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Two sets of problems

Problem A. Given genus g classify maps with high degree of symmetry (few
orbits of Aut+(M) or of Aut(M) on vertices, edges, faces,
darts, flags,. . . ).

Problem B. Given genus g, enumerate maps with e edges (e edges and
v-vertices).

The considered class of maps may satisfy certain constraints
(non-degenerate, simple graphs, polytopal, polyhedral,
triangular, bipartite,...
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Why a classification of discrete groups is of interest?

Two examples:

Problems of type A are equivalent to the classification of discrete groups of
genus g of a restricted orbifold type.

Problems of type B require to determine g-admissible cyclic actions. But it is
not enough!
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Surfaces and discrete groups

Surface a 2-dimensional manifold S, connected; preferably compact,
without boundary and orientable;

Classification of compact surfaces by orientability and genus – number of
handles (or crosscaps) attached;

Discrete group a group of self-homeomorphisms of S, s.t. each orbit forms a
discrete set;

Discrete group of a compact connected surface is a finite group;

Two kinds of elements orientation preserving and orientation reversing
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Discrete groups are groups of symmetries of Maps

1 An automorphism of a vertex-transitive map M on a surface S extends to
a self-homeomorphism of S;

2 Every finite group of automorphisms of a surface S is a group of
automorphisms of a (Cayley) vertex-transitive map on S;

3 Every finite group appears as a discrete group of automorphisms of S
(compact, closed);

4 Not all actions of finite groups can be realized;
5 A point stabilizer is a subgroup of a dihedral group;
6 Vertex-transitive maps are (the best) models for investigation of discrete

groups
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Regular branched coverings and quotient spaces

Euler characteristics

χ = v − e+ f =

{
2− 2g, S orientable
2− ĝ, S non-orientable

Regular covers given by group actions Sg/G = Sγ ;

!!! Closed orientable surfaces are closed under taking quotients by
orientation preserving actions!!!

How to relate the Euler characteristics of Sg and a covered surface Sγ?

Smooth coverings of orientable surfaces (|G|-folded covers)

(2− 2g) = |G|(2− 2γ);
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2− ĝ, S non-orientable

Regular covers given by group actions Sg/G = Sγ ;

!!! Closed orientable surfaces are closed under taking quotients by
orientation preserving actions!!!

How to relate the Euler characteristics of Sg and a covered surface Sγ?

Smooth coverings of orientable surfaces (|G|-folded covers)

(2− 2g) = |G|(2− 2γ);

R. Nedela UMB

Discrete groups. . .



Regular branched coverings and quotient spaces

Euler characteristics

χ = v − e+ f =

{
2− 2g, S orientable
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Riemann-Hurwitz equation, orientation preserving action

Regular branched coverings between orientable surfaces,
Riemann-Hurwitz equation - case G is orientation preserving,

2− 2g = |G|

(
2− 2γ −

r∑
i=1

(
1− 1

mi

))
; ∀i : mi ≥ 2 ∈ Z; mi| |G| ;

Quotient Orbifold is a surface of genus γ, with r points distinguished,
each of them is endowed with an integer branch index mi > 1; singular
points of the covering, mi- the number of wrappings of the neighbourhood
centered at xi

Orbifold is described by its signature O(γ; {m1,m2 . . . ,mr}).
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group - covering duality and universal covers

Smooth coverings - classical topic in homotopy theory:

Fundamental group π1(S) elements – (eq. classes of) closed curves is S,
contractible (closed) curves are identities, operation –
composition of curves;

subgroup/covering correspondence a covering determines a subgroup of
π1(S), a subgroup G ≤ π1(S) determines a regular covering
S̃ → S with CTP (p) ∼= G,

Universal cover over S a simply connected surface S̃ (1 ≤ π1(S) covering all
the covers of S;

Fundamental group a surface of genus g

π1(Sg) = 〈a1, b1, . . . , aγ , bγ |
γ∏
i=1

[ai, bi]〉.
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Generalization to orbifolds: Monodromy/automorphism duality

(S̃, π1(O))

U

��

K

((
(Sg , G)

Gvv
(O(γ; {m1, . . . ,mr}), 1)

A g-admissible group G is an epimorphic image G ∼= π1(O)/K for a quotient
orbifold Sg/G = O(γ; {m1,m2, . . . ,mr}).

Fuchsian group F (γ; {m1,m2, . . . ,mr})
〈x1, . . . , xr, a1, b1, . . . , aγ , bγ | xm1

1 = xm2
2 = . . . = xmr

r = 1,

γ∏
i=1

[ai, bi]
r∏
j=1

xj = 1〉.

is the orbifold fundamental group π1(O).
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Classification, first step: numeric solution of R-H

Rieman-Hurwitz equation

2− 2g = |G|

(
2− 2γ −

r∑
i=1

(
1− 1

mi

))

We have to meet the following criteria:

1 γ ≤ g,

2 r ≤ 2g + 2,

3 ∀i : mi ≥ 2 ∈ Z,

4 ∀i : mi is a divisor of |G|,
5 |G| ≤ 84(g − 1).

We obtain the list of (possible!!!) signatures of orbifolds

(γ; {m1, . . . ,mr}).

Not every signature is g-admissible – RHE holds, but an action of G does not
exist.
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Arithmetics vs. Group Theory, genus 2 actions

|G| Orbifold Actions |G| Orbifold Actions
1 (2; {}) 1 12 (0; {3, 2, 2, 2}) D12

2 (1; {2, 2}) C2 12 (0; {4, 4, 3}) C3 : C4

2 (0; {2, 2, 2, 2, 2, 2}) C2 12 (0; {6, 3, 3}) —
3 (1; {3}) — 12 (0; {6, 6, 2}) C6 × C2

3 (0; {3, 3, 3, 3}) C3 12 (0; {12, 4, 2}) —
4 (1; {2}) — 15 (0; {5, 3, 3}) —
4 (0; {2, 2, 2, 2, 2}) C2 × C2 16 (0; {8, 4, 2}) QD16

4 (0; {4, 4, 2, 2}) C4 18 (0; {18, 3, 2}) —
5 (0; {5, 5, 5}) C5 20 (0; {5, 5, 2}) —
6 (0; {3, 3, 2, 2}) C6, S3 24 (0; {4, 3, 3}) SL(2, 3)
6 (0; {6, 2, 2, 2}) — 24 (0; {6, 4, 2}) (C6 × C2) : C2

6 (0; {6, 6, 3}) C6 24 (0; {12, 3, 2}) —
8 (0; {4, 2, 2, 2}) D8 30 (0; {10, 3, 2}) —
8 (0; {4, 4, 4}) Q8 36 (0; {9, 3, 2}) —
8 (0; {8, 8, 2}) C8 40 (0; {5, 4, 2}) —
9 (0; {9, 3, 3}) — 48 (0; {8, 3, 2}) GL(2, 3)

10 (0; {10, 5, 2}) C10 84 (0; {7, 3, 2}) —
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How to determine a discrete action?

A presentation of G:

G = 〈x1, . . . , xr, a1, b1, . . . , aγ , bγ | xm1
1 = xm2

2 = . . . = xmr
r = 1,

γ∏
i=1

[ai, bi]
r∏
j=1

xj = 1, . . . 〉.

The ”dots” make the group finite!!! Then action is then determined by the
canonical Cayley map.
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Canonical one-vertex map

1 canonical quotient map M̄ is a bouquet of r loops,
2 every loop is the boundary of a face containing exactly one branch point

with respective branch index mi,
3 outer face of the map is an r-gon containing no branch point.

O(0; {2, 2, 3, 3}) O(1; {3, 3})

〈x, y, z, w | x2 = y2 = z3 = w3 = xyzw = 1〉 〈x, y, a, b | x3 = y3 = [a, b]xy = 1〉
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Fundamental domain and dual of Cayley map

1 In general we do not need to describe the action through the canonical
base map, but then we need to change the presentation or to compute the
voltages in the generators used in presentation,

2 There are infinitely many one-vertex maps on a prescribed orbifold
O(γ; {m0,m1,m2 . . . ,mn}), one needs to assume at least
non-degeneracy, then the valency of the quotient is bounded by a function
of g.

3 All these describe the same action of G on Sg.
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Step 2: Determining G for given g-admissible signature and |G|

1 |F : K| = |G|, F is the Fuchsian group of given signature,

2 the epimorphism F → G with kernel K is order preserving, i.e. no
generator is send to identity and the orders of elliptic elements are
preserved

3 LowIndexNormalSubgroups (Magma, D. Holt) procedure is the tool to
determine all the normal subgroups of given order,

4 As a result we get the Epi0(F,G) kernels determining the g-admissible
actions of prescribed orbifold type.

5 AT PRESENT WE HAVE COMPLETED THE LIST OF ACTIONS UP TO
GENUS 8, see http://www.savbb.sk/~karabas/science.html#rhsu

6 Abstract structure of groups and g-admissible orbifold types were dermined
up to genus 24, for large groups much further (see Conder’s web page)

7 Small 9-admissible troublemakers with more than 105 kernels: C2 × C2 of
types (1; 28) or (0; 212), C2 × C2 × C2 of types (1; 42, 2) or (0; 28), D8 of
type (0; 28).
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GENUS 8, see http://www.savbb.sk/~karabas/science.html#rhsu

6 Abstract structure of groups and g-admissible orbifold types were dermined
up to genus 24, for large groups much further (see Conder’s web page)

7 Small 9-admissible troublemakers with more than 105 kernels: C2 × C2 of
types (1; 28) or (0; 212), C2 × C2 × C2 of types (1; 42, 2) or (0; 28), D8 of
type (0; 28).
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A note on the equivalence classes of the actions (coverings)

1 The above procedure describe basic equivalence classes enumerated by
Epi0(F,G)

2 Outer automorphisms of F or G can be used to identify some of the
actions, the chosen equivalence depends on the context
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A sample of results: Maximal actions

g |G| Orbifold EpiO(Sg,G) G

2 48 (0, {8, 3, 2}) 2 GL(2, 3)
3 168 (0, {7, 3, 2}) 2 PSL(3, 2)
4 120 (0, {5, 4, 2}) 1 S5

5 192 (0, {8, 3, 2}) 4 (((C4 × C2) : C4) : C3) : C2

6 150 (0, {10, 3, 2}) 4 ((C5 × C5) : C3) : C2

7 504 (0, {7, 3, 2}) 3 PSL(2, 8)
8 336 (0, {8, 3, 2}) 2 PSL(3, 2) : C2

9 320 (0, {5, 4, 2}) 4 (((C2 ×Q8) : C2) : C5) : C2

10 432 (0, {8, 3, 2}) 2 (((C3 × C3) : Q8) : C3) : C2

11 240 (0, {6, 4, 2}) 2 C2 × S5
12 120 (0, {15, 4, 2}) 4 (C5 ×A4) : C2

13 360 (0, {10, 3, 2}) 2 A5 × S3

14 1092 (0, {7, 3, 2}) 6 PSL(2, 13)
15 504 (0, {9, 3, 2}) 3 PSL(2, 8)
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Maximal actions – continued

g |G| Orbifold EpiO(Sg,G) G

16 720 (0, {8, 3, 2}) 2 A6 : C2

17 1344 (0, {7, 3, 2}) 2 (C2 × C2 × C2).PSL(3, 2)
18 168 (0, {21, 4, 2}) 6 (C7 ×A4) : C2

19 720 (0, {5, 4, 2}) 4 C2 ×A6

20 228 (0, {6, 6, 2}) 24 C2 × ((C19 : C3) : C2)
21 480 (0, {6, 4, 2}) 2 (C2 × C2 ×A5) : C2

22 1008 (0, {8, 3, 2}) 4 (C3 × PSL(3, 2)) : C2

23 192 (0, {48, 4, 2}) 8 (C3 × (C16 : C2)) : C2

24 216 (0, {27, 4, 2}) 9 ((C2 × C2) : C27) : C2
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A sample of classification: small discrete groups

g Signature #C2 #C4 × C2 g Signature #C2 #C4 × C2

2 (1, {22}) 4 6 (2, {26}) 16
2 (0, {26}) 1 6 (1, {210}) 4
3 (2, {}) 15 6 (0, {214}) 1
3 (1, {24}) 4 7 (4, {}) 255
3 (0, {28}) 1 7 (3, {24}) 64
3 (0, {42, 22}) 32 7 (2, {28}) 16
4 (2, {22}) 16 7 (1, {212}) 4
4 (1, {26}) 4 7 (0, {216}) 1
4 (0, {210}) 1 7 (1, {23}) 288
5 (3, {}) 63 7 (1, {42}) 192
5 (2, {24}) 16 7 (0, {42, 24}) 320
5 (1, {28}) 4 7 (0, {44, 2}) 176
5 (0, {212}) 1 8 (4, {22}) 256
5 (1, {22}) 120 8 (3, {26}) 64
5 (0, {42, 23}) 104 8 (2, {210}) 16
5 (0, {44}) 48 8 (1, {214}) 4
6 (3, {22}) 64 8 (0, {218}) 1
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Back to PROBLEM A.

Classification (of a subclass) of non-degenerate vertex-transitive maps of genus
g

1 Observation, M̄ = M/Aut+(M) is a one-vertex or a two-vertex map on a
g-admissible orbifold,

2 By non-degeneracy the valency of M̄ bounded by 3 +
√

12g − 2,

3 For each g-admissible orbifold O there are just finitely many such base
maps,

4 The lifts over M̄ can be described using voltage assignments defined in
the discrete group G giving the quotient orbifold O = Sg/G. (a modified
Gross-Tucker)
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Reconstruction of maps by voltage assignments

By a T -reduced voltage assignment on N we mean a mapping ξ : V ∪D → G
taking values in a group G satisfying the following conditions:

1 all darts on the rooted spanning tree (T, x0) receive trivial voltages,

2 ξxL = ξ−1
x for all x ∈ D,

3 G = 〈{ξx : x ∈ D ∪ V }〉.

The derived map M = Nξ = (Dξ;Rξ, Lξ) is defined as follows. Then
Dξ = D ×G and

(x, g)Rξ =


(xR, g · ξv), x ∈ D+(T ) ∪ {x0},

(xR, g), otherwise

(x, g)Lξ = (xL, g · ξx)

If ξ|V = id, then Nξ coincides with the classic construction by Gross & Tucker
(1987).
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Classification of particular families of vertex- or edge-transitive maps

1 Regular maps and hypermaps - actions of type (0; k,m, n), Conder for
genus g ≤ 101, some infinite families χ = −2p,

2 V.T. polyhedral maps up to genus 4, K+N, Math. Comp.2012,

3 edge-transitive maps up to genus 4, Orbanic, Pisanski,... 2011

4 using the Conder’s lists of g-admissible actions of types (0; k,m, l),
(0; k,m, n, l), (1; k) and (1; k,m) we get the edge-transitive maps up to
genus 100, more in the following talk by J.K.,

5 v-t maps of type (0; k,m, 2)
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Spherical case: all v-t maps (Archimedean solids) come from Platonic maps
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Operations over not self-dual maps
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Operations over self-dual maps
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PROBLEM B: Back to map enumeration - Dictionary:

Rooted ormap = a torsion-free subgroup of Z ∗ Z2 of finite index,

Rooted map = a torsion-free subgroup of Z2 ∗ (Z2 × Z2) of finite index,

Labelled ormap = a transitive homomorphism Z ∗ Z2 → Sn,

Labelled map = a transitive homomorphism Z ∗ (Z2 × Z2)→ Sn,

Isoclass of an ormap = conjugacy class of a torsion-free subgroup of Z ∗ Z2,

Isoclass of a map = conjugacy class of a torsion-free subgroup of Z ∗ (Z2×Z2)

WHY ROOTED MAPS? WHY LABELLED MAPS?
!!! Action of G(M) is semiregular !!!
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Mednykh s lemma: From subgroups to conjugacy classes

RECALL the dictionary: ISOCLASS of (OR)MAPS = conjugacy class of
subgroups in the universal group

Theorem (Mednykh)

Let Γ be a finitely generated group. Let P be a set of subgroups of Γ closed
under conjugation. Then the number of conjugacy classes of subgroups of
index n in P is given by the formula

NPΓ (n) =
1

n

∑
`|n

`m=n

∑
K<Γ

[Γ:K]=m

EpiP(K,Z`).

EpiP(K,Z`) - number of order preserving epimorphisms Γ→ Z` s. t. the
kernel ∈ P.
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Mednykh Lemma for Γ = ∆(∞,∞, 2) ∼= Z ∗ Z2

Θg(e) =
1

2e

∑
`|e

∑
O∈Orb(Sg/Z`)

O=[g;2q2 ,3q3 ...,`q` ]

Epi0(π1(O), Z`) · µO(m).

The number Epi0(π1(O), Z`) enumerates cyclic actions on Sg,

the number µO(m) enumerates the number of rooted maps on the quotient
orbifold O = Sg/Z` with m darts.
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Counting Rooted Ormaps (subgroups of given index) on closed orientable
orbifolds

PROPOSITION M+N: Let O = O[g; 2q2 , . . . , `q` ] be an orbifold, qi ≥ 0 for
i = 2, . . . , `. Then the number of rooted maps νO(m) with m darts on the
orbifold O is

νO(m) =

q2∑
s=0

(
m

s

)(
m−s

2
+2−2g

q2−s, q3, . . . , q`

)
Ng((m−s)/2),

with a convention that Ng(n) = 0 if n is not an integer,
Ng(n) is the number of ordinary maps of genus g with n edges.
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Open problems

1 Enumeration of the number of abelian g-admissible actions

2 Enumeration of reflexible maps, open even for the sphere

3 Classification of all actions for given surfaces of small |χ(S)|
4 Which equivalences of the actions are of interest?

5 Assymtotic analysis and consequences

6 What can be done for higher dimensions?
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