Enumeration of coverings, maps and hypermaps

Alexander Mednykh

Sobolev Institute of Mathematics
Novosibirsk State University
Russia

Fields Institute
Toronto
25 October 2011

Coverings

- Surface coverings

Definition. Let T and S are Riemann surfaces. A covering $p: T \rightarrow S$ is surjective map locally looking as a complex map $z \rightarrow z^{n}, z \in \mathbb{C}$, where n is an integer ≥ 1. We refer to n as a branch order at the point $z=0$.

Examples.

Coverings

Definition. A covering $p: T \rightarrow S$ is said to be unbranched (or smooth) if all branch indices of p are equal to 1 .

Two coverings $p: T \rightarrow S$ and $p^{\prime}: T^{\prime} \rightarrow S$ are equivalent if there is a homeomorphism $h: T \rightarrow T^{\prime}$ such that $p=p^{\prime} \circ h$.

$$
\begin{array}{rll}
T & \xrightarrow[\text { homeo }]{h} & T^{\prime} \\
p \downarrow & & \downarrow p^{\prime} \\
S & \xrightarrow{i d} & S
\end{array}
$$

Coverings

Let $p: T \rightarrow S$ be n-fold unbranched covering and $\Gamma=\pi_{1}(S)$ be the fundamental group of S. Then there is an embedding

$$
H=\pi_{1}(T) \underset{\text { index } n}{\subset} \quad \Gamma=\pi_{1}(S)
$$

Two embeddings $H=\pi_{1}(T) \subset \underset{n}{\subset} \Gamma$ and $H^{\prime}=\pi_{1}\left(T^{\prime}\right) \underset{n}{\subset} \Gamma$ produce equivalent coverings if and only if H and H^{\prime} are conjugate in Γ.

Coverings

We will be mostly interesting in the following three cases.
Case 1. Let S be a bordered surface of Euler characteristic $\chi=1-r, r \geq 0$. Than $\Gamma=\pi_{1}(S) \cong F_{r}$ is a free group of rank r. A typical example of S is the disc D_{r} with r holes removed:

Coverings

Case 2. Let S be a closed orientable surface of genus $g \geq 0$. Then

$$
\pi_{1}(S)=\Phi_{g}=\left\langle a_{1}, b_{1}, \ldots, a_{g}, b_{g}: \prod_{i=1}^{g}\left[a_{i}, b_{i}\right]=1\right\rangle
$$

Coverings

Case 3. Let S be a closed non-orientable surface of genus $p \geq 1$.

$$
\pi_{1}(S)=\Lambda_{p}=\left\langle a_{1}, a_{2}, \ldots, a_{p}: \prod_{i=1}^{p} a_{i}^{2}=1\right\rangle
$$

Coverings

- Two main problems

From now on we deal with the following two problems.
Problem 1. Find the number $s_{\Gamma}(n)$ of subgroups of index n in the group Γ.

Problem 2. Find the number $c_{\Gamma}(n)$ of conjugacy classes of subgroups of index n in the group Γ.

Remark. In the latter case $c_{\Gamma}(n)$ coincides with the number of n-fold unbranched non-equivalent coverings of surface S with

$$
\pi_{1}(S) \equiv \Gamma
$$

Coverings

- Short history:

Problem 1: \quad Problem 2:

	$s_{\Gamma}(n)$	$c_{\Gamma}(n)$
1. $\Gamma=F_{r}$ $\Gamma=\pi_{1}(S), S=D_{r}$ bordered surface	M.Hall (1949)	J.Liskovets (1971)
2. $\Gamma=\Phi_{g}$ $\Gamma=\pi_{1}(S), S=S_{g}$ orientable surface	A.Mednykh (1979)	A.Mednykh (1982)

3. $\Gamma=\Lambda_{p}$
$\Gamma=\pi_{1}(S), S=N_{p}$
G.Pozdnyakova, A.Mednykh (1986) non-orientable surface
4. $\Gamma=\pi_{1}(M)$
M is Seifert
3-manifold
V.Liskovets, A.Mednykh
(2000)

Coverings

- More deep history
A.Hurwitz
E.Lasker
G. Frobenius
1902
- Modern exposition

Subgroup growth estimates and explicit asymptotic formulae were obtained in the paper by T.W.Müller, J.-Chr.Schlage-Puchta, J.Wolfart and others.

Excellent exposition of these results is given in the book: A.Lubotzky and D.Segal "Subgroup growth", Birkhäuser, 2003.
A. Okun'kov (Field's medalist, 2006) discovered a deep relationship between enumeration of coverings, representation theory of finite groups, probability theory and partial differential equations.

Coverings

The main tool to enumerate coverings is given by the following theorem.

Theorem 1 (M., 2006)

Let Γ be an arbitrary finitely generated group. Then the number of conjugacy classes of subgroups of index n in Γ is given by the formula

$$
c_{\Gamma}(n)=\frac{1}{n} \sum_{\substack{\ell \mid n \\ \ell m=n}} \sum_{\substack{K<\Gamma}}\left|\operatorname{Epi}\left(\mathrm{K}, \mathbb{Z}_{\ell}\right)\right|,
$$

where the second sum is taken over all subgroups K of index m in Γ and $\left|\operatorname{Epi}\left(\mathrm{K}, \mathbb{Z}_{\ell}\right)\right|$ is the number of epimorphism of K onto cyclic group \mathbb{Z}_{ℓ} of order ℓ.

Coverings

- The idea of the proof of Theorem 1

The proof is based on two lemmas. Let $N(P, \Gamma)$ be the normalizer of P in Γ.

Lemma 1

$$
c_{\Gamma}(n)=\frac{1}{n} \sum_{\substack{P<\Gamma \\ n}}|N(P, \Gamma) / P| .
$$

Lemma 2

Let P be a subgroup of index n in Γ. Then

$$
|N(P, \Gamma) / P|=\sum_{\substack{\ell \mid n \\ \ell m=n}} \sum_{\substack{P_{\ell} K_{\ell}<\Gamma \\ m}} \varphi(\ell),
$$

where $\varphi(\ell)$ is Euler function.

Coverings

- How calculate the number of epimorphisms $\left|\operatorname{Epi}\left(\mathrm{K}, \mathbb{Z}_{\ell}\right)\right|$?

Quite easy. Since the group under consideration is finite generated we have for abelizator: $K^{\prime}=K /[K, K]=\mathbb{Z}_{m_{1}} \oplus \mathbb{Z}_{m_{2}} \oplus \ldots \oplus \mathbb{Z}_{m_{s}} \oplus \mathbb{Z}^{r}$.

Lemma 3

The number of homomorphisms from K into \mathbb{Z}_{d} is given by

$$
\left|\operatorname{Hom}\left(\mathrm{K}, \mathbb{Z}_{\mathrm{d}}\right)\right|=\left(\mathrm{m}_{1}, \mathrm{~d}\right)\left(\mathrm{m}_{2}, \mathrm{~d}\right) \ldots\left(\mathrm{m}_{\mathrm{s}}, \mathrm{~d}\right) \mathrm{d}^{\mathrm{r}}
$$

Proof. Since \mathbb{Z}_{d} is Abelian one can change K by K^{\prime}. We note $\left|\operatorname{Hom}\left(\mathbb{Z}_{\mathrm{m}}, \mathbb{Z}_{\mathrm{d}}\right)\right|=(\mathrm{m}, \mathrm{d})$ and $\left|\operatorname{Hom}\left(\mathbb{Z}, \mathbb{Z}_{\mathrm{d}}\right)\right|=\mathrm{d}$. Hence $\left|\operatorname{Hom}\left(\mathrm{K}, \mathbb{Z}_{\mathrm{d}}\right)\right|=\left|\operatorname{Hom}\left(\mathrm{K}^{\prime}, \mathbb{Z}_{\mathrm{d}}\right)\right|=\left(\mathrm{m}_{1}, \mathrm{~d}\right)\left(\mathrm{m}_{2}, \mathrm{~d}\right) \ldots\left(\mathrm{m}_{\mathrm{s}}, \mathrm{d}\right) \mathrm{d}^{\mathrm{r}}$. Following to P.Hall (1936) we have

$$
\left|\operatorname{Hom}\left(\Gamma, \mathbb{Z}_{\ell}\right)\right|=\sum_{\mathrm{d} \mid \ell}\left|\operatorname{Epi}\left(\Gamma, \mathbb{Z}_{\mathrm{d}}\right)\right|
$$

By the Möbius inversion formula

$$
\left|\operatorname{Epi}\left(\Gamma, \mathbb{Z}_{\ell}\right)\right|=\sum_{\mathrm{d} \mid \ell} \mu\left(\frac{\ell}{\mathrm{d}}\right)\left|\operatorname{Hom}\left(\Gamma, \mathbb{Z}_{\ell}\right)\right|
$$

where $\mu(n)$ is the Möbius function. We obtain as result:

Lemma 4

The number of epimorphisms of group K on \mathbb{Z}_{ℓ} is given by

$$
\left|\operatorname{Epi}\left(\mathrm{K}, \mathbb{Z}_{\ell}\right)\right|=\sum_{\mathrm{d} \mid \ell} \mu\left(\frac{\ell}{\mathrm{d}}\right)\left(\mathrm{m}_{1}, \mathrm{~d}\right)\left(\mathrm{m}_{2}, \mathrm{~d}\right) \ldots\left(\mathrm{m}_{\mathrm{s}}, \mathrm{~d}\right) \mathrm{d}^{\mathrm{r}}
$$

Corollary.

(i) $\operatorname{Epi}\left(\mathrm{F}_{\mathrm{r}}, \mathbb{Z}_{\ell}\right)=\sum_{\mathrm{d} \mid \ell} \mu\left(\frac{\ell}{\mathrm{d}}\right) \mathrm{d}^{\mathrm{r}}$. Follows from $F_{r}^{\prime}=\mathbb{Z}^{r}$ and Lemma 4.
(ii) $\operatorname{Epi}\left(\Phi_{\mathrm{g}}, \mathbb{Z}_{\ell}\right)=\sum_{\mathrm{d} \mid \ell} \mu\left(\frac{\ell}{\mathrm{d}}\right) \mathrm{d}^{2 \mathrm{~g}}$. Since $\Phi_{g}^{\prime}=\mathbb{Z}_{2 g}$.
(iii) $\operatorname{Epi}\left(\Lambda_{\mathrm{p}}, \mathbb{Z}_{\ell}\right)=\sum_{\mathrm{d} \mid \ell} \mu\left(\frac{\ell}{\mathrm{d}}\right)(2, \mathrm{~d}) \mathrm{d}^{\mathrm{p}-1} . \quad$ Since $\Lambda_{p}^{\prime}=\mathbb{Z}_{2} \oplus \mathbb{Z}^{p-1}$.

Coverings

- Counting surface coverings

As an application of the above results we have the following

Theorem 2 (V. Liskovets, 1971)

Let S be a bordered surface with the fundamental group $\pi_{1}(S)=F_{r}$. Then the number of non-equivalent n-fold coverings of S is given by

$$
N(n)=\frac{1}{n} \sum_{\substack{\ell \mid n \\ \ell m=n}} \sum_{d \mid \ell} \mu\left(\frac{\ell}{d}\right) d^{(r-1) m+1} M(m)
$$

where $M(m)$ is the number of subgroups of index m in the group F_{r}.
Recall the M.Hall's recursive formula

$$
M(m)=m(m!)^{r-1}-\sum_{j=1}^{m-1}(m-j)!^{r-1} M(j), \quad M(1)=1
$$

Coverings

- Proof of theorem 2

Proof. By the Schreier theorem any subgroup of index m in F_{r} is isomorphic to $\Gamma_{m}=F_{(r-1) m+1}$. By theorem 1

$$
N(n)=\frac{1}{n} \sum_{\substack{\ell \mid n \\ \ell m=n}}\left|\operatorname{Epi}\left(\Gamma_{\mathrm{m}}, \mathbb{Z}_{\ell}\right)\right| \mathrm{M}(\mathrm{~m})
$$

By Corollary (i) we have

$$
\left|\operatorname{Epi}\left(\Gamma_{\mathrm{m}}, \mathbb{Z}_{\ell}\right)\right|=\sum_{\mathrm{d} \mid \ell} \mu\left(\frac{\ell}{\mathrm{d}}\right) \mathrm{d}^{(\mathrm{r}-1) \mathrm{m}+1}
$$

and the result follows.

Coverings

- Counting surface coverings

The next application of Theorem 1 is the following result.

Theorem 3 (M., 1982)

Let S be a closed orientable surface with the fundamental group $\pi_{1}(S)=\Phi_{g}$. Then the number of non-equivalent n-fold coverings of S is given by

$$
N(n)=\frac{1}{n} \sum_{\substack{\ell \mid n \\ \ell m=n}} \sum_{d \mid \ell} \mu\left(\frac{\ell}{d}\right) d^{2(g-1) m+2} M(m)
$$

where $M(m)$ is the number of subgroups of index m in the group Φ_{g}.

Coverings

- Remark

Recall that ($M ., 1982$) the number of subgroups $M(m)$ in the fundamental group Φ_{g} of closed orientable surface of genus g is given by the following recurcive formula

$$
M(m)=m \beta_{m}-\sum_{j=1}^{m-1} \beta_{m-j} M(j), \quad M(1)=1
$$

where

$$
\beta_{k}=\sum_{\chi \in D_{k}}\left(\frac{k!}{f \chi}\right)^{2 g-2}
$$

D_{k} is the set of irreducible representations of a symmetric group S_{k} and f^{χ} is the degree of the representation χ.
One can change Φ_{g} by Λ_{p} and $2 g-2$ by $p-2$ in this statement.

Coverings

Some more result can be obtained in a similar way.

Theorem 4 (G. Pozdnyakova and M., 1986)

Let S be a closed non-orientable surface with the fundamental group $\pi_{1}(S)=\Lambda_{p}$. The number of non-equivalent n-fold coverings of S is given by

$$
N(n)=\frac{1}{n} \sum_{\substack{\ell \mid n \\ \ell m=n}} \sum_{d \mid \ell} \mu\left(\frac{\ell}{d}\right)\left(d^{m(p-2)+2} M^{+}(m)+(2, d) d^{m(p-2)+1} M^{-}(m)\right)
$$

where $M^{+}(m)$ and $M^{-}(m)$ are the numbers of orientable and non-orientable subgroups of index m in the group Λ_{p}, respectively.

Maps

- Maps on surfaces

Map on surface is an embedding $G \subset S$ of a graph G into S such that $S \backslash G$ is a union of 2-discs.

map

non-map

Maps

- Rooted maps

Rooted map is a map with a distinguished semiedge (\equiv dart, bit, pin, blade, brin ...).

Two different rooted maps

Maps

Two maps (S, G) and $\left(S, G^{\prime}\right)$ are equivalent if there exists an orientation preserving homeomorphism $h:(S, G) \rightarrow\left(S, G^{\prime}\right)$.
Two rooted maps (S, G) and $\left(S, G^{\prime}\right)$ are equivalent if there exists an orientation preserving homeomorphism $h:(S, G) \rightarrow\left(S, G^{\prime}\right)$ sending root to root.

Problem 1. Find the number $R_{g}(e)$ of non-equivalent rooted maps with e edges on a closed orientable surface of genus g.

Problem 2. Find the number $U_{g}(e)$ of non-equivalent maps with e edges on a closed orientable surface of genus g.

Maps

- Counting maps on orientable surface
\(\left.$$
\begin{array}{|c|c|}\hline \text { Maps } & \text { Groups } \\
\hline \text { Trivial map } & \Gamma=T(2, \infty, \infty) \\
\text { o----- } & \left\langle x, y:(x y)^{2}=1\right\rangle\end{array}
$$ \left\lvert\, $$
\begin{array}{c}\text { Rooted maps } \\
\text { of genus } g \\
\text { with } e \text { edges } \\
(=2 e \text { darts })\end{array}
$$ \begin{array}{c}Torsion free subgroups

of genus g and

of index 2 e in \Gamma\end{array}\right.\right]\)| Conjugacy classes |
| :---: |
| of genus g |
| with e edges |
| $(=2 e$ darts $)$ | | of torsion free |
| :---: |
| subgroups of genus g |
| and of index $2 e$ in Γ |

Maps

- Cyclic orbifold and its fundamental group

Let S be a closed surface of genus g and \mathbb{Z}_{ℓ} acts on S by homeomorphisms. We consider the factor space as orbifold (e.m. surface with prescribed signature).

$$
S / \mathbb{Z}_{\ell} \equiv O\left[\gamma ; m_{1}, m_{2}, \ldots, m_{r}\right]
$$

Example. S is a torus, $\ell=6$.

$\mathrm{S} / \mathbb{Z}_{6}=\mathrm{O}[0 ; 2,3,6]$

Maps

- Cyclic orbifold and its fundamental group
W. Harvey (1966) gave a complete description of signatures for cyclic orbifolds. In particular, the Riemann-Hurwitz formula holds

$$
2 g-2=\ell\left(2 \gamma-2+\sum_{i=1}^{r}\left(1-\frac{1}{m_{i}}\right)\right)
$$

and the fundamental group of orbifold O is given by

$$
\begin{aligned}
& \pi_{1}^{o r b}(O)=\left\langle a_{1}, b_{1}, \ldots, a_{\gamma}, b_{\gamma}, e_{1}, \ldots, e_{r}:\right. \\
& \left.\prod_{i=1}^{g}\left[a_{i}, b_{i}\right] \prod_{j=1}^{r} e_{j}=e_{1}^{m_{1}}=e_{2}^{m_{2}}=\ldots=e_{r}^{m_{r}}=1\right\rangle
\end{aligned}
$$

Maps

One of the most important consequences of Theorem 1 is the following result.

Theorem 5 (R. Nedela and M., 2006)

Let S be a closed oriented surface of genus g. Then the number of maps having e edges and counting up to orientation preserving homeomorphism of S is given by the formula

$$
U_{g}(e)=\frac{1}{2 e} \sum_{\substack{\ell \mid 2 e \\ \ell m=2 e}} \sum_{O=S / \mathbb{Z}_{\ell}} \operatorname{Epi}^{\circ}\left(\pi_{1}(O), \mathbb{Z}_{\ell}\right) \nu_{O}(m)
$$

where $\operatorname{Epi}^{\circ}\left(\pi_{1}(O), \mathbb{Z}_{\ell}\right)$ is the number of order preserving epimorphisms $\pi_{1}(O) \rightarrow \mathbb{Z}_{\ell}$ and $\nu_{O}(m)$ is the number of rooted maps on the orbifold O having m darts.

Maps

Explicit formula for $\mathrm{Epi}^{\circ}\left(\pi_{1}(O), \mathbb{Z}_{\ell}\right)$ is given by the following proposition.

Proposition 1

Let $O=O\left(\gamma ; m_{1}, m_{2}, \ldots, m_{r}\right)$ be an orbifold and $\Gamma=\pi_{1}(O)$ is the orbifold fundamental group and $m=$ l.c.m. $\left(m_{1}, m_{2}, \ldots, m_{r}\right)$. Then

$$
\begin{gathered}
\operatorname{Epi}^{\circ}\left(\Gamma, \mathbb{Z}_{\ell}\right)=\sum_{m|d| \ell} \mu\left(\frac{\ell}{d}\right) d^{2 \gamma} \mathrm{E}\left(m_{1}, m_{2}, \ldots, m_{r}\right) \text {, where } \\
\mathrm{E}\left(m_{1}, m_{2}, \ldots, m_{r}\right)=\frac{1}{m} \sum_{k=1}^{m} \Phi\left(k, m_{1}\right) \cdot \ldots \cdot \Phi\left(k, m_{r}\right) \\
\text { and } \Phi(k, n)=\sum_{\substack{1 \leq s \leq n \\
(s, n)=1}} \exp \frac{2 \pi i k s}{n}
\end{gathered}
$$

is the von Sterneck function.

Maps

Remark. By O. Hölder

$$
\Phi(k, n)=\frac{\varphi(n)}{\varphi\left(\frac{n}{(k, n)}\right)} \mu\left(\frac{n}{(k, n)}\right),
$$

where $\varphi(n)$ and $\mu(n)$ are Euler and Möbius functions, respectively.
The number $\nu_{O}(m)$ of rooted maps on the orbifold O having m darts is given by the following proposition.

Proposition 2

Let $O=O\left[\gamma ; 2^{q_{2}} 3^{q_{3}} \ldots \ell^{q_{\ell}}\right]$ be an orbifold. Then

$$
\nu_{O}(m)=\sum_{s=0}^{q_{2}}\binom{m}{s}\binom{\frac{m-s}{2}+2-2 \gamma}{q_{2}-s, q_{3}, \ldots, q_{\ell}} N_{g}\left(\frac{m-s}{2}\right)
$$

where $N_{g}(e)$ is the number of rooted maps with e edges on a closed orientable surface of genus g.

Maps

- Rooted maps

The numbers $N_{g}(e)$ were calculated by many people: Tutte, Arques, Giorgetti, Bender, Wormald, Walsh, Lehman, Canfield, Robinson and others. In particular,

$$
\begin{gathered}
N_{0}(e)=\frac{2(2 e)!3^{e}}{e!(e+2)!}, \quad(\text { Tutte, 1963) } \\
N_{1}(e)=\sum_{k=0}^{e-2} 2^{e-3-k}\left(3^{e-1}-3^{k}\right)\binom{e+k}{k} . \quad \text { (D. Arques, 1987) }
\end{gathered}
$$

Maps

- Denerating function for the number of rooted maps

More generally, for $g \geq 1$ the ordinary generating function $Q_{g}(z)=\sum_{n \geq 0} N_{g}(n) z^{n}$ is given by

$$
Q_{g}(z)=\frac{m^{2 g}(1-3 m)^{2 g-2} P_{g}(m)}{(1-6 m)^{5 g-3}(1-2 m)^{5 g-4}}
$$

where $m=\frac{1-\sqrt{1-12 z}}{6}$ and $P_{g}(m)$ is an integer polynomial of m of degree $6 g-6$.

At the present (2011) polynomials $P_{g}(m)$ are known up to $g \leq 11$. This allowed us (T. Walsh, A. Giorgetti and A. Mednykh) to count unrooted maps by number of edges up to genus 11 .

Hypermaps

From maps to hypermaps

Idea: edge consists of two darts hyperedge consists of a few darts

hyperedge (3 darts)

Hypermaps

- Counting unrooted hypermaps through rooted ones

Theorem 6 (R. Nedela and M., 2006)

The number of unrooted hypermaps with n darts on a closed orientable surface S_{g} of genus g is given by

$$
H_{g}(n)=\frac{1}{n} \sum_{\substack{\ell \mid n \\ \ell m=n}} \sum_{O=S_{g} / \mathbb{Z}_{\ell}} E p i^{\circ}\left(\pi_{1}(O), \mathbb{Z}_{\ell}\right)\binom{m+2-2 \gamma}{q_{2}, q_{3}, \ldots, q_{\ell}} h_{\gamma}(m),
$$

where the second sum is taken over all cyclic orbifolds $O=S_{g} / \mathbb{Z}_{\ell}$ of the signature $\left[\gamma ; 2^{q_{2}} 3^{q_{3}} \ldots \ell^{q_{\ell}}\right],\binom{p}{q_{2}, q_{3}, \ldots, q_{\ell}}$ is the multinomial coefficient and $h_{\gamma}(m)$ is the number of rooted hypermaps with m darts on S_{γ}.

Hypermaps

- Rooted hypermaps

Before it was known that

$$
h_{0}(m)=\frac{3 \cdot 2^{m-1}}{(m+1)(m+2)}\binom{2 m}{m}
$$

T.Walsh (1975)
and

$$
h_{1}(m)=\frac{1}{3} \sum_{k=0}^{m-3} 2^{k}\left(4^{m-2-k}-1\right)\binom{m+k}{k}
$$

D.Arquès (1987)

Orientable coverings

- The Liskovets problem

Let \mathcal{M} be a non-orientable manifold with a finitely generated fundamental group $\Gamma=\pi_{1}(\mathcal{M})$.

Liskovets Problem (Dresden, 1996)

To find the number of n-fold non-equivalent orientable coverings of \mathcal{M}.
To solve the problem we have to use the following version of the main counting principle. Let \mathcal{P} be a property of subgroups of Γ invariant under conjugation (for example: to be normal, to be torsion free, to be orientable and so on).

Orientable coverings

- Counting conjugacy classes of subgroups with prescribed property

Theorem 7 (R. Nedela and M., 2006)

Let Γ a finitely generated group. Then the number of conjugacy classes of subgroups of index n in Γ satisfying property \mathcal{P} is given by

$$
N^{\mathcal{P}}(n)=\frac{1}{n} \sum_{\substack{\ell \mid n \\ \ell m=n}} \sum_{\substack{K<\Gamma \\ m}} E p i^{\mathcal{P}}\left(K, \mathbb{Z}_{\ell}\right)
$$

where $E p i^{\mathcal{P}}\left(K, \mathbb{Z}_{\ell}\right)$ is the number of epimorphisms of the group K onto \mathbb{Z}_{ℓ} whose kernel has the property \mathcal{P}.

Orientable coverings

Fix the property $\mathcal{P}=\mathcal{P}^{-}$for subgroups of Γ "to be non-orientable". Then a complete solution of the Liskovets problem is given by

Theorem 8 (J. Ho Kwak, R. Nedela and M., 2008)

Let \mathcal{M} be a connected non-orientable manifold with a finitely generated fundamental group $\Gamma=\pi_{1}(\mathcal{M})$. Then the number non-equivalent n-fold non-orientable coverings of \mathcal{M} is equal to

$$
N_{\Gamma}^{-}(n)=\frac{1}{n} \sum_{\substack{\ell \mid n \\ \ell m=n}} \sum_{\substack{K^{-}<\Gamma \\ m}} E p i^{-}\left(K^{-}, \mathbb{Z}_{\ell}\right),
$$

where the second sum is taken over all non-orientable subgroups of index m in Γ and $E p i^{-}\left(K^{-}, \mathbb{Z}_{\ell}\right)$ is the number of epimorphisms of the group K^{-} onto \mathbb{Z}_{ℓ} with non-orientable kernel.

Orientable coverings

- Reflexible coverings

Let \mathcal{M} be a non-orientable manifold or orbifold. An orientable covering $p: U^{+} \rightarrow \mathcal{M}$ is called to be reflexible if there exists an orientation reversing homeomorphism $h: U^{+} \rightarrow U^{+}$such that $p \circ h=p$. In particular, any regular covering p is reflexible.

Теорема 10 (J. Ho Kwak, R. Nedela and M., 2008)

Let \mathcal{M} be a connected non-orientable manifold with $\pi_{1}(\mathcal{M})=\Gamma$. Then the number of $2 n$-fold reflexible coverings of \mathcal{M} is equal to

$$
A_{\Gamma}(n)=\frac{1}{2 n} \sum_{\substack{\ell \mid n \\ \ell m=n}} \sum_{K^{-}<\Gamma} E p i^{+}\left(K^{-}, \mathbb{Z}_{2 \ell}\right)
$$

where the second sum is taken over all non-orientable subgroups of index m in Γ and $E p i^{+}\left(K^{-}, \mathbb{Z}_{2 \ell}\right)$ is the number of epimorphisms of the group K^{-} onto $\mathbb{Z}_{2 \ell}$ with orientable kernel.

Orientable coverings

- Chiral pairs and twins

Two maps on a closed orientable surface are chiral (or twins) if they are homeomorphic under orientation reversing homeomorphism but are not homeomorphic under orientation preserving one.

Problem. Find the number of twins on closed orientable surface with a given number of edges.

A.Breda, R.Nedela and A.Mednykh applied the above theorem on reflexible coverings to find the number of twins with prescribed number of edges. (Discrete Mathematics, Vol. 310, No. 6-7, P. 1184-1203, 2010).

Disconnected coverings

Теорема 11 (V. A. Liskovets and M., 2009)

Let \mathcal{M} be a connected manifold with finitely generated fundamental group $\Gamma=\pi_{1}(\mathcal{M})$. Denote by b_{n} the number of non-equivalent (connected or not) n-fold coverings over \mathcal{M} and set $b(x)=1+b_{1} x+b_{2} x^{2}+\ldots$. Then

$$
b(x)=\exp \left(\sum_{n=1}^{\infty}\left(\sum_{\substack{\ell \mid n \\ \ell m=n}} \sum_{\substack{K<\Gamma}} \operatorname{Hom}\left(K, \mathbb{Z}_{\ell}\right)\right) \frac{x^{n}}{n}\right)
$$

where $\operatorname{Hom}\left(K, \mathbb{Z}_{\ell}\right)$ is the number of homomorphisms of the group K into a cyclic group \mathbb{Z}_{ℓ} of order ℓ.

We note that the number of connected n-fold coverings $N_{\Gamma}(n)$ is related with $b(x)$ by the following Euler transform $b(x)=\prod^{\infty}\left(1-x^{n}\right)^{-N_{\Gamma}(n)}$.

Disconnected coverings

- Examples
1°. Let $\mathcal{M}=S^{1}$ be the unite circle. Then $b_{n}=p(n)$ is the Hardy-Ramanujan partion function.
2°. Let G be a finite graph with Betty number $r=\beta(G)$. Then $\Gamma=\pi_{1}(G)=F_{r}$ is a free group of rank r

$$
b_{n}=\sum_{c_{1}+2 c_{2}+\ldots+n c_{n}=n} \prod_{i=1}^{n}\left(i^{c_{i}} c_{i}!\right)^{r-1}
$$

This is the result by J.H. Kwak and Y. Lee (1996).
3°. Let $\mathcal{M}=S_{g}$ be a closed orientable surface of genus g. Then
$b_{1}=1, \quad b_{2}=4 \cdot 2^{\nu}, b_{3}=2 \cdot 6^{\nu}+4 \cdot 3^{\nu}+2 \cdot 2^{\nu}$, $b_{4}=2 \cdot 24^{\nu}+12^{\nu}+6 \cdot 8^{\nu}+9 \cdot 4^{\nu}+3 \cdot 3^{\nu}$, where $\nu=2 g-2$.
In particular, for $g=1$ this is the sequence $\mathbf{A} 061256$ from "On-Line Encyclopedia of Integer Sequences"
$1,4,8,21,39,92,170,360,667,1316$,

