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Introduction and Motivation

Triangulated Surfaces

Definition

A 2-manifold is a topological space, in which every point has an open
neighborhood homeomorphic to R2. Connected, compact 2-manifolds are
called closed surfaces .

Genus:

Mg : orientable of genus g , i.e. connected sum of g Tori (g = 0
sphere)

Nh: non-orientable of genus h, i.e. connected sum of h Projective
Planes

Definition

A triangulation ∆ of a closed surface M2 is a simplicial complex, such
that |∆| ∼= M2.
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Introduction and Motivation

Example

A polygon representing a Klein Bottle:
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Introduction and Motivation

Example

A triangulation of a Klein Bottle:
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Introduction and Motivation

Triangulations and Polyhedral Realizations

Embedding An embedding of a closed surface M2 into R3 is an
injective map φ : M2 → R3.

Immersion An immersion of a closed surface M2 into R3 is a locally
injective map φ : M2 → R3.

Polyhedral Realization A polyhedral realization of a triangulation
∆ is a map φ : |∆| ∼= M2 → R3 such that:

φ is a simplex-wise linear embedding w.r.t. ∆ if M2 is
orientable, a simplex-wise linear immersion if M2 is
non-orientable
edges of ∆ are mapped to straight line segments
triangles of ∆ are mapped to planar, non-degenerate
triangles
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Introduction and Motivation

Differences Between the Smooth and Polyhedral Case

The existence of a triangulation does not guarantee its
realizability in R3.

there may obstructions if the number of vertices is small or minimal

f -vector for our triangulations: (f0, f1, f2) = (n, 3n − 3χ, 2n − 2χ)

to date: Tetrahedron and Császár’s torus are the only known examples
of realizations of minimal triangulations with complete edge graph

Consider

nt the number of vertices needed to triangulate a surface
np the number of vertices needed to find a realizable triangulation

What is the gap between nt and np (if there is one)?
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Algorithmic Treatment

Construction of Realizations

How do you find polyhedral realizations of vertex-minimal
(or few-vertex) triangulations of a given surface?

’by hand’: Császár (1949), Brehm (1981, 1990), Bokowski and Brehm
(1987-1989), Cervone (1994)

algorithmically: Bokowski and Lutz (2006-2008), Hougardy, Lutz, and
Zelke (2010)
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Algorithmic Treatment

Treatment of the Orientable Case for Small Genus
(Hougardy, Lutz, Zelke, 2010)

assigning vertex coordinates induces a simplex-wise linear map into
R3 for any triangulation of a closed surface

key idea: manipulation of vertex coordinates on the lattice of points
with integer coordinates

decrease objective function by moving one vertex at a time by a
unit step

result: All vertex-minimal triangulations of orientable surfaces of
genus g ≤ 4 are polyhedrally realizable. Some of genus 5 are also
realizable.
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Algorithmic Treatment

The Objective Function

fobj =
∑

pairs of triangles

length of the intersection segment

requirement of sufficiently general position of vertices ensures
triangles only intersect as above (segments!)

absolute minimum 0 indicates embedding
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Algorithmic Treatment

Modification for Immersions and Symmetric Realizations

only self-intersections in the neighborhood of a
vertex are disallowed

the following proved to be a viable alternative
(Brehm, L., in preparation):

fobj =
∑

all pairs of non-adjacent triangles
with common vertex

length of the intersection segment

In addition, we successfully imposed compatible symmetry conditions on
the vertices yielding more beautiful results and speeding up the
computation.
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Algorithmic Treatment

Results

Minimal Realizations of Triangulated Orientable Surfaces:

Typ nt np symmetries realized
M1 7 7 Z2 (maximal)

M2 10 10 Z4 *

M3 10 10 Z4 (maximal)

M4 11 11 Z2 (maximal)

M5 12 12 Z2 *

M6 12 ≥ 13 –

*...Brehm, L.
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Algorithmic Treatment

Results

Minimal Realizations of Triangulated Non-Orientable Surfaces:

Typ nt np symmetries realized
N1 6 9 Z3

N2 8 9 Z2

N3 9 9 * –

N4 9 ≤ 10 * –

N5 9 10 * Z3 *

N6 10 10 * Z2 *

*...Brehm, L.
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Polyhedral Non-Immersibility of Triangulated Nh

Known Gaps Between nt and np

How do you prove that a triangulation is not
geometrically realizable?

few results: Klein Bottle (Cervone, 1994), Möbiusband (Brehm,
1983), not necessarily vertex-minimal examples for Mg with g ≥ 5
(Schewe, 2010)

algorithmic treatment possible, but difficult

→ use geometric, topological, combinatorial methods, focus on the
non-orientable case
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Polyhedral Non-Immersibility of Triangulated Nh

Polyhedral Non-Immersibility of Triangulated Nh

Assumption: polyhedral immersion φ : |∆| → R3 exists

Key idea: consider the necessary self-intersection Dφ of the image

assume certain genericity conditions (always fulfillable) which make
Dφ into a finite set of closed curves and

enable to show statements about the intersections of φ−1(Dφ) with
edge cycles (simply closed)

edge cut analysis (Cervone) is helpful

→ Derive a contradiction!
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Polyhedral Non-Immersibility of Triangulated Nh

Edge-Cut Analysis

Observation: An edge ab incident to triangles abc and abd cannot pierce
a triangle efg if {e, f , g} ∩ {a, b, c , d} 6= ∅.

In order for two triangles to intersect in space, exactly two of the triangles’
six edges must pierce one of the triangles under consideration.
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Polyhedral Non-Immersibility of Triangulated Nh

Methods for Proving Polyhedral Non-Immersibility

(Edge-) Cycle conditions:

cycles in M2 with orientable tubular neighborhood need to have an
even number of intersections with φ−1(Dφ)

cycles in M2 without orientable tubular neighborhood need to have an
odd number of intersections with φ−1(Dφ) (at least one!)

Further considerations:

triple point conditions (Banchoff, 1974)

linking numbers (Brehm)

identification of geometric obstructions (Cervone)

exploiting automorphisms
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Polyhedral Non-Immersibility of Triangulated Nh

Example: A Non-Realizable Triangulation of the Klein
Bottle
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Polyhedral Non-Immersibility of Triangulated Nh

Results

→ The example on the previous slide is not geometrically realizable.

Applicability of edge cycle conditions in conjunction with edge-cut analysis
and triple point considerations:

works for some triangulations of Projective Planes with 9 vertices

as well as for some triangulations of Klein Bottles with 9 vertices

with ’a lot more trickery’: vertex-minimal triangulations of N5 with 9
vertices are not geometrically realizable (L., in preparation)

conjecture: works for other non-orientable surfaces as well

Undine Leopold (NEU) Polyhedral 2-Manifolds October 2011 17 / 20



Polyhedral Non-Immersibility of Triangulated Nh

Results

→ The example on the previous slide is not geometrically realizable.

Applicability of edge cycle conditions in conjunction with edge-cut analysis
and triple point considerations:

works for some triangulations of Projective Planes with 9 vertices

as well as for some triangulations of Klein Bottles with 9 vertices

with ’a lot more trickery’: vertex-minimal triangulations of N5 with 9
vertices are not geometrically realizable (L., in preparation)

conjecture: works for other non-orientable surfaces as well

Undine Leopold (NEU) Polyhedral 2-Manifolds October 2011 17 / 20



Polyhedral Non-Immersibility of Triangulated Nh

Thank you!

Questions?
Time for Pictures?
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Triangulations of N5 With 9 Vertices
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Triangulations of N5 With 9 Vertices
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