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Universal Coxeter groups

For a positive integer n, the universal Coxeter group of rank n is
the group Wn presented by

〈a1, . . . , an | a2
1 = · · · = a2

n = e〉.

That is, Wn is the free product of n copies of the group of order
two.

In Wn there are exactly n conjugacy classes of involutions, each
represented by a generator ai .
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Aut(Wn) = Aut0(Wn) o Σn where

I Aut0(Wn) consists of those automorphisms which map each
generator to a conjugate of itself;

I Σn consists of those automorphisms which permute the
generators.

Aut0(Wn) is generated by partial conjugations. For j ∈ {1, . . . , n}
and D ⊂ {1, . . . , n} \ {j}, the partial conjugation xjD is the
automorphism determined by the rule:

ak 7→
{

ajakaj if k ∈ D;
ak if k 6∈ D.
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Out(Wn) = Aut(Wn)/ Inn(Fn) is the group of outer
automorphisms of Wn.

It follows that
Out(Wn) = Out0(Wn) o Σn.

For n ≥ 3, Out0(Wn) is an infinite group.
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Why take an interest in Out(Wn)?
The following is taken from [Farb and Margalit, p.76]:

“. . . we have

GL(2,Z) ∼= Mod±(S1,1) ∼= Out(F2). (1)

Therefore, we can think of GL(n,Z), Mod±(S) and
Out(Fn) as three generalizations of the same group.”

This perspective is the source of an analogy that has driven the
development of much of the theory of Out(Fn).

We have the following:

PGL(2,Z) ∼= Mod±(O0;2,2,2,∞) ∼= Out(W3). (2)

Therefore, we can think of PGL(n,Z), Mod±(O) and Out(Wn+1)
as three generalizations of the same group.
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Geometric models of groups

A simplicial complex K is a geometric model for a group G if there
exists a homomorphism m :G → Aut(K) (that is, if G acts on K
via m).

The smaller the kernel of m, the less the model simplifies G .

The larger m(G ) in Aut(K), the greater the expectation that
Aut(K) in its entirety, rather than the subgroup m(G ), can offer
insights into G .

Following Bridson-Vogtmann, we say that K is an accurate
geometric model of G if there exists an isomorphism
m :G → Aut(K).
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Some groups with accurate geometric models

Group Accurate geometric model Credits

Algebraic group Spherical building Tits
(satisfying certain hypothesis)

Mapping class group associated Complex of curves Royden,
to a surface of genus at least two Ivanov

Outer automorphisms of Fn Spine of outer space Bridson-
for n ≥ 3 Vogtmann

Outer automorphisms of Wn McCullough-Miller space
for n ≥ 4
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McCullough-Miller space is a general construction

Given an arbitrary group G , and a fixed decomposition of G as a
free product of groups, we write Σ Out(G ) for the group of
“symmetric outer automorphisms” of G—these are outer
automorphisms which first permute the free factors, and then act
by conjugation on each free factor.

McCullough-Miller space (MM-space) is a contractible simplicial
complex equipped with a Σ Out(G )-action; that is, MM-space is a
geometric model for Σ Out(G ).

MM-space is constructed by gluing together copies of the
hypertree complex (to be described below) in a manner which
encodes the structure of Σ Out(G ).
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McCullough-Miller in a particular case

We write Kn for the MM-space corresponding to Wn with its
canonical decomposition. Since Σ Out(Wn) = Out(Wn), Kn is a
contractible simplicial complex equipped with an Out(Wn)-action.
Our main result is the following.

Theorem

For n ≥ 4, Out(Wn) ∼= Aut(Kn); that is, Kn is an accurate
geometric model for Out(Wn).
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Hypergraphs
A hypergraph Γ is an ordered pair (VΓ,EΓ) consisting of a set of
distinguishable vertices VΓ, and a collection (often a set) EΓ of
hyperedges, each of which is a subset of VΓ containing at least two
elements.

A graph (without loops) is a hypergraph in which each hyperedge
contains exactly two vertices.

A hypergraph Θ is a hypertree if the corresponding labeled
bipartite graph is a tree.

We write HT n for the hypertrees with vertex set {1, . . . , n}.

n 1 2 3 4 5 6 7 8 . . .

#HT n 1 1 4 29 311 4447 79745 1722681 . . .

(See sequence A030019 in the OEIS)
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Hypergraphs and hypertrees

2

1
3

4
5

6

Γ

Figure: Γ is a hypergraph but not a hypertree, Θ is a hypertree.
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Example: The elements of HT 4
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If two distinct hyperedges intersect nontrivially, they can be
replaced by their union to give a hypertree with one less
hyperedge; this is called folding.

Folding determines a partial order ≤ on HT n. The poset has a
unique minimal element Θ0

n.

We write HTn for the simplicial realization of HT n; it is called the
hypertree complex (of rank n).

2 1 3 1 2 3 1 3 2

1
3

2

Figure: (HT 3,≤). Figure: HT3.
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Example: The link in HT4 of Θ0
4

Figure: The endpoints of antipodal dashed edges should be identified to
create HT+

4 , the link in HT4 of Θ0
4. This figure copied from MM.
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Hypertrees and partial conjugations

Given a partial conjugation xiD , and a hypertree Θ ∈ HT n, we say
xiD is carried by Θ if: for all d ∈ D and for all j ∈ [n] \ D, the
simple walk in Θ from j to d visits i .

We say α ∈ Out0(W ) is carried by Θ if α can be written as a
product of partial conjugations, each of which is carried by Θ.

Lemma

If xiD and xjK are partial conjugations carried by Θ, then
xiDxjK = xjKxiD . Thus if α is carried by Θ, then α can be written
as a commuting product of partial conjugations, each of which is
carried by Θ.
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To construct the McCullough-Miller space Kn corresponding to
Out(Wn) with its canonical decomposition:

I begin with one copy of HTn for each element of Out0(Wn);
vertices corresponding to Θ0

n are called nuclear vertices.

I vertices in different copies of HTn are identified if and only if
they correspond to the same hypertree Θ, and the difference
between the corresponding elements of Out0(Wn) is a product
of partial conjugations carried by Θ;

I the identification of vertices induces identifications of
higher-dimensional simplices.

The elements of Out0(Wn) act on Kn by permuting the copies of
HTn; that is, by permuting the stars of nuclear vertices.
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Outline of proof

To prove the theorem we show that, for an arbitrary automorphism
f ∈ Aut(Kn):

(1) The nuclear vertices are the vertices of maximal valence in Kn.
Thus f maps the star of the nuclear vertex (one of the copies
of HTn) to the star of another nuclear vertex. By
construction, Out0(Wn) acts transitively on the stars of
nuclear vertices. Thus there exists φ ∈ Out0(Wn) such that
φ−1f fixes setwise the star of the nuclear vertex corresponding
to the identity automorphism.
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Outline of proof (cont)

(2) The only automorphisms of HTn are those induced by
permuting the set {1, . . . , n}. Thus there exists σ ∈ Σn such
that σ−1φ−1f fixes pointwise the star of the nuclear vertex
corresponding to the identity automorphism.

(3) Finally, we show that adjacent copies of HTn share sufficiently
many vertices that if the copy corresponding to α ∈ Out0(W )
is fixed pointwise, then the copy corresponding to αxiD is
fixed pointwise too. Since the partial conjugations generate
Out0(W ), this suffices to prove that σ−1φ−1f fixes pointwise
Kn.
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