Polyhedral Realizations and Non-Realizability for Vertex-Minimal Triangulations of Closed Surfaces in \mathbb{R}^3 Undine Leopold Northeastern University October 2011 This work was done as the speaker's 2009 undergraduate thesis project advised by Ulrich Brehm. ## Triangulated Surfaces #### **Definition** A 2-manifold is a topological space, in which every point has an open neighborhood homeomorphic to \mathbb{R}^2 . Connected, compact 2-manifolds are called CLOSED SURFACES . #### Genus: - M_g : orientable of genus g, i.e. connected sum of g Tori (g=0 sphere) - N_h : non-orientable of genus h, i.e. connected sum of h Projective Planes #### Definition A TRIANGULATION Δ of a closed surface M^2 is a simplicial complex, such that $|\Delta| \cong M^2$. ## Example #### A polygon representing a Klein Bottle: ## Example #### A triangulation of a Klein Bottle: ### Triangulations and Polyhedral Realizations - Embedding An EMBEDDING of a closed surface M^2 into \mathbb{R}^3 is an injective map $\phi: M^2 \to \mathbb{R}^3$. - Immersion An IMMERSION of a closed surface M^2 into \mathbb{R}^3 is a locally injective map $\phi:M^2\to\mathbb{R}^3$. - Polyhedral Realization A POLYHEDRAL REALIZATION of a triangulation Δ is a map $\phi: |\Delta| \cong M^2 \to \mathbb{R}^3$ such that: - ϕ is a simplex-wise linear embedding w.r.t. Δ if M^2 is orientable, a simplex-wise linear immersion if M^2 is non-orientable - ullet edges of Δ are mapped to straight line segments - ullet triangles of Δ are mapped to planar, non-degenerate triangles ### Differences Between the Smooth and Polyhedral Case The existence of a triangulation does not guarantee its realizability in \mathbb{R}^3 . - there may obstructions if the number of vertices is small or minimal - f-vector for our triangulations: $(f_0, f_1, f_2) = (n, 3n 3\chi, 2n 2\chi)$ - to date: Tetrahedron and Császár's torus are the only known examples of realizations of minimal triangulations with *complete* edge graph ### Differences Between the Smooth and Polyhedral Case The existence of a triangulation does not guarantee its realizability in \mathbb{R}^3 . - there may obstructions if the number of vertices is small or minimal - f-vector for our triangulations: $(f_0, f_1, f_2) = (n, 3n 3\chi, 2n 2\chi)$ - to date: Tetrahedron and Császár's torus are the only known examples of realizations of minimal triangulations with complete edge graph #### Consider n_t the number of vertices needed to triangulate a surface n_p the number of vertices needed to find a realizable triangulation What is the gap between n_t and n_p (if there is one)? #### Construction of Realizations How do you find polyhedral realizations of vertex-minimal (or few-vertex) triangulations of a given surface? #### Construction of Realizations How do you find polyhedral realizations of vertex-minimal (or few-vertex) triangulations of a given surface? 'by hand': Császár (1949), Brehm (1981, 1990), Bokowski and Brehm (1987-1989), Cervone (1994) #### Construction of Realizations How do you find polyhedral realizations of vertex-minimal (or few-vertex) triangulations of a given surface? - 'by hand': Császár (1949), Brehm (1981, 1990), Bokowski and Brehm (1987-1989), Cervone (1994) - algorithmically: Bokowski and Lutz (2006-2008), Hougardy, Lutz, and Zelke (2010) # Treatment of the Orientable Case for Small Genus (Hougardy, Lutz, Zelke, 2010) - assigning vertex coordinates induces a simplex-wise linear map into \mathbb{R}^3 for any triangulation of a closed surface - key idea: manipulation of vertex coordinates on the lattice of points with integer coordinates - decrease OBJECTIVE FUNCTION by moving one vertex at a time by a unit step - result: All vertex-minimal triangulations of orientable surfaces of genus $g \le 4$ are polyhedrally realizable. Some of genus 5 are also realizable. ### The Objective Function $$f_{\rm obj} = \sum_{ m pairs \ of \ triangles}$$ length of the intersection segment - requirement of *sufficiently general position of vertices* ensures triangles only intersect as above (segments!) - absolute minimum 0 indicates embedding ### Modification for Immersions and Symmetric Realizations - only self-intersections in the neighborhood of a vertex are disallowed - the following proved to be a viable alternative (Brehm, L., in preparation): $$f_{\rm obj} = \sum_{\substack{{\rm all\ pairs\ of\ non-adjacent\ triangles\ with\ common\ vertex}}} { m length\ of\ the\ intersection\ segment}$$ In addition, we successfully imposed compatible symmetry conditions on the vertices yielding more beautiful results and speeding up the computation. ### Results Minimal Realizations of Triangulated Orientable Surfaces: | Тур | n_{t} | n _p | symmetries realized | |-------|---------|----------------|--------------------------| | M_1 | 7 | 7 | \mathbb{Z}_2 (maximal) | | M_2 | 10 | 10 | \mathbb{Z}_4 * | | M_3 | 10 | 10 | \mathbb{Z}_4 (maximal) | | M_4 | 11 | 11 | \mathbb{Z}_2 (maximal) | | M_5 | 12 | 12 | \mathbb{Z}_2 * | | M_6 | 12 | ≥ 13 | _ | ^{*...}Brehm, L. ### Results Minimal Realizations of Triangulated Non-Orientable Surfaces: | Тур | n _t | n _p | symmetries realized | |----------------|----------------|----------------|---------------------| | N_1 | 6 | 9 | \mathbb{Z}_3 | | N_2 | 8 | 9 | \mathbb{Z}_2 | | N ₃ | 9 | 9 * | - | | N ₄ | 9 | ≤ 10 * | _ | | N_5 | 9 | 10 * | ℤ₃ * | | N_6 | 10 | 10 * | \mathbb{Z}_2 * | *...Brehm, L. ## Known Gaps Between n_t and n_p # How do you prove that a triangulation is not geometrically realizable? - few results: Klein Bottle (Cervone, 1994), Möbiusband (Brehm, 1983), not necessarily vertex-minimal examples for M_g with $g \geq 5$ (Schewe, 2010) - algorithmic treatment possible, but difficult - ightarrow use geometric, topological, combinatorial methods, focus on the non-orientable case ## Polyhedral Non-Immersibility of Triangulated N_h Assumption: polyhedral immersion $\phi\colon |\Delta| \to \mathbb{R}^3$ exists Key idea: consider the necessary self-intersection D_ϕ of the image - assume certain genericity conditions (always fulfillable) which make D_{ϕ} into a finite set of closed curves **and** - enable to show statements about the intersections of $\phi^{-1}(D_{\phi})$ with edge cycles (simply closed) - edge cut analysis (Cervone) is helpful - \rightarrow Derive a contradiction! ### **Edge-Cut Analysis** Observation: An edge ab incident to triangles abc and abd cannot pierce a triangle efg if $\{e, f, g\} \cap \{a, b, c, d\} \neq \emptyset$. In order for two triangles to intersect in space, exactly two of the triangles' six edges must pierce one of the triangles under consideration. ### Methods for Proving Polyhedral Non-Immersibility #### (Edge-) Cycle conditions: - cycles in M^2 with orientable tubular neighborhood need to have an even number of intersections with $\phi^{-1}(D_\phi)$ - cycles in M^2 without orientable tubular neighborhood need to have an odd number of intersections with $\phi^{-1}(D_{\phi})$ (at least one!) ### Methods for Proving Polyhedral Non-Immersibility #### (Edge-) Cycle conditions: - cycles in M^2 with orientable tubular neighborhood need to have an even number of intersections with $\phi^{-1}(D_\phi)$ - cycles in M^2 without orientable tubular neighborhood need to have an odd number of intersections with $\phi^{-1}(D_\phi)$ (at least one!) #### Further considerations: - triple point conditions (Banchoff, 1974) - linking numbers (Brehm) - identification of geometric obstructions (Cervone) - exploiting automorphisms #### Results \rightarrow The example on the previous slide is not geometrically realizable. #### Results \rightarrow The example on the previous slide is not geometrically realizable. Applicability of edge cycle conditions in conjunction with edge-cut analysis and triple point considerations: - works for some triangulations of Projective Planes with 9 vertices - as well as for some triangulations of Klein Bottles with 9 vertices - with 'a lot more trickery': vertex-minimal triangulations of N_5 with 9 vertices are not geometrically realizable (L., in preparation) - conjecture: works for other non-orientable surfaces as well Thank you! Questions? Time for Pictures? ### Triangulations of N_5 With 9 Vertices ## Triangulations of N_5 With 9 Vertices