Polyhedral Realizations and Non-Realizability for Vertex-Minimal Triangulations of Closed Surfaces in \mathbb{R}^{3}

Undine Leopold
Northeastern University

October 2011

This work was done as the speaker's 2009 undergraduate thesis project advised by Ulrich Brehm.

Triangulated Surfaces

Definition
A 2-MANIFOLD is a topological space, in which every point has an open neighborhood homeomorphic to \mathbb{R}^{2}. Connected, compact 2-manifolds are called CLOSED SURFACES .

Genus:

- M_{g} : orientable of genus g, i.e. connected sum of g Tori $(g=0$ sphere)
- N_{h} : non-orientable of genus h, i.e. connected sum of h Projective Planes

Definition
A triangulation Δ of a closed surface M^{2} is a simplicial complex, such that $|\Delta| \cong M^{2}$.

Example

A polygon representing a Klein Bottle:

Example

A triangulation of a Klein Bottle:

Triangulations and Polyhedral Realizations

Embedding An Embedding of a closed surface M^{2} into \mathbb{R}^{3} is an injective map $\phi: M^{2} \rightarrow \mathbb{R}^{3}$.
Immersion An immersion of a closed surface M^{2} into \mathbb{R}^{3} is a locally injective map $\phi: M^{2} \rightarrow \mathbb{R}^{3}$.
Polyhedral Realization A polyhedral Realization of a triangulation
Δ is a map $\phi:|\Delta| \cong M^{2} \rightarrow \mathbb{R}^{3}$ such that:

- ϕ is a simplex-wise linear embedding w.r.t. Δ if M^{2} is orientable, a simplex-wise linear immersion if M^{2} is non-orientable
- edges of Δ are mapped to straight line segments
- triangles of Δ are mapped to planar, non-degenerate triangles

Differences Between the Smooth and Polyhedral Case

The existence of a triangulation does not guarantee its realizability in \mathbb{R}^{3}.

- there may obstructions if the number of vertices is small or minimal
- f-vector for our triangulations: $\left(f_{0}, f_{1}, f_{2}\right)=(n, 3 n-3 \chi, 2 n-2 \chi)$
- to date: Tetrahedron and Császár's torus are the only known examples of realizations of minimal triangulations with complete edge graph

Differences Between the Smooth and Polyhedral Case

The existence of a triangulation does not guarantee its realizability in \mathbb{R}^{3}.

- there may obstructions if the number of vertices is small or minimal
- f-vector for our triangulations: $\left(f_{0}, f_{1}, f_{2}\right)=(n, 3 n-3 \chi, 2 n-2 \chi)$
- to date: Tetrahedron and Császár's torus are the only known examples of realizations of minimal triangulations with complete edge graph

Consider
n_{t} the number of vertices needed to triangulate a surface
n_{p} the number of vertices needed to find a realizable triangulation
What is the gap between n_{t} and n_{p} (if there is one)?

Construction of Realizations

How do you find polyhedral realizations of vertex-minimal (or few-vertex) triangulations of a given surface?

Construction of Realizations

How do you find polyhedral realizations of vertex-minimal (or few-vertex) triangulations of a given surface?

- 'by hand': Császár (1949), Brehm (1981, 1990), Bokowski and Brehm (1987-1989), Cervone (1994)

Construction of Realizations

How do you find polyhedral realizations of vertex-minimal (or few-vertex) triangulations of a given surface?

- 'by hand': Császár (1949), Brehm (1981, 1990), Bokowski and Brehm (1987-1989), Cervone (1994)
- algorithmically: Bokowski and Lutz (2006-2008), Hougardy, Lutz, and Zelke (2010)

Treatment of the Orientable Case for Small Genus (Hougardy, Lutz, Zelke, 2010)

- assigning vertex coordinates induces a simplex-wise linear map into \mathbb{R}^{3} for any triangulation of a closed surface
- key idea: manipulation of vertex coordinates on the lattice of points with integer coordinates
- decrease OBJECTIVE FUNCTION by moving one vertex at a time by a unit step
- result: All vertex-minimal triangulations of orientable surfaces of genus $g \leq 4$ are polyhedrally realizable. Some of genus 5 are also realizable.

The Objective Function

$$
f_{\mathrm{obj}}=\sum_{\text {pairs of triangles }} \text { length of the intersection segment }
$$

- requirement of sufficiently general position of vertices ensures triangles only intersect as above (segments!)
- absolute minimum 0 indicates embedding

Modification for Immersions and Symmetric Realizations

- only self-intersections in the neighborhood of a vertex are disallowed
- the following proved to be a viable alternative (Brehm, L., in preparation):

$$
f_{\text {obj }}=\sum_{\substack{\text { all pairs of non-adjacent triangles } \\ \text { with common vertex }}} \text { length of the intersection segment }
$$

In addition, we successfully imposed compatible symmetry conditions on the vertices yielding more beautiful results and speeding up the computation.

Results

Minimal Realizations of Triangulated Orientable Surfaces:

Typ	$\mathbf{n}_{\mathbf{t}}$	$\mathbf{n}_{\mathbf{p}}$	symmetries realized
M_{1}	7	7	\mathbb{Z}_{2} (maximal)
M_{2}	10	10	$\mathbb{Z}_{4}{ }^{*}$
M_{3}	10	10	\mathbb{Z}_{4} (maximal)
M_{4}	11	11	\mathbb{Z}_{2} (maximal)
M_{5}	12	12	$\mathbb{Z}_{2}{ }^{*}$
M_{6}	12	≥ 13	-

*...Brehm, L.

Results

Minimal Realizations of Triangulated Non-Orientable Surfaces:

Typ	$\mathbf{n}_{\mathbf{t}}$	$\mathbf{n}_{\mathbf{p}}$	symmetries realized
N_{1}	6	9	\mathbb{Z}_{3}
N_{2}	8	9	\mathbb{Z}_{2}
N_{3}	9	$9{ }^{*}$	-
N_{4}	9	$\leq 10^{*}$	-
N_{5}	9	10^{*}	$\mathbb{Z}_{3}{ }^{*}$
N_{6}	10	10^{*}	$\mathbb{Z}_{2}{ }^{*}$

*...Brehm, L.

Known Gaps Between n_{t} and n_{p}

How do you prove that a triangulation is not geometrically realizable?

- few results: Klein Bottle (Cervone, 1994), Möbiusband (Brehm, 1983), not necessarily vertex-minimal examples for M_{g} with $g \geq 5$ (Schewe, 2010)
- algorithmic treatment possible, but difficult
\rightarrow use geometric, topological, combinatorial methods, focus on the non-orientable case

Polyhedral Non-Immersibility of Triangulated N_{h}

Assumption: polyhedral immersion $\phi:|\Delta| \rightarrow \mathbb{R}^{3}$ exists

Key idea: consider the necessary self-intersection D_{ϕ} of the image

- assume certain genericity conditions (always fulfillable) which make D_{ϕ} into a finite set of closed curves and
- enable to show statements about the intersections of $\phi^{-1}\left(D_{\phi}\right)$ with edge cycles (simply closed)
- edge cut analysis (Cervone) is helpful
\rightarrow Derive a contradiction!

Edge-Cut Analysis

Observation: An edge $a b$ incident to triangles $a b c$ and $a b d$ cannot pierce a triangle efg if $\{e, f, g\} \cap\{a, b, c, d\} \neq \emptyset$.

In order for two triangles to intersect in space, exactly two of the triangles' six edges must pierce one of the triangles under consideration.

Methods for Proving Polyhedral Non-Immersibility

(Edge-) Cycle conditions:

- cycles in M^{2} with orientable tubular neighborhood need to have an even number of intersections with $\phi^{-1}\left(D_{\phi}\right)$
- cycles in M^{2} without orientable tubular neighborhood need to have an odd number of intersections with $\phi^{-1}\left(D_{\phi}\right)$ (at least one!)

Methods for Proving Polyhedral Non-Immersibility

(Edge-) Cycle conditions:

- cycles in M^{2} with orientable tubular neighborhood need to have an even number of intersections with $\phi^{-1}\left(D_{\phi}\right)$
- cycles in M^{2} without orientable tubular neighborhood need to have an odd number of intersections with $\phi^{-1}\left(D_{\phi}\right)$ (at least one!)

Further considerations:

- triple point conditions (Banchoff, 1974)
- linking numbers (Brehm)
- identification of geometric obstructions (Cervone)
- exploiting automorphisms

Example: A Non-Realizable Triangulation of the Klein Bottle

Example: A Non-Realizable Triangulation of the Klein Bottle

Example: A Non-Realizable Triangulation of the Klein Bottle

Example: A Non-Realizable Triangulation of the Klein Bottle

Example: A Non-Realizable Triangulation of the Klein Bottle

Example: A Non-Realizable Triangulation of the Klein Bottle

Example: A Non-Realizable Triangulation of the Klein Bottle

Example: A Non-Realizable Triangulation of the Klein Bottle

Results

\rightarrow The example on the previous slide is not geometrically realizable.

Results

\rightarrow The example on the previous slide is not geometrically realizable.

Applicability of edge cycle conditions in conjunction with edge-cut analysis and triple point considerations:

- works for some triangulations of Projective Planes with 9 vertices
- as well as for some triangulations of Klein Bottles with 9 vertices
- with 'a lot more trickery': vertex-minimal triangulations of N_{5} with 9 vertices are not geometrically realizable (L., in preparation)
- conjecture: works for other non-orientable surfaces as well

Thank you!

 Questions?Time for Pictures?

Triangulations of N_{5} With 9 Vertices

Triangulations of N_{5} With 9 Vertices

