# Polyhedral Realizations and Non-Realizability for Vertex-Minimal Triangulations of Closed Surfaces in $\mathbb{R}^3$

Undine Leopold

Northeastern University

October 2011

This work was done as the speaker's 2009 undergraduate thesis project advised by Ulrich Brehm.

## Triangulated Surfaces

#### **Definition**

A 2-manifold is a topological space, in which every point has an open neighborhood homeomorphic to  $\mathbb{R}^2$ . Connected, compact 2-manifolds are called CLOSED SURFACES .

#### Genus:

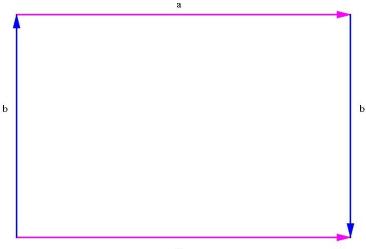
- $M_g$ : orientable of genus g, i.e. connected sum of g Tori (g=0 sphere)
- $N_h$ : non-orientable of genus h, i.e. connected sum of h Projective Planes

#### Definition

A TRIANGULATION  $\Delta$  of a closed surface  $M^2$  is a simplicial complex, such that  $|\Delta| \cong M^2$ .

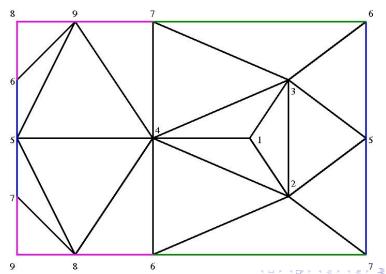
## Example

#### A polygon representing a Klein Bottle:



## Example

#### A triangulation of a Klein Bottle:



### Triangulations and Polyhedral Realizations

- Embedding An EMBEDDING of a closed surface  $M^2$  into  $\mathbb{R}^3$  is an injective map  $\phi: M^2 \to \mathbb{R}^3$ .
- Immersion An IMMERSION of a closed surface  $M^2$  into  $\mathbb{R}^3$  is a locally injective map  $\phi:M^2\to\mathbb{R}^3$ .
- Polyhedral Realization A POLYHEDRAL REALIZATION of a triangulation  $\Delta$  is a map  $\phi: |\Delta| \cong M^2 \to \mathbb{R}^3$  such that:
  - $\phi$  is a simplex-wise linear embedding w.r.t.  $\Delta$  if  $M^2$  is orientable, a simplex-wise linear immersion if  $M^2$  is non-orientable
  - ullet edges of  $\Delta$  are mapped to straight line segments
  - ullet triangles of  $\Delta$  are mapped to planar, non-degenerate triangles

### Differences Between the Smooth and Polyhedral Case

The existence of a triangulation does not guarantee its realizability in  $\mathbb{R}^3$ .

- there may obstructions if the number of vertices is small or minimal
- f-vector for our triangulations:  $(f_0, f_1, f_2) = (n, 3n 3\chi, 2n 2\chi)$
- to date: Tetrahedron and Császár's torus are the only known examples of realizations of minimal triangulations with *complete* edge graph

### Differences Between the Smooth and Polyhedral Case

The existence of a triangulation does not guarantee its realizability in  $\mathbb{R}^3$ .

- there may obstructions if the number of vertices is small or minimal
- f-vector for our triangulations:  $(f_0, f_1, f_2) = (n, 3n 3\chi, 2n 2\chi)$
- to date: Tetrahedron and Császár's torus are the only known examples of realizations of minimal triangulations with complete edge graph

#### Consider

 $n_t$  the number of vertices needed to triangulate a surface

 $n_p$  the number of vertices needed to find a realizable triangulation

What is the gap between  $n_t$  and  $n_p$  (if there is one)?



#### Construction of Realizations

How do you find polyhedral realizations of vertex-minimal (or few-vertex) triangulations of a given surface?

#### Construction of Realizations

How do you find polyhedral realizations of vertex-minimal (or few-vertex) triangulations of a given surface?

 'by hand': Császár (1949), Brehm (1981, 1990), Bokowski and Brehm (1987-1989), Cervone (1994)

#### Construction of Realizations

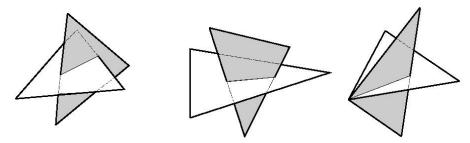
How do you find polyhedral realizations of vertex-minimal (or few-vertex) triangulations of a given surface?

- 'by hand': Császár (1949), Brehm (1981, 1990), Bokowski and Brehm (1987-1989), Cervone (1994)
- algorithmically: Bokowski and Lutz (2006-2008), Hougardy, Lutz, and Zelke (2010)

# Treatment of the Orientable Case for Small Genus (Hougardy, Lutz, Zelke, 2010)

- assigning vertex coordinates induces a simplex-wise linear map into  $\mathbb{R}^3$  for any triangulation of a closed surface
- key idea: manipulation of vertex coordinates on the lattice of points with integer coordinates
- decrease OBJECTIVE FUNCTION by moving one vertex at a time by a unit step
- result: All vertex-minimal triangulations of orientable surfaces of genus  $g \le 4$  are polyhedrally realizable. Some of genus 5 are also realizable.

### The Objective Function

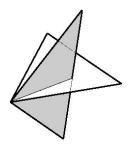


$$f_{\rm obj} = \sum_{
m pairs \ of \ triangles}$$
 length of the intersection segment

- requirement of *sufficiently general position of vertices* ensures triangles only intersect as above (segments!)
- absolute minimum 0 indicates embedding



### Modification for Immersions and Symmetric Realizations



- only self-intersections in the neighborhood of a vertex are disallowed
- the following proved to be a viable alternative (Brehm, L., in preparation):

$$f_{\rm obj} = \sum_{\substack{{\rm all\ pairs\ of\ non-adjacent\ triangles\ with\ common\ vertex}}} {
m length\ of\ the\ intersection\ segment}$$

In addition, we successfully imposed compatible symmetry conditions on the vertices yielding more beautiful results and speeding up the computation.

### Results

Minimal Realizations of Triangulated Orientable Surfaces:

| Тур   | $n_{t}$ | n <sub>p</sub> | symmetries realized      |
|-------|---------|----------------|--------------------------|
| $M_1$ | 7       | 7              | $\mathbb{Z}_2$ (maximal) |
| $M_2$ | 10      | 10             | $\mathbb{Z}_4$ *         |
| $M_3$ | 10      | 10             | $\mathbb{Z}_4$ (maximal) |
| $M_4$ | 11      | 11             | $\mathbb{Z}_2$ (maximal) |
| $M_5$ | 12      | 12             | $\mathbb{Z}_2$ *         |
| $M_6$ | 12      | ≥ 13           | _                        |

<sup>\*...</sup>Brehm, L.

### Results

Minimal Realizations of Triangulated Non-Orientable Surfaces:

| Тур            | n <sub>t</sub> | n <sub>p</sub> | symmetries realized |
|----------------|----------------|----------------|---------------------|
| $N_1$          | 6              | 9              | $\mathbb{Z}_3$      |
| $N_2$          | 8              | 9              | $\mathbb{Z}_2$      |
| N <sub>3</sub> | 9              | 9 *            | -                   |
| N <sub>4</sub> | 9              | ≤ 10 <b>*</b>  | _                   |
| $N_5$          | 9              | 10 *           | ℤ₃ *                |
| $N_6$          | 10             | 10 *           | $\mathbb{Z}_2$ *    |

\*...Brehm, L.

## Known Gaps Between $n_t$ and $n_p$

# How do you prove that a triangulation is not geometrically realizable?

- few results: Klein Bottle (Cervone, 1994), Möbiusband (Brehm, 1983), not necessarily vertex-minimal examples for  $M_g$  with  $g \geq 5$  (Schewe, 2010)
- algorithmic treatment possible, but difficult
- ightarrow use geometric, topological, combinatorial methods, focus on the non-orientable case

## Polyhedral Non-Immersibility of Triangulated $N_h$

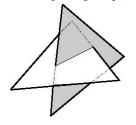
Assumption: polyhedral immersion  $\phi\colon |\Delta| \to \mathbb{R}^3$  exists

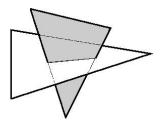
Key idea: consider the necessary self-intersection  $D_\phi$  of the image

- assume certain genericity conditions (always fulfillable) which make  $D_{\phi}$  into a finite set of closed curves **and**
- enable to show statements about the intersections of  $\phi^{-1}(D_{\phi})$  with edge cycles (simply closed)
- edge cut analysis (Cervone) is helpful
- $\rightarrow$  Derive a contradiction!

### **Edge-Cut Analysis**

Observation: An edge ab incident to triangles abc and abd cannot pierce a triangle efg if  $\{e, f, g\} \cap \{a, b, c, d\} \neq \emptyset$ .





In order for two triangles to intersect in space, exactly two of the triangles' six edges must pierce one of the triangles under consideration.

### Methods for Proving Polyhedral Non-Immersibility

#### (Edge-) Cycle conditions:

- cycles in  $M^2$  with orientable tubular neighborhood need to have an even number of intersections with  $\phi^{-1}(D_\phi)$
- cycles in  $M^2$  without orientable tubular neighborhood need to have an odd number of intersections with  $\phi^{-1}(D_{\phi})$  (at least one!)

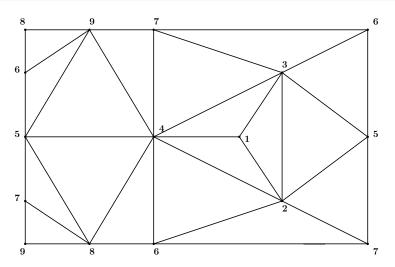
### Methods for Proving Polyhedral Non-Immersibility

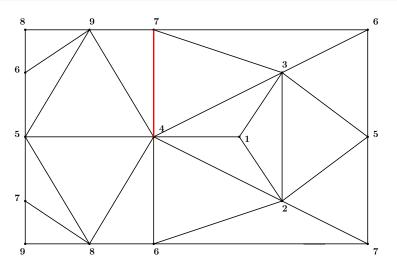
#### (Edge-) Cycle conditions:

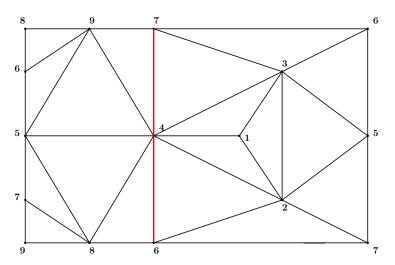
- cycles in  $M^2$  with orientable tubular neighborhood need to have an even number of intersections with  $\phi^{-1}(D_\phi)$
- cycles in  $M^2$  without orientable tubular neighborhood need to have an odd number of intersections with  $\phi^{-1}(D_\phi)$  (at least one!)

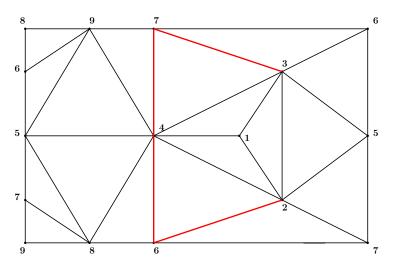
#### Further considerations:

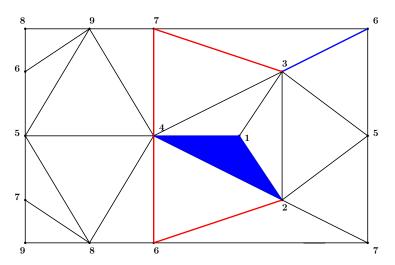
- triple point conditions (Banchoff, 1974)
- linking numbers (Brehm)
- identification of geometric obstructions (Cervone)
- exploiting automorphisms

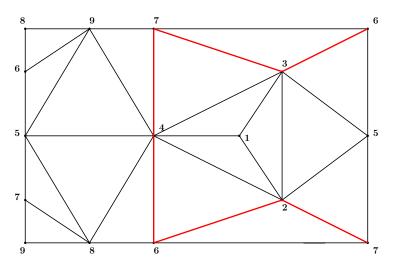


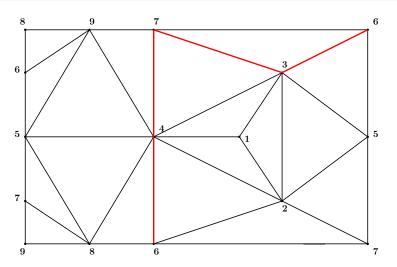


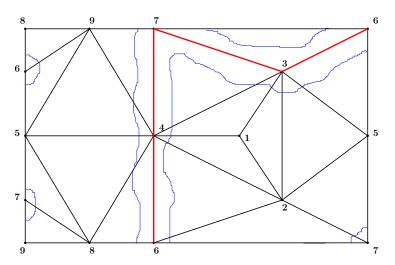












#### Results

 $\rightarrow$  The example on the previous slide is not geometrically realizable.

#### Results

 $\rightarrow$  The example on the previous slide is not geometrically realizable.

Applicability of edge cycle conditions in conjunction with edge-cut analysis and triple point considerations:

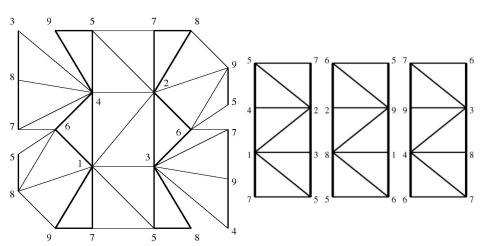
- works for some triangulations of Projective Planes with 9 vertices
- as well as for some triangulations of Klein Bottles with 9 vertices
- with 'a lot more trickery': vertex-minimal triangulations of  $N_5$  with 9 vertices are not geometrically realizable (L., in preparation)
- conjecture: works for other non-orientable surfaces as well

Thank you!

Questions?

Time for Pictures?

### Triangulations of $N_5$ With 9 Vertices



## Triangulations of $N_5$ With 9 Vertices

