets of Γj := 〈ρi | i 6= j〉

Chiral polytopes: Γ generated by σ1, . . . , σn−1

j-faces: right cosets of

Γj :=


〈σ2, . . . , σn−1〉 if j = 0,

〈σ1,...,σj−1, σj+2,...,σn−1, σjσj+1〉 if j = 1, . . . , n− 2,

〈σ1, . . . , σn−2〉 if j = n− 1.

Partial order in both cases:

Γjϕ ≤ Γkψ iff j ≤ k and Γjϕ ∩ Γkψ 6= ∅.



Plenty of examples in rank 4! Locally toroidal chiral poly-
topes. (Up to mid 90’s — Coxeter, Weiss & S., Monson, Nostrand)

Key idea: The rotation subgroups of the relevant hyper-
bolic Coxeter groups have nice representations as groups of
complex Möbius transformations over Z[i], Z[ω], .... These
groups have generators behaving like σ1, σ2, σ3.

Construct polytopes by modular reduction of the correspond-
ing groups of 2× 2 matrices.

Example: Rotation group of • 4 • 4 • 3 •. Work over
Zm, with −1 a quadratic residue mod m.

Gives chiral 4-polytopes of type {{4,4}(b,c), {4,3}} with group

PSL2(Zm) or PSL2(Zm)oC2, with m = b2+c2 and (b, c) = 1,
b, c > 0. (Work modulo the ideal of Z[i] generated by b+ ic.)



How about chiral polytopes of higher ranks?

• Mid 90’s: Finite examples in rank 5 or higher?

• Hartley, McMullen & S. in 1999: The n-torus is the only
compact euclidean space form admitting a regular or chiral
tessellation. Chirality can only occur when n = 2!

• Conder,Hubard&Pisanski in 2006: Finite rank 5 examples.

• Breda, Jones & S. in 2009: More in ranks 4, 5. Parasite
constructions in higher ranks.

• Conder & Devillers in 2009: Examples in ranks 6,7,8.

• Pellicer in 2009: Finite examples in every rank.

• Cunningham in 2010: More of a similar nature as BJS.

• Classification results are needed!!



Parasite construction (joint work with A.Breda and
G.Jones)

Input: A chiral n-polytope P and a (directly) regular n-
polytope Q, both suitably chosen.

Γ+(P ) = 〈σ1, . . . , σn−1〉 = W+/M = Γ(P ),

Γ+(Q) = 〈σ′1, . . . , σ
′
n−1〉 = W+/K,

with W = 〈r0, . . . , rn−1〉 given by • ∞ • ∞ • . . . . . . • ∞ •

W+
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M ∩K = N Nr0 = (M ∩K)r0



Mix of P and Q (denoted P ♦Q)

Subgroup Γ+(P ) ♦ Γ+(Q) of Γ+(P ) × Γ+(Q) generated by

τ1 := (σ1, σ
′
1), . . . . . . , τn−1 := (σn−1, σ

′
n−1).

• Often the direct product! Intersection property must hold!

• Local chirality criterion: find a pair of “enantiomorphic
words” that have different orders.

• Global chirality criterion: show that the “chirality group”
is non-trivial (for example, this is the case when |Γ+(P )|
does not divide |Γ+(Q)|).

[The chirality group of a polytope measures algebraically
how far the polytope is from being regular.]



Chirality groups

P chiral or directly regular, Γ+(P ) = W+/M , with W the

universal string Coxeter group • ∞ • ∞ • . . . . . . • ∞ •

MW := MMr0 MW

�� @@

M Mr0

MW

@@ �� all subgroups normal in W+

MW := M ∩Mr0

Informally,

• W+/MW — smallest “regular” cover of P .

• W+/MW — largest “regular” pre-polytope covered by P .



• MW/M , M/MW , MW/Mr0, Mr0/MW all isomorphic. Called

the chirality group X(P ). Normal subgroup of Γ+(P ).

• X(P ) is trivial iff P is regular (M = Mr0).

X(P ) measures how far P is from being regular.

• Other extreme case: P totally chiral.

X(P ) = Γ+(P ) (that is, MW = W+). Simple groups.

• Notion originated in maps and hypermaps (work by Breda,

Jones, Nedela, Skoviera).



Computation of X(P )

Suppose Γ+(P ) = 〈s1, . . . , sn−1 | R〉, with W+ = 〈s1, . . . , sn−1〉.
Then X(P ) is the normal closure in Γ+(P ) of the set Rr0,

viewed in Γ+(P ), consisting of those words in s1, . . . , sn−1

obtained from the relators in R by replacing s1 by s−1
1 and

s2 by s2
1s2, while keeping all other sj invariant.

Sometimes computationally feasible.



Nice chirality criterion

Let P be chiral and totally chiral, Q directly regular, and

suppose Γ+(P ) ♦ Γ+(Q) has the intersection property. If

Γ+(P )×Γ+(Q) does not have a subgroup which has a quo-

tient Γ+(P )×Γ+(P ) (in particular if P and Q are finite and

|Γ+(P )| does not divide |Γ+(Q)|), then P ♦ Q is a chiral

polytope.



Applications

Locally spherical case in rank 4

Let p be a prime, let p ≡ ±1 mod 5 or p = 5, and let Q
be a finite locally spherical directly regular 4-polytope of
type {5,3,5} such that p(p2 − 1) does not divide |Γ(Q)|.
Then there exists a locally spherical chiral 4-polytope of
type {5,3,5} with group PSL2(p)× Γ+(Q).

Example: Q = {5
2,3,5} with group H4, and Jones & Long

(or Conder) results for PSL2(p). Resulting automorphism
groups are PSL2(p)×H+

4 .

Nice tessellated hyperbolic 3-manifolds! Similar results for
types {3,5,3}, {5,3,4}!



Any rank

Let P be a finite chiral n-polytope of type {p1, . . . , pn−1}, let

Q be a finite directly regular n-polytope of type {q1, . . . , qn−1},
and let pj, qj be relatively prime for each j.

(a) Then P ♦Q is a chiral or directly regular n-polytope of

type {p1q1, . . . , pn−1qn−1} with group Γ(P )× Γ+(Q).

(b) Moreover, if P is totally chiral and Γ(P ) × Γ+(Q) does

not have a subgroup which has a quotient Γ(P )×Γ(P ) (this

holds in particular if |Γ(P )| does not divide |Γ+(Q)|), then

P ♦Q is chiral.



Rank 5

Chiral component: P the universal chiral 5-polytope

{{{3,4}, {4,4}(2,1)}, {{4,4}(2,1), {4,3}}}
with automorphism group S6 (Conder, Hubard, Pisanski).
Now X(P ) = A6, so P not totally chiral.

Regular component: Q the regular cubic 5-toroid {4,3,3,4}(sk,04−k),
with s ≥ 2 and k = 1,2 or 4 (McMullen & S.).

Result: an infinite series of chiral 5-polytopes P ♦Q of type

{12,12,12,12}, with groups [4,3,3,4]+
(sk,04−k)

×S6, of orders

138 240s4, 276 480s4 or 1 105 920s4 as k = 1,2 or 4.

Use local chirality criterion in this case!



Work in progress on 2-orbit polytopes,

joint with Isabel Hubard!

Later ......

Puts chiral polytopes in wider context! Studies groups of

2-orbit polytopes!



Semiregular Polytopes (with Barry Monson)

Convex Polytopes: Facets are regular (convex) polytopes.
Geometric symmetry group vertex-transitive.

• Plane — regular polygons {p}

• 3-space — Archimedean solids,
and prisms and antiprisms

• Three polytopes for n = 4, and one each for n = 5,6,7,8.

• t1{3,3,3}, snub 24-cell, t1{3,3,5}, and half-5-cube.

• Gosset polytopes 221, 321, 421 related to E6, E7 and E8.

Semiregular polytopes are uniform polytopes.



Semiregular abstract polytopes

• Facets regular (abstract) polytopes, and automorphism
group vertex-transitive.

• n = 3: Any vertex-transitive (abstract) polyhedron is
semiregular. Weak condition!

• n = 4: semiregular tessellation T of E3 by tetrahedra and
octahedra. Alternating!

cuboctahedral vertex-figures



• Wythoff’s construction
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Γ(T ) = D4

ρ2

ρ3

(4 facets around an edge)

• How about alternating semiregular polytopes with hemi-
octahedra (non-orientable) and tetrahedra as facets?

Tomotope: 4 vertices, 12 edges, 16 triangles, 4 tetrahe-
dral and 4 hemi-octahedral facets. Vertex-figures are hemi-
cuboctahedra. Group order is 96.
(Monson, Pellicer, Williams)



Tomotope
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3

1

“Stella octangula” inscribed in cube. Make toroidal-type identifications

for vertices and edges lying in the boundary of the cube. Finally, further

identify antipodal faces of all ranks. One hemi-octahedra is in the core;

and three have colors red, yellow and green, and run around the belt



Universal alternating semiregular polytopes

Input: any regular n-polytopes P and Q with isomorphic

facets K

Freely assemble alternate copies of P and Q to get the uni-

versal (n+ 1)-polytope U = U(P,Q)!

Γ := Γ(P )∗Γ(K)Γ(Q) = 〈α0, . . . , αn−2, αn−1, βn−1〉
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• The universal U(P,Q) exists for all compatible P and Q,

and is semiregular and alternating (copies of P and Q appear

alternately around each ridge).

• U(P,Q) is regular if and only if P ∼= Q. In this case

Γ(U(P,Q)) = Γ o C2.

• Otherwise Γ(U(P,Q)) = Γ.

Questions:

• Can we have finite alternating examples?

• Can we preassign the number 2k of facets around a ridge?



Tail-triangle group Γ = 〈α0, . . . , αn−2, αn−1, βn−1〉,
with intersection property
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−→ P

−→ Q

p1 pn−2

pn−1

qn−1

Rank n+ 1 polytope S

• j-faces for j ≤ n− 2

(right) cosets of Γj := 〈α0, . . . , αj−1, αj+1, . . . , αn−1, βn−1〉

• (n− 1)-faces

cosets of Γn−1 := 〈α0, . . . , αn−2〉



• n-faces

cosets of Γn, with Γn either given by ΓPn := 〈α0, . . . , αn−1〉

or ΓQn := 〈α0, . . . , αn−2, βn−1〉.

• partial order: Γjν < Γkµ iff j < k and Γjν ∩ Γkµ 6= ∅

• top rank 2 section a 2k-gon

. . . . . .u u u u u
Γn−1βn−1αn−1 Γn−1αn−1 Γn−1 Γn−1βn−1 Γn−1αn−1βn−1

ΓP
nβn−1αn−1 ΓQ

nαn−1 ΓP
n ΓQ

n ΓP
nβn−1 ΓQ

nαn−1βn−1

Many examples by modular reduction applied to crystallo-
graphic Coxeter groups!



....... The End .......

Thank you!



Abstract Few-Orbit Polytopes

Among abstract or geometric polytopes, the regular poly-

topes stand out as those with maximal symmetry—their

combinatorial automorphism group or geometric symmetry

group has just one orbit on the flags. We discuss various

classes of polytopes with few flag orbits under the respec-

tive group. Important classes include chiral polytopes, and

more generally two-orbit polytopes, as well as “alternating”

semiregular polytopes. We report about joint work with An-

tonio Breda and Gareth Jones, as well as with, separately,

Isabel Hubard and Barry Monson.



Dim. Symbol f0 fd−1 Group

d = 3 {3, 5
2} 12 20 H3

{5
2,3} 20 12

{5, 5
2} 12 12

{5
2,5} 12 12

d = 4 {3,3, 5
2} 120 600 H4

{5
2,3,3} 600 120

{3,5, 5
2} 120 120

{5
2,5,3} 120 120

{3, 5
2,5} 120 120

{5, 5
2,3} 120 120

{5,3, 5
2} 120 120

{5
2,3,5} 120 120

{5, 5
2,5} 120 120

{5
2,5,

5
2} 120 120

Regular Star-Polytopes
in Ed (d ≥ 3)



Honeycombs Euclidean space

n=2: with triangles, hexagons, squares
{3,6}, {6,3}, {4,4}

n≥2: with cubes, {4,3,...,3,4}
n=4: with 24-cells, {3,4,3,3}

with cross-polytopes, {3,3,4,3}

Hyperbolic space

n=2: each symbol {p,q} with 1
p + 1

q <
1
2

n=3: # =15 {3,5,3}, {4,3,5}, {6,3,3}, . . .

n=4: # =7 {5,3,3,4}, {3,4,3,4}, . . .

n=5: # =5 {3,3,4,3,3}, {3,3,3,4,3}, . . .

n≥6: none



Locally toroidal case in rank 4

Let p be a prime with p ≡ 1 mod 8, let b, c > 0 be integers

with p = b2+c2, let m ≥ 2, and let Q be a finite directly regu-

lar 4-polytope of type {{4,4}(m,0), {4,3}} such that p(p2−1)

does not divide |Γ(Q)|.
Then there exists a chiral 4-polytope of type {{4,4}(m,0), {4,3}}
if p | m or {{4,4}(mb,mc), {4,3}} if p - m, whose group is

PSL2(p) × Γ+(Q). The facets themselves are regular or

chiral, respectively, in the two cases.

Many examples for Q via modular reduction (Monson & S.).

Similar results for types {4,4,4}, {6,3,3}, {6,3,4}, {6,3,5},
{6,3,6}, {3,6,3}!


