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.. Regular covering projection of connected graphs

A surjective mapping p : X̃ → X arising as
quotienting by the action of a semiregular subgroup CTp ≤ Aut X̃

p−1(v) and p−1(e) = orbits of CTp
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.. Generic construction/ reconstruction

Cayley voltage assignments ζ : X → Γ ∼= CTp
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.. Motivation: Studying symmetries of graphs

Lifting automorphisms along regular covering projections

X̃
g̃−−−−→ X̃

p

y yp

X
g−−−−→ X .

Theorem (Djoković ’74). G is s-arc trans. ⇒ G̃ is s-arc trans.

(J. Conway)

Applications. Construction of infinite families, Compiling lists,
Classification of graphs with interesting symmetry properties.
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.. Lifting automorphisms: Main questions

Lifting conditions (in terms of voltages)

Given X̃ → X , does G ≤ AutX lift?

Given X , find all G -admissible covers (of a certain kind)

Extensions (in terms of voltages)

Study the extension 1 → CTp → G̃ → G → 1.

Given X and G ≤ AutX , find all covers (of a certain kind) s. t.
G lifts in a prescribed way (eg. G̃ ∼= CTp o G ).

Algorithmic and complexity aspects
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.. Split extensions 1 → CTp → G̃ → G → 1

Let X̃ → X be a G -admissible regular cover given by ζ : X → Γ. Denote

g̃tg : fibb → fibgb, 1 7→ tg

Ḡ = {g̃tg | g ∈ G} algebraic transversal to CTp

Theorem 1.

CTp → G̃ → G is split ⇔ there exists t : G → Γ, tid = 1

tgh = tgg
#b(th) · g#b(ζQ)ζ

−1
gQ

where g#b(ζW) = ζgW, with W : b → b and Q : hb → b arbitrary.

There exists a canonical representation of G̃ as Γoθ G.
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Ḡ = {g̃tg | g ∈ G} algebraic transversal to CTp

Theorem 1.

CTp → G̃ → G is split ⇔ there exists t : G → Γ, tid = 1

tgh = tgg
#b(th) · g#b(ζQ)ζ

−1
gQ

where g#b(ζW ) = ζgW , with W : b → b and Q : hb → b arbitrary.

There exists a canonical representation of G̃ as Γoθ G .

6 / 12



. . . . . .

.. Split extensions 1 → CTp → G̃ → G → 1

Let X̃ → X be a G -admissible regular cover given by ζ : X → Γ. Denote

g̃tg : fibb → fibgb, 1 7→ tg
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.. How difficult? tgh = tgg
#b(th) · g#b(ζQ)ζ

−1
gQ

tgh = tgg
#b(th) · λb

g ,h

a kind of ”twisted derivation”

Problem
Computation of g#b (in addition, given by a formula)

For abelian covers
g#b = g# and g 7→ g# is a homomorphism G → Aut Γ

tgh = tg + g · th + λg ,h

tgh = tg +Mg th + λg ,h

system of r |G |2 linear equations with r |G | unknowns over ZZ

Theorem 2.
The problem whether a given group lifts along along a given abelian
regular cover as a split extension of CTp can be solved in polynomial
time (in terms of r = Betti(X) and |G |).
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.. Split extensions – special cases wrt the action of Ḡ

Some Ḡ acts transitively.

G acts transitively on X and on X̃ (via Ḡ ∼= G ).

Q3 → K4 ZZ2 × S4 → S4.

Feng, Kutnar, M. Marušič, On 2-fold covers of graphs, 2008.

Some Ḡ has an invariant section (over a G -invariant subset Ω ⊂ V ).

G -split cover (over Ω)

Q3 → K4 ZZ2 × A4 → A4
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Some Ḡ has an invariant section (over a G -invariant subset Ω ⊂ V ).

G -split cover (over Ω)

Q3 → K4 ZZ2 × A4 → A4

8 / 12



. . . . . .

.. Split extensions – special cases wrt the action of Ḡ
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.. Split covers – Split extensions with an invariant section

Trivial consequence of Theorem 1

Theorem 3 (recognition). (M, Nedela, Škoviera, 2000) G lifts with an
invariant section over Ω ⇔ X̃ → X can be reconstructed by Cayley
voltages ζ : X → Γ that are (1,G )-invariant on Ω:

ζW = 1 ⇒ ζgW = 1, for all W : Ω → Ω.

Can be retold differently: there is an automorphism g ♯Ω : Γ → Γ

g ♯Ω : ζW 7→ ζgW , W : Ω → Ω

Special case: Ω = V (X ). Biggs, Algebraic Graph Theory, 1972

g ♯ : ζx 7→ ζgx , x = arc.
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.. (1,G )-invariance: How difficult?

Define ConeX (Ω), and extend a given ζ on X to ζ∗ on ConeX (Ω)

s.t. ζ∗ trivial on arcs at ∗

Theorem 4
ζ is (1,G )-invariant on Ω ⇔ G∗ lifts along Cov(ζ∗) → ConeX (Ω).

Theorem 5.
Is a given assignmet ζ is (1,G )-invariant? – can be tested in polynomial
time (even efficiently, provided that ζ is given by permutation voltages).

Does a given group lift as a split extension with an invariant section? –
Problem : In terms of voltages, one needs to test |Γ||V |−1 different
assignments (!)

For abelian covers one can use Theorem 2 to construct all complements
and check their orbits ...
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. . . . . .

.. Example – finding all G -split covers

Find all connceted regular elementary abelian covers of K4 such that
the cyclic group ZZ4 lifts as a split extension with an invariant section.

In view of Theorem 4, and using results about elementary abelian covers
(M, Marušič, Potočnik, 2003) we obtain (up to isomorphism of covering
projections)

Line Condition Dim Voltage array

1. p ≡ −1 (4) 1 [ 1 ] , [ 1 ] , [ 1 ] , [ 1 ] , [ 0 ] , [ 0 ]

2. 2 [ 11 ] ,
[

1
−1

]
,
[−1
−1

]
,
[−1

1

]
, [ 00 ] , [

0
0 ]

3. 3
[
1
1
1

]
,
[

1
1
−1

]
,
[

1
−1
−1

]
,
[

1
−1
1

]
,
[
0
0
0

]
,
[
0
0
0

]
4. p ≡ 1 (4), λ2

0 = −1 1 [ 1 ] , [ 1 ] , [ 1 ] , [ 1 ] , [ 0 ] , [ 0 ]
5. 1 [ 1 ] , [ λ0 ] , [−1 ] , [−λ0 ] , [ 0 ] , [ 0 ]
6. 2 [ 11 ] ,

[
1

−λ0

]
,
[

1
−1

]
,
[

1
λ0

]
, [ 00 ] , [

0
0 ]

7. 2 [ 11 ] ,
[

λ0

−λ0

]
,
[−1
−1

]
,
[−λ0

λ0

]
, [ 00 ] , [

0
0 ]

8. 3
[
1
1
1

]
,
[ 1

λ0

−λ0

]
,
[

1
−1
−1

]
,
[ 1
−λ0

λ0

]
,
[
0
0
0

]
,
[
0
0
0

]
9. p = 2 1 [ 1 ] , [ 1 ] , [ 1 ] , [ 1 ] , [ 1 ] , [ 1 ]
10. 2 [ 00 ] , [

0
0 ] , [

0
0 ] , [

0
0 ] , [

1
1 ] , [

1
0 ]

11 / 12
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(M, Marušič, Potočnik, 2003) we obtain (up to isomorphism of covering
projections)

Line Condition Dim Voltage array

1. p ≡ −1 (4) 1 [ 1 ] , [ 1 ] , [ 1 ] , [ 1 ] , [ 0 ] , [ 0 ]

2. 2 [ 11 ] ,
[

1
−1

]
,
[−1
−1

]
,
[−1

1

]
, [ 00 ] , [

0
0 ]

3. 3
[
1
1
1

]
,
[

1
1
−1

]
,
[

1
−1
−1

]
,
[

1
−1
1

]
,
[
0
0
0

]
,
[
0
0
0

]
4. p ≡ 1 (4), λ2

0 = −1 1 [ 1 ] , [ 1 ] , [ 1 ] , [ 1 ] , [ 0 ] , [ 0 ]
5. 1 [ 1 ] , [ λ0 ] , [−1 ] , [−λ0 ] , [ 0 ] , [ 0 ]
6. 2 [ 11 ] ,

[
1

−λ0

]
,
[

1
−1

]
,
[

1
λ0

]
, [ 00 ] , [

0
0 ]

7. 2 [ 11 ] ,
[

λ0

−λ0

]
,
[−1
−1

]
,
[−λ0

λ0

]
, [ 00 ] , [

0
0 ]

8. 3
[
1
1
1

]
,
[ 1

λ0

−λ0

]
,
[

1
−1
−1

]
,
[ 1
−λ0

λ0

]
,
[
0
0
0

]
,
[
0
0
0

]
9. p = 2 1 [ 1 ] , [ 1 ] , [ 1 ] , [ 1 ] , [ 1 ] , [ 1 ]
10. 2 [ 00 ] , [

0
0 ] , [

0
0 ] , [

0
0 ] , [

1
1 ] , [

1
0 ]
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Thank you!
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