The symmetries of McCullough-Miller space

Adam Piggott Bucknell University

adam.piggott@bucknell.edu

Workshop on symmetry in graphs, maps and polytopes Fields Institute

October 27, 2011

Universal Coxeter groups

For a positive integer n, the universal Coxeter group of rank n is the group W_{n} presented by

$$
\left\langle a_{1}, \ldots, a_{n} \mid a_{1}^{2}=\cdots=a_{n}^{2}=e\right\rangle .
$$

That is, W_{n} is the free product of n copies of the group of order two.

In W_{n} there are exactly n conjugacy classes of involutions, each represented by a generator a_{i}.
$\operatorname{Aut}\left(W_{n}\right)=\operatorname{Aut}^{0}\left(W_{n}\right) \rtimes \Sigma_{n}$ where

- Aut ${ }^{0}\left(W_{n}\right)$ consists of those automorphisms which map each generator to a conjugate of itself;
- Σ_{n} consists of those automorphisms which permute the generators.

Aut ${ }^{0}\left(W_{n}\right)$ is generated by partial conjugations. For $j \in\{1, \ldots, n\}$ and $D \subset\{1, \ldots, n\} \backslash\{j\}$, the partial conjugation $x_{j D}$ is the automorphism determined by the rule:

$$
a_{k} \mapsto\left\{\begin{array}{cl}
a_{j} a_{k} a_{j} & \text { if } k \in D ; \\
a_{k} & \text { if } k \notin D .
\end{array}\right.
$$

$\operatorname{Out}\left(W_{n}\right)=\operatorname{Aut}\left(W_{n}\right) / \operatorname{Inn}\left(F_{n}\right)$ is the group of outer automorphisms of W_{n}.

It follows that

$$
\operatorname{Out}\left(W_{n}\right)=\operatorname{Out}^{0}\left(W_{n}\right) \rtimes \Sigma_{n} .
$$

For $n \geq 3$, Out ${ }^{0}\left(W_{n}\right)$ is an infinite group.

Why take an interest in $\operatorname{Out}\left(W_{n}\right)$?

The following is taken from [Farb and Margalit, p.76]:
". . . we have

$$
\begin{equation*}
\operatorname{GL}(2, \mathbb{Z}) \cong \operatorname{Mod}^{ \pm}\left(S_{1,1}\right) \cong \operatorname{Out}\left(F_{2}\right) \tag{1}
\end{equation*}
$$

Therefore, we can think of $\mathrm{GL}(n, \mathbb{Z}), \operatorname{Mod}^{ \pm}(S)$ and $\operatorname{Out}\left(F_{n}\right)$ as three generalizations of the same group."

This perspective is the source of an analogy that has driven the development of much of the theory of $\operatorname{Out}\left(F_{n}\right)$.

We have the following:

$$
\begin{equation*}
\operatorname{PGL}(2, \mathbb{Z}) \cong \operatorname{Mod}^{ \pm}\left(\mathcal{O}_{0 ; 2,2,2, \infty}\right) \cong \operatorname{Out}\left(W_{3}\right) \tag{2}
\end{equation*}
$$

Therefore, we can think of $\operatorname{PGL}(n, \mathbb{Z}), \operatorname{Mod}^{ \pm}(\mathcal{O})$ and $\operatorname{Out}\left(W_{n+1}\right)$ as three generalizations of the same group.

Geometric models of groups

A simplicial complex K is a geometric model for a group G if there exists a homomorphism $m: G \rightarrow \operatorname{Aut}(\mathrm{~K})$ (that is, if G acts on K via m).

The smaller the kernel of m, the less the model simplifies G.
The larger $m(G)$ in Aut (K), the greater the expectation that Aut(K) in its entirety, rather than the subgroup $m(G)$, can offer insights into G.

Following Bridson-Vogtmann, we say that K is an accurate geometric model of G if there exists an isomorphism $m: G \rightarrow \operatorname{Aut}(\mathrm{~K})$.

Some groups with accurate geometric models

Group	Accurate geometric model	Credits
Algebraic group (satisfying certain hypothesis)	Spherical building	Tits
Mapping class group associated to a surface of genus at least two	Complex of curves	Royden, Ivanov
Outer automorphisms of F_{n} for $n \geq 3$	Spine of outer space	Bridson- Vogtmann

Some groups with accurate geometric models

Group	Accurate geometric model	Credits
Algebraic group (satisfying certain hypothesis)	Spherical building	Tits
Mapping class group associated to a surface of genus at least two	Complex of curves	Royden, Ivanov
Outer automorphisms of F_{n} for $n \geq 3$	Spine of outer space	Bridson- Vogtmann
Outer automorphisms of W_{n} for $n \geq 4$	McCullough-Miller space	

McCullough-Miller space is a general construction

Given an arbitrary group G, and a fixed decomposition of G as a free product of groups, we write $\Sigma \operatorname{Out}(G)$ for the group of "symmetric outer automorphisms" of G-these are outer automorphisms which first permute the free factors, and then act by conjugation on each free factor.

McCullough-Miller space (MM-space) is a contractible simplicial complex equipped with a $\Sigma \operatorname{Out}(G)$-action; that is, MM-space is a geometric model for $\Sigma \operatorname{Out}(G)$.

MM-space is constructed by gluing together copies of the hypertree complex (to be described below) in a manner which encodes the structure of $\Sigma \operatorname{Out}(G)$.

McCullough-Miller in a particular case

We write K_{n} for the MM-space corresponding to W_{n} with its canonical decomposition. Since $\Sigma \operatorname{Out}\left(W_{n}\right)=\operatorname{Out}\left(W_{n}\right), \mathrm{K}_{n}$ is a contractible simplicial complex equipped with an $\operatorname{Out}\left(W_{n}\right)$-action. Our main result is the following.

Theorem

For $n \geq 4$, $\operatorname{Out}\left(W_{n}\right) \cong \operatorname{Aut}\left(\mathrm{K}_{n}\right)$; that is, K_{n} is an accurate geometric model for $\operatorname{Out}\left(W_{n}\right)$.

Hypergraphs

A hypergraph Γ is an ordered pair $\left(V_{\Gamma}, E_{\Gamma}\right)$ consisting of a set of distinguishable vertices V_{Γ}, and a collection (often a set) E_{Γ} of hyperedges, each of which is a subset of V_{Γ} containing at least two elements.

A graph (without loops) is a hypergraph in which each hyperedge contains exactly two vertices.

A hypergraph Θ is a hypertree if the corresponding labeled bipartite graph is a tree.

We write $\mathcal{H} \mathcal{T}_{n}$ for the hypertrees with vertex set $\{1, \ldots, n\}$.

n	1	2	3	4	5	6	7	8	\ldots
$\# \mathcal{H} \mathcal{T}_{n}$	1	1	4	29	311	4447	79745	1722681	\ldots

(See sequence A030019 in the OEIS)

Hypergraphs and hypertrees

Θ

Figure: Γ is a hypergraph but not a hypertree, Θ is a hypertree.

Example: The elements of \mathcal{H}_{4}

If two distinct hyperedges intersect nontrivially, they can be replaced by their union to give a hypertree with one less hyperedge; this is called folding.

Folding determines a partial order \leq on $\mathcal{H} \mathcal{T}_{n}$. The poset has a unique minimal element Θ_{n}^{0}.

We write HT_{n} for the simplicial realization of $\mathcal{H} \mathcal{T}_{n}$; it is called the hypertree complex (of rank n).

Figure: $\left(\mathcal{H}_{3}, \leq\right)$.

Figure: HT_{3}.

Example: The link in HT_{4} of Θ_{4}^{0}

Figure: The endpoints of antipodal dashed edges should be identified to create HT_{4}^{+}, the link in HT_{4} of Θ_{4}^{0}. This figure copied from MM.

Hypertrees and partial conjugations

Given a partial conjugation $x_{i D}$, and a hypertree $\Theta \in \mathcal{H} \mathcal{T}_{n}$, we say $x_{i D}$ is carried by Θ if: for all $d \in D$ and for all $j \in[n] \backslash D$, the simple walk in Θ from j to d visits i.

We say $\alpha \in$ Out $^{0}(W)$ is carried by Θ if α can be written as a product of partial conjugations, each of which is carried by Θ.

Lemma

If $x_{i D}$ and $x_{j K}$ are partial conjugations carried by Θ, then $x_{i D} x_{j K}=x_{j K} x_{i D}$. Thus if α is carried by Θ, then α can be written as a commuting product of partial conjugations, each of which is carried by Θ.

To construct the McCullough-Miller space K_{n} corresponding to Out $\left(W_{n}\right)$ with its canonical decomposition:

- begin with one copy of HT_{n} for each element of Out ${ }^{0}\left(W_{n}\right)$; vertices corresponding to Θ_{n}^{0} are called nuclear vertices.
- vertices in different copies of HT_{n} are identified if and only if they correspond to the same hypertree Θ, and the difference between the corresponding elements of $\operatorname{Out}^{0}\left(W_{n}\right)$ is a product of partial conjugations carried by Θ;
- the identification of vertices induces identifications of higher-dimensional simplices.

The elements of $\mathrm{Out}^{0}\left(W_{n}\right)$ act on K_{n} by permuting the copies of HT_{n}; that is, by permuting the stars of nuclear vertices.

Outline of proof

To prove the theorem we show that, for an arbitrary automorphism $f \in \operatorname{Aut}\left(\mathrm{~K}_{n}\right)$:
(1) The nuclear vertices are the vertices of maximal valence in K_{n}. Thus f maps the star of the nuclear vertex (one of the copies of HT_{n}) to the star of another nuclear vertex. By construction, Out ${ }^{0}\left(W_{n}\right)$ acts transitively on the stars of nuclear vertices. Thus there exists $\phi \in \operatorname{Out}^{0}\left(W_{n}\right)$ such that $\phi^{-1} f$ fixes setwise the star of the nuclear vertex corresponding to the identity automorphism.

Outline of proof (cont)

(2) The only automorphisms of HT_{n} are those induced by permuting the set $\{1, \ldots, n\}$. Thus there exists $\sigma \in \Sigma_{n}$ such that $\sigma^{-1} \phi^{-1} f$ fixes pointwise the star of the nuclear vertex corresponding to the identity automorphism.
(3) Finally, we show that adjacent copies of HT_{n} share sufficiently many vertices that if the copy corresponding to $\alpha \in \mathrm{Out}^{0}(W)$ is fixed pointwise, then the copy corresponding to $\alpha x_{i D}$ is fixed pointwise too. Since the partial conjugations generate Out ${ }^{0}(W)$, this suffices to prove that $\sigma^{-1} \phi^{-1} f$ fixes pointwise K_{n}.

