## On the Split Structure of Lifted groups

Aleksander Malnič<br>University of Ljubljana<br>Joint work with Rok Požar

Workshop on Symmetry in Graphs, Maps and Polytopes The Fields Institute, Toronto, Canada

October 24-27, 2011

## Regular covering projection of connected graphs

## Regular covering projection of connected graphs



A surjective mapping $p: \tilde{X} \rightarrow X$ arising as quotienting by the action of a semiregular subgroup $\mathrm{CT}_{p} \leq \operatorname{Aut} \tilde{X}$

$$
p^{-1}(v) \text { and } p^{-1}(e)=\text { orbits of } \mathrm{CT}_{p}
$$

## Generic construction/ reconstruction

Cayley voltage assignments $\zeta: X \rightarrow \Gamma \cong \mathrm{CT}_{p}$

## Generic construction/ reconstruction

Cayley voltage assignments $\zeta: X \rightarrow \Gamma \cong \mathrm{CT}_{p}$


## Motivation: Studying symmetries of graphs

## Motivation: Studying symmetries of graphs

- Lifting automorphisms along regular covering projections

$$
\begin{array}{cc}
\tilde{X} \xrightarrow{\tilde{\mathrm{~g}}} & \tilde{X} \\
p \downarrow \\
& \\
X \xrightarrow{g} & \downarrow^{p} \\
X
\end{array}
$$

## Motivation: Studying symmetries of graphs

- Lifting automorphisms along regular covering projections

$$
\begin{array}{ccc}
\tilde{X} \xrightarrow{\tilde{\mathrm{~g}}} & \tilde{X} \\
p \downarrow & & { }^{p} \\
& \\
X & \mathrm{~g} \\
\hline
\end{array}
$$

- Theorem (Djoković '74). $G$ is $s$-arc trans. $\Rightarrow \tilde{G}$ is $s$-arc trans.
(J. Conway)


## Motivation: Studying symmetries of graphs

- Lifting automorphisms along regular covering projections

- Theorem (Djoković '74). $G$ is $s$-arc trans. $\Rightarrow \tilde{G}$ is $s$-arc trans.
(J. Conway)
- Applications. Construction of infinite families, Compiling lists, Classification of graphs with interesting symmetry properties.


## Lifting automorphisms: Main questions

## Lifting automorphisms: Main questions

Lifting conditions (in terms of voltages)

## Lifting automorphisms: Main questions

Lifting conditions (in terms of voltages)

- Given $\tilde{X} \rightarrow X$, does $G \leq \operatorname{Aut} X$ lift?


## Lifting automorphisms: Main questions

Lifting conditions (in terms of voltages)

- Given $\tilde{X} \rightarrow X$, does $G \leq \operatorname{Aut} X$ lift?
- Given $X$, find all $G$-admissible covers (of a certain kind)


## Lifting automorphisms: Main questions

Lifting conditions (in terms of voltages)

- Given $\tilde{X} \rightarrow X$, does $G \leq \operatorname{Aut} X$ lift?
- Given $X$, find all $G$-admissible covers (of a certain kind)

Extensions (in terms of voltages)

## Lifting automorphisms: Main questions

Lifting conditions (in terms of voltages)

- Given $\tilde{X} \rightarrow X$, does $G \leq \operatorname{Aut} X$ lift?
- Given $X$, find all $G$-admissible covers (of a certain kind)

Extensions (in terms of voltages)

- Study the extension $1 \rightarrow \mathrm{CT}_{p} \rightarrow \tilde{G} \rightarrow G \rightarrow 1$.


## Lifting automorphisms: Main questions

Lifting conditions (in terms of voltages)

- Given $\tilde{X} \rightarrow X$, does $G \leq \operatorname{Aut} X$ lift?
- Given $X$, find all $G$-admissible covers (of a certain kind)

Extensions (in terms of voltages)

- Study the extension $1 \rightarrow \mathrm{CT}_{p} \rightarrow \tilde{G} \rightarrow G \rightarrow 1$.
- Given $X$ and $G \leq \operatorname{Aut} X$, find all covers (of a certain kind) s. t. $G$ lifts in a prescribed way (eg. $\tilde{G} \cong \mathrm{CT}_{p} \rtimes G$ ).


## Lifting automorphisms: Main questions

Lifting conditions (in terms of voltages)

- Given $\tilde{X} \rightarrow X$, does $G \leq \operatorname{Aut} X$ lift?
- Given $X$, find all $G$-admissible covers (of a certain kind)

Extensions (in terms of voltages)

- Study the extension $1 \rightarrow \mathrm{CT}_{p} \rightarrow \tilde{G} \rightarrow G \rightarrow 1$.
- Given $X$ and $G \leq \operatorname{Aut} X$, find all covers (of a certain kind) s. t. $G$ lifts in a prescribed way (eg. $\tilde{G} \cong \mathrm{CT}_{p} \rtimes G$ ).

Algorithmic and complexity aspects

## Split extensions $1 \rightarrow \mathrm{CT}_{p} \rightarrow \tilde{G} \rightarrow G \rightarrow 1$

Let $\tilde{X} \rightarrow X$ be a $G$-admissible regular cover given by $\zeta: X \rightarrow \Gamma$. Denote

$$
\begin{aligned}
& \tilde{g}_{t_{g}}: \mathrm{fib}_{b} \rightarrow \mathrm{fib}_{g b}, \quad 1 \mapsto t_{g} \\
& \bar{G}=\left\{\tilde{g}_{t_{g}} \mid g \in G\right\} \text { algebraic transversal to } \mathrm{CT}_{p}
\end{aligned}
$$

## Split extensions $1 \rightarrow \mathrm{CT}_{p} \rightarrow \tilde{G} \rightarrow G \rightarrow 1$

Let $\tilde{X} \rightarrow X$ be a $G$-admissible regular cover given by $\zeta: X \rightarrow \Gamma$. Denote

$$
\begin{gathered}
\tilde{g}_{t_{g}}: \mathrm{fib}_{b} \rightarrow \mathrm{fib}_{g b}, \quad 1 \mapsto t_{g} \\
\bar{G}=\left\{\tilde{g}_{t_{g}} \mid g \in G\right\} \text { algebraic transversal to } \mathrm{CT}_{p}
\end{gathered}
$$

Theorem 1.

## Split extensions $1 \rightarrow \mathrm{CT}_{p} \rightarrow \tilde{G} \rightarrow G \rightarrow 1$

Let $\tilde{X} \rightarrow X$ be a $G$-admissible regular cover given by $\zeta: X \rightarrow \Gamma$. Denote

$$
\begin{gathered}
\tilde{g}_{t_{g}}: \mathrm{fib}_{b} \rightarrow \mathrm{fib}_{g b}, \quad 1 \mapsto t_{g} \\
\bar{G}=\left\{\tilde{g}_{t_{g}} \mid g \in G\right\} \text { algebraic transversal to } \mathrm{CT}_{p}
\end{gathered}
$$

## Theorem 1.

- $\mathrm{CT}_{p} \rightarrow \tilde{G} \rightarrow G$ is split $\Leftrightarrow$ there exists $t: G \rightarrow \Gamma, t_{i d}=1$

$$
t_{g h}=t_{g} g^{\# b}\left(t_{h}\right) \cdot g^{\# b}\left(\zeta_{Q}\right) \zeta_{g Q}^{-1}
$$

where $g^{\# b}\left(\zeta_{W}\right)=\zeta_{g W}$, with $W: b \rightarrow b$ and $Q: h b \rightarrow b$ arbitrary.

Let $\tilde{X} \rightarrow X$ be a $G$-admissible regular cover given by $\zeta: X \rightarrow \Gamma$. Denote

$$
\begin{gathered}
\tilde{g}_{t_{g}}: \mathrm{fib}_{b} \rightarrow \mathrm{fib}_{g b}, \quad 1 \mapsto t_{g} \\
\bar{G}=\left\{\tilde{g}_{t_{g}} \mid g \in G\right\} \text { algebraic transversal to } \mathrm{CT}_{p}
\end{gathered}
$$

## Theorem 1.

- $\mathrm{CT}_{p} \rightarrow \tilde{G} \rightarrow G$ is split $\Leftrightarrow$ there exists $t: G \rightarrow \Gamma, t_{i d}=1$

$$
t_{g h}=t_{g} g^{\# b}\left(t_{h}\right) \cdot g^{\# b}\left(\zeta_{Q}\right) \zeta_{g Q}^{-1}
$$

where $g^{\# b}\left(\zeta_{w}\right)=\zeta_{g W}$, with $W: b \rightarrow b$ and $Q: h b \rightarrow b$ arbitrary.

- There exists a canonical representation of $\tilde{G}$ as $\Gamma \rtimes_{\theta} G$.

How difficult? $\quad t_{g h}=t_{g} g^{\# b}\left(t_{h}\right) \cdot g^{\# b}\left(\zeta_{Q}\right) \zeta_{g Q}^{-1}$

## How difficult? $\quad t_{g h}=t_{g} g^{\# b}\left(t_{h}\right) \cdot g^{\# b}\left(\zeta_{Q}\right) \zeta_{g Q}^{-1}$

$$
t_{g h}=t_{g} g^{\# b}\left(t_{h}\right) \cdot \lambda_{g, h}^{b}
$$

a kind of "twisted derivation"

## How difficult? $\quad t_{g h}=t_{g} g^{\# b}\left(t_{h}\right) \cdot g^{\# b}\left(\zeta_{Q}\right) \zeta_{g Q}^{-1}$

$$
t_{g h}=t_{g} g^{\# b}\left(t_{h}\right) \cdot \lambda_{g, h}^{b}
$$

a kind of "twisted derivation"

## Problem

Computation of $g^{\# b}$ (in addition, given by a formula)

## How difficult? $\quad t_{g h}=t_{g} g^{\# b}\left(t_{h}\right) \cdot g^{\# b}\left(\zeta_{Q}\right) \zeta_{g Q}^{-1}$

$$
t_{g h}=t_{g} g^{\# b}\left(t_{h}\right) \cdot \lambda_{g, h}^{b}
$$

a kind of "twisted derivation"

## Problem

Computation of $g^{\# b}$ (in addition, given by a formula)

For abelian covers
$g^{\# b}=g^{\#}$ and $g \mapsto g^{\#}$ is a homomorphism $G \rightarrow$ Aut $\Gamma$

## How difficult? $\quad t_{g h}=t_{g} g^{\# b}\left(t_{h}\right) \cdot g^{\# b}\left(\zeta_{Q}\right) \zeta_{g Q}^{-1}$

$$
t_{g h}=t_{g} g^{\# b}\left(t_{h}\right) \cdot \lambda_{g, h}^{b}
$$

a kind of "twisted derivation"

## Problem

Computation of $g^{\# b}$ (in addition, given by a formula)
For abelian covers

$$
\begin{gathered}
g^{\# b}=g^{\#} \text { and } g \mapsto g^{\#} \text { is a homomorphism } G \rightarrow \text { Aut } \Gamma \\
t_{g h}=t_{g}+g \cdot t_{h}+\lambda_{g, h}
\end{gathered}
$$

## How difficult? $\quad t_{g h}=t_{g} g^{\# b}\left(t_{h}\right) \cdot g^{\# b}\left(\zeta_{Q}\right) \zeta_{g Q}^{-1}$

$$
t_{g h}=t_{g} g^{\# b}\left(t_{h}\right) \cdot \lambda_{g, h}^{b}
$$

a kind of "twisted derivation"

## Problem

Computation of $g^{\# b}$ (in addition, given by a formula)
For abelian covers
$g^{\# b}=g^{\#}$ and $g \mapsto g^{\#}$ is a homomorphism $G \rightarrow$ Aut $\Gamma$

$$
t_{g h}=t_{g}+g \cdot t_{h}+\lambda_{g, h}
$$

$$
\underline{t}_{g h}=\underline{t}_{g}+M_{g} \underline{t}_{h}+\underline{\lambda}_{g, h}
$$

system of $r|G|^{2}$ linear equations with $r|G|$ unknowns over $\mathbb{Z}$

## How difficult? $\quad t_{g h}=t_{g} g^{\# b}\left(t_{h}\right) \cdot g^{\# b}\left(\zeta_{Q}\right) \zeta_{g Q}^{-1}$

$$
t_{g h}=t_{g} g^{\# b}\left(t_{h}\right) \cdot \lambda_{g, h}^{b}
$$

a kind of "twisted derivation"

## Problem

Computation of $g^{\# b}$ (in addition, given by a formula)
For abelian covers

$$
\begin{gathered}
g^{\# b}=g^{\#} \text { and } g \mapsto g^{\#} \text { is a homomorphism } G \rightarrow \text { Aut } \Gamma \\
t_{g h}=t_{g}+g \cdot t_{h}+\lambda_{g, h} \\
\underline{t}_{g h}=\underline{t}_{g}+M_{g} \underline{t}_{h}+\underline{\lambda}_{g, h}
\end{gathered}
$$

system of $r|G|^{2}$ linear equations with $r|G|$ unknowns over $\mathbb{Z}$
Theorem 2.
The problem whether a given group lifts along along a given abelian regular cover as a split extension of $\mathrm{CT}_{p}$ can be solved in polynomial time (in terms of $r=\operatorname{Betti}(\mathrm{X})$ and $|G|$ ).

## Split extensions - special cases wrt the action of $\bar{G}$

## Split extensions - special cases wrt the action of $\bar{G}$

Some $\bar{G}$ acts transitively.
$G$ acts transitively on $X$ and on $\tilde{X}(\operatorname{via} \bar{G} \cong G)$.

## Split extensions - special cases wrt the action of $\bar{G}$

Some $\bar{G}$ acts transitively.

$$
\begin{aligned}
& G \text { acts transitively on } X \text { and on } \tilde{X} \text { (via } \bar{G} \cong G) . \\
& \qquad Q_{3} \rightarrow K_{4} \quad \mathbb{Z}_{2} \times S_{4} \rightarrow S_{4} .
\end{aligned}
$$

## Split extensions - special cases wrt the action of $\bar{G}$

Some $\bar{G}$ acts transitively.

$$
\begin{aligned}
& G \text { acts transitively on } X \text { and on } \tilde{X} \text { (via } \bar{G} \cong G) . \\
& \qquad Q_{3} \rightarrow K_{4} \quad \mathbb{Z}_{2} \times S_{4} \rightarrow S_{4} .
\end{aligned}
$$

Feng, Kutnar, M. Marušič, On 2-fold covers of graphs, 2008.

## Split extensions - special cases wrt the action of $\bar{G}$

Some $\bar{G}$ acts transitively.

$$
\begin{aligned}
& G \text { acts transitively on } X \text { and on } \tilde{X} \text { (via } \bar{G} \cong G) . \\
& \qquad Q_{3} \rightarrow K_{4} \quad \mathbb{Z}_{2} \times S_{4} \rightarrow S_{4} .
\end{aligned}
$$

Feng, Kutnar, M. Marušič, On 2-fold covers of graphs, 2008.

Some $\bar{G}$ has an invariant section (over a $G$-invariant subset $\Omega \subset V$ ).

$$
G \text {-split cover (over } \Omega \text { ) }
$$

## Split extensions - special cases wrt the action of $\bar{G}$

Some $\bar{G}$ acts transitively.

$$
\begin{aligned}
& G \text { acts transitively on } X \text { and on } \tilde{X} \text { (via } \bar{G} \cong G) . \\
& \qquad Q_{3} \rightarrow K_{4} \quad \mathbb{Z}_{2} \times S_{4} \rightarrow S_{4} .
\end{aligned}
$$

Feng, Kutnar, M. Marušič, On 2-fold covers of graphs, 2008.

Some $\bar{G}$ has an invariant section (over a $G$-invariant subset $\Omega \subset V$ ).

$$
\begin{aligned}
& \text { G-split cover (over } \Omega \text { ) } \\
& Q_{3} \rightarrow K_{4} \quad \mathbb{Z}_{2} \times A_{4} \rightarrow A_{4}
\end{aligned}
$$

## Split covers - Split extensions with an invariant section

Trivial consequence of Theorem 1
Theorem 3 (recognition). (M, Nedela, Škoviera, 2000) $G$ lifts with an invariant section over $\Omega \Leftrightarrow \tilde{X} \rightarrow X$ can be reconstructed by Cayley voltages $\zeta: X \rightarrow \Gamma$ that are $(1, G)$-invariant on $\Omega$ :

## Split covers - Split extensions with an invariant section

Trivial consequence of Theorem 1
Theorem 3 (recognition). (M, Nedela, Škoviera, 2000) $G$ lifts with an invariant section over $\Omega \Leftrightarrow \tilde{X} \rightarrow X$ can be reconstructed by Cayley voltages $\zeta: X \rightarrow \Gamma$ that are $(1, G)$-invariant on $\Omega$ :

$$
\zeta_{W}=1 \Rightarrow \zeta_{g W}=1, \quad \text { for all } \quad W: \Omega \rightarrow \Omega .
$$

## Split covers - Split extensions with an invariant section

Trivial consequence of Theorem 1
Theorem 3 (recognition). (M, Nedela, Škoviera, 2000) $G$ lifts with an invariant section over $\Omega \Leftrightarrow \tilde{X} \rightarrow X$ can be reconstructed by Cayley voltages $\zeta: X \rightarrow \Gamma$ that are $(1, G)$-invariant on $\Omega$ :

$$
\zeta_{W}=1 \Rightarrow \zeta_{g W}=1, \quad \text { for all } \quad W: \Omega \rightarrow \Omega .
$$

- Can be retold differently: there is an automorphism $g^{\sharp \Omega}: \Gamma \rightarrow \Gamma$

$$
g^{\sharp_{\Omega}}: \zeta_{W} \mapsto \zeta_{g W}, \quad W: \Omega \rightarrow \Omega
$$

## Split covers - Split extensions with an invariant section

Trivial consequence of Theorem 1
Theorem 3 (recognition). (M, Nedela, Škoviera, 2000) $G$ lifts with an invariant section over $\Omega \Leftrightarrow \tilde{X} \rightarrow X$ can be reconstructed by Cayley voltages $\zeta: X \rightarrow \Gamma$ that are $(1, G)$-invariant on $\Omega$ :

$$
\zeta_{W}=1 \Rightarrow \zeta_{g W}=1, \quad \text { for all } \quad W: \Omega \rightarrow \Omega .
$$

- Can be retold differently: there is an automorphism $g^{\sharp \Omega}: \Gamma \rightarrow \Gamma$

$$
g^{\sharp_{\Omega}}: \zeta_{W} \mapsto \zeta_{g W}, \quad W: \Omega \rightarrow \Omega
$$

- Special case: $\Omega=V(X)$. Biggs, Algebraic Graph Theory, 1972

$$
g^{\sharp}: \zeta_{x} \mapsto \zeta_{g x}, \quad x=\operatorname{arc} .
$$

## (1, G)-invariance: How difficult?

Define $^{C o n e_{X}}(\Omega)$, and extend a given $\zeta$ on $X$ to $\zeta^{*}$ on $\operatorname{Cone}_{X}(\Omega)$
s.t. $\zeta^{*}$ trivial on arcs at *

## $(1, G)$-invariance: How difficult?

${\text { Define } \operatorname{Cone}_{X}(\Omega) \text {, and extend a given } \zeta \text { on } X \text { to } \zeta^{*} \text { on } \operatorname{Cone}_{X}(\Omega), ~(\Omega)}$

$$
\text { s.t. } \zeta^{*} \text { trivial on arcs at } *
$$

Theorem 4
$\zeta$ is $(1, G)$-invariant on $\Omega \Leftrightarrow G^{*}$ lifts along $\operatorname{Cov}\left(\zeta^{*}\right) \rightarrow \operatorname{Cone}_{X}(\Omega)$.

## (1, G)-invariance: How difficult?

${\text { Define } \operatorname{Cone}_{X}(\Omega) \text {, and extend a given } \zeta \text { on } X \text { to } \zeta^{*} \text { on } \operatorname{Cone}_{X}(\Omega), ~(\Omega)}$

$$
\text { s.t. } \zeta^{*} \text { trivial on arcs at } *
$$

## Theorem 4

$\zeta$ is $(1, G)$-invariant on $\Omega \Leftrightarrow G^{*}$ lifts along $\operatorname{Cov}\left(\zeta^{*}\right) \rightarrow \operatorname{Cone}_{X}(\Omega)$.

## Theorem 5.

Is a given assignmet $\zeta$ is $(1, G)$-invariant? - can be tested in polynomial time (even efficiently, provided that $\zeta$ is given by permutation voltages).

## (1, G)-invariance: How difficult?

${\text { Define } \operatorname{Cone}_{X}(\Omega) \text {, and extend a given } \zeta \text { on } X \text { to } \zeta^{*} \text { on } \operatorname{Cone}_{X}(\Omega), ~(\Omega)}$

$$
\text { s.t. } \zeta^{*} \text { trivial on arcs at } *
$$

## Theorem 4

$\zeta$ is $(1, G)$-invariant on $\Omega \Leftrightarrow G^{*}$ lifts along $\operatorname{Cov}\left(\zeta^{*}\right) \rightarrow \operatorname{Cone}_{X}(\Omega)$.

## Theorem 5.

Is a given assignmet $\zeta$ is $(1, G)$-invariant? - can be tested in polynomial time (even efficiently, provided that $\zeta$ is given by permutation voltages).

Does a given group lift as a split extension with an invariant section? Problem: In terms of voltages, one needs to test $|\Gamma|^{|V|-1}$ different assignments (!)

## (1, G)-invariance: How difficult?

${\text { Define } \operatorname{Cone}_{X}(\Omega) \text {, and extend a given } \zeta \text { on } X \text { to } \zeta^{*} \text { on } \operatorname{Cone}_{X}(\Omega), ~(\Omega)}$
s.t. $\zeta^{*}$ trivial on arcs at *

## Theorem 4

$\zeta$ is $(1, G)$-invariant on $\Omega \Leftrightarrow G^{*}$ lifts along $\operatorname{Cov}\left(\zeta^{*}\right) \rightarrow \operatorname{Cone}_{X}(\Omega)$.

## Theorem 5.

Is a given assignmet $\zeta$ is $(1, G)$-invariant? - can be tested in polynomial time (even efficiently, provided that $\zeta$ is given by permutation voltages).

Does a given group lift as a split extension with an invariant section? Problem : In terms of voltages, one needs to test $|\Gamma|^{|V|-1}$ different assignments (!)

For abelian covers one can use Theorem 2 to construct all complements and check their orbits ...

## Example - finding all G-split covers

## Example - finding all G-split covers

Find all connceted regular elementary abelian covers of $K_{4}$ such that the cyclic group $\mathbb{Z}_{4}$ lifts as a split extension with an invariant section.

## Example - finding all G-split covers

Find all connceted regular elementary abelian covers of $K_{4}$ such that the cyclic group $\mathbb{Z}_{4}$ lifts as a split extension with an invariant section.
In view of Theorem 4, and using results about elementary abelian covers ( $M$, Marušič, Potočnik, 2003) we obtain (up to isomorphism of covering projections)
$\left.\begin{array}{|r||r||r|r|}\hline \text { Line } & \text { Condition } & \text { Dim } & \text { Voltage array } \\ \hline 1 . & p \equiv-1(4) & 1 & {\left[\begin{array}{l}1],[1],[1],[1],[0],[0] \\ \hline 2 .\end{array}\right.} \\ \hline 3 . & & 2 & {\left[\begin{array}{c}1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ -1\end{array}\right],[-1} \\ -1\end{array}\right],\left[\begin{array}{l}-1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0\end{array}\right], \left.\left[\begin{array}{l}0 \\ 0\end{array}\right] \right\rvert\,$

## Thank you!

