The symmetries of McCullough-Miller space

Adam Piggott Bucknell University

adam.piggott@bucknell.edu

Workshop on symmetry in graphs, maps and polytopes Fields Institute

October 27, 2011

Symmetries of MM-space

イロト イポト イヨト イヨト

For a positive integer n, the universal Coxeter group of rank n is the group W_n presented by

$$\langle a_1,\ldots,a_n \mid a_1^2 = \cdots = a_n^2 = e \rangle.$$

That is, W_n is the free product of *n* copies of the group of order two.

In W_n there are exactly *n* conjugacy classes of involutions, each represented by a generator a_i .

(4 同) (4 回) (4 回)

 $\operatorname{Aut}(W_n) = \operatorname{Aut}^0(W_n) \rtimes \Sigma_n$ where

- Aut⁰(W_n) consists of those automorphisms which map each generator to a conjugate of itself;
- Σ_n consists of those automorphisms which permute the generators.

Aut⁰(W_n) is generated by partial conjugations. For $j \in \{1, ..., n\}$ and $D \subset \{1, ..., n\} \setminus \{j\}$, the partial conjugation x_{jD} is the automorphism determined by the rule:

$$a_k \mapsto \left\{ egin{array}{cc} a_j a_k a_j & ext{if } k \in D; \ a_k & ext{if } k
ot \in D. \end{array}
ight.$$

 $Out(W_n) = Aut(W_n) / Inn(F_n)$ is the group of outer automorphisms of W_n .

It follows that

$$\operatorname{Out}(W_n) = \operatorname{Out}^0(W_n) \rtimes \Sigma_n.$$

For $n \ge 3$, $Out^0(W_n)$ is an infinite group.

<ロ> (四) (四) (注) (日) (三)

Why take an interest in $Out(W_n)$?

The following is taken from [Farb and Margalit, p.76]:

"... we have

$$\operatorname{GL}(2,\mathbb{Z})\cong\operatorname{Mod}^{\pm}(S_{1,1})\cong\operatorname{Out}(F_2).$$
 (1)

Therefore, we can think of $\operatorname{GL}(n,\mathbb{Z})$, $\operatorname{Mod}^{\pm}(S)$ and $\operatorname{Out}(F_n)$ as three generalizations of the same group."

This perspective is the source of an analogy that has driven the development of much of the theory of $Out(F_n)$.

We have the following:

$$\operatorname{PGL}(2,\mathbb{Z}) \cong \operatorname{Mod}^{\pm}(\mathcal{O}_{0;2,2,2,\infty}) \cong \operatorname{Out}(W_3).$$
(2)

Therefore, we can think of $PGL(n, \mathbb{Z})$, $Mod^{\pm}(\mathcal{O})$ and $Out(W_{n+1})$ as three generalizations of the same group.

Geometric models of groups

A simplicial complex K is a geometric model for a group G if there exists a homomorphism $m: G \to Aut(K)$ (that is, if G acts on K via m).

The smaller the kernel of m, the less the model simplifies G.

The larger m(G) in Aut(K), the greater the expectation that Aut(K) in its entirety, rather than the subgroup m(G), can offer insights into G.

Following Bridson-Vogtmann, we say that K is an accurate geometric model of G if there exists an *isomorphism* $m: G \rightarrow Aut(K)$.

イロト イポト イヨト

Some groups with accurate geometric models

Group	Accurate geometric model	Credits
Algebraic group (satisfying certain hypothesis)	Spherical building	Tits
Mapping class group associated to a surface of genus at least two	Complex of curves	Royden, Ivanov
Outer automorphisms of F_n for $n \ge 3$	Spine of outer space	Bridson- Vogtmann

イロン イヨン イヨン イヨン

Some groups with accurate geometric models

Group	Accurate geometric model	Credits
Algebraic group (satisfying certain hypothesis)	Spherical building	Tits
Mapping class group associated to a surface of genus at least two	Complex of curves	Royden, Ivanov
Outer automorphisms of F_n for $n \ge 3$	Spine of outer space	Bridson- Vogtmann
Outer automorphisms of W_n for $n \ge 4$	McCullough-Miller space	

<ロ> (四) (四) (注) (日) (三)

McCullough-Miller space is a general construction

Given an arbitrary group G, and a fixed decomposition of G as a free product of groups, we write $\Sigma \operatorname{Out}(G)$ for the group of "symmetric outer automorphisms" of G—these are outer automorphisms which first permute the free factors, and then act by conjugation on each free factor.

McCullough-Miller space (MM-space) is a contractible simplicial complex equipped with a $\Sigma \operatorname{Out}(G)$ -action; that is, MM-space is a geometric model for $\Sigma \operatorname{Out}(G)$.

MM-space is constructed by gluing together copies of the hypertree complex (to be described below) in a manner which encodes the structure of $\Sigma \operatorname{Out}(G)$.

McCullough-Miller in a particular case

We write K_n for the MM-space corresponding to W_n with its canonical decomposition. Since $\Sigma \operatorname{Out}(W_n) = \operatorname{Out}(W_n)$, K_n is a contractible simplicial complex equipped with an $\operatorname{Out}(W_n)$ -action. Our main result is the following.

Theorem

For $n \ge 4$, $Out(W_n) \cong Aut(K_n)$; that is, K_n is an accurate geometric model for $Out(W_n)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Hypergraphs

A hypergraph Γ is an ordered pair (V_{Γ}, E_{Γ}) consisting of a set of distinguishable vertices V_{Γ} , and a collection (often a set) E_{Γ} of hyperedges, each of which is a subset of V_{Γ} containing at least two elements.

A graph (without loops) is a hypergraph in which each hyperedge contains exactly two vertices.

A hypergraph Θ is a hypertree if the corresponding labeled bipartite graph is a tree.

We write \mathcal{HT}_n for the hypertrees with vertex set $\{1, \ldots, n\}$.

			-		-	-	7	-	
$\# \mathcal{HT}_n$	1	1	4	29	311	4447	79745	1722681	

(See sequence A030019 in the OEIS)

Hypergraphs and hypertrees

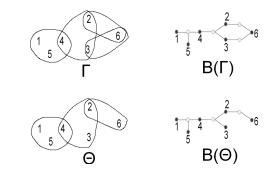
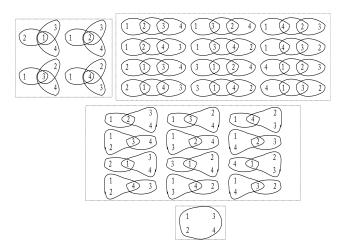


Figure: Γ is a hypergraph but not a hypertree, Θ is a hypertree.

イロト イヨト イヨト イヨト

臣

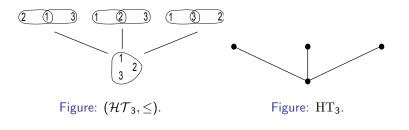
Example: The elements of \mathcal{HT}_4



If two distinct hyperedges intersect nontrivially, they can be replaced by their union to give a hypertree with one less hyperedge; this is called folding.

Folding determines a partial order \leq on \mathcal{HT}_n . The poset has a unique minimal element Θ_n^0 .

We write HT_n for the simplicial realization of \mathcal{HT}_n ; it is called the hypertree complex (of rank n).



Example: The link in HT_4 of Θ_4^0

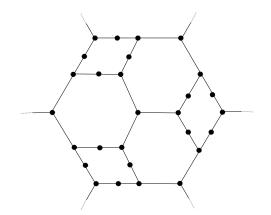


Figure: The endpoints of antipodal dashed edges should be identified to create HT_4^+ , the link in HT_4 of Θ_4^0 . This figure copied from MM.

・ 同 ト ・ ヨ ト ・ ヨ ト

Hypertrees and partial conjugations

Given a partial conjugation x_{iD} , and a hypertree $\Theta \in \mathcal{HT}_n$, we say x_{iD} is carried by Θ if: for all $d \in D$ and for all $j \in [n] \setminus D$, the simple walk in Θ from j to d visits i.

We say $\alpha \in \text{Out}^0(W)$ is carried by Θ if α can be written as a product of partial conjugations, each of which is carried by Θ .

Lemma

If x_{iD} and x_{jK} are partial conjugations carried by Θ , then $x_{iD}x_{jK} = x_{jK}x_{iD}$. Thus if α is carried by Θ , then α can be written as a commuting product of partial conjugations, each of which is carried by Θ .

To construct the McCullough-Miller space K_n corresponding to $Out(W_n)$ with its canonical decomposition:

- ▶ begin with one copy of HT_n for each element of Out⁰(W_n); vertices corresponding to Θ⁰_n are called nuclear vertices.
- vertices in different copies of HT_n are identified if and only if they correspond to the same hypertree Θ, and the difference between the corresponding elements of Out⁰(W_n) is a product of partial conjugations carried by Θ;
- the identification of vertices induces identifications of higher-dimensional simplices.

The elements of $Out^0(W_n)$ act on K_n by permuting the copies of HT_n ; that is, by permuting the stars of nuclear vertices.

・ロト ・回ト ・ヨト ・ヨト

Outline of proof

To prove the theorem we show that, for an arbitrary automorphism $f \in Aut(K_n)$:

 The nuclear vertices are the vertices of maximal valence in K_n. Thus f maps the star of the nuclear vertex (one of the copies of HT_n) to the star of another nuclear vertex. By construction, Out⁰(W_n) acts transitively on the stars of nuclear vertices. Thus there exists φ ∈ Out⁰(W_n) such that φ⁻¹f fixes setwise the star of the nuclear vertex corresponding to the identity automorphism.

▲祠 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Outline of proof (cont)

- (2) The only automorphisms of HT_n are those induced by permuting the set {1,..., n}. Thus there exists σ ∈ Σ_n such that σ⁻¹φ⁻¹f fixes pointwise the star of the nuclear vertex corresponding to the identity automorphism.
- (3) Finally, we show that adjacent copies of HT_n share sufficiently many vertices that if the copy corresponding to α ∈ Out⁰(W) is fixed pointwise, then the copy corresponding to αx_{iD} is fixed pointwise too. Since the partial conjugations generate Out⁰(W), this suffices to prove that σ⁻¹φ⁻¹f fixes pointwise K_n.