Polytopes of high rank arising from almost simple groups

Dimitri Leemans University of Auckland

Workshop on Symmetry in Graphs, Maps and Polytopes Fields Institute, 25/10/2011

Dimitri Leemans University of Auckland Polytopes of high rank arising from almost simple groups

伺い イヨト イヨト

Dimitri Leemans University of Auckland Polytopes of high rank arising from almost simple groups

||◆ 聞 > ||◆ 臣 > ||◆ 臣 >

æ

Abstract regular polytopes

個 と く ヨ と く ヨ と

- Abstract regular polytopes
- Thin regular residually connected geometries with a linear diagram

・ 同 ト ・ ヨ ト ・ ヨ ト

- Abstract regular polytopes
- Thin regular residually connected geometries with a linear diagram
- String C-groups

向下 イヨト イヨト

- Abstract regular polytopes
- Thin regular residually connected geometries with a linear diagram
- String C-groups

The groups we deal with :

向下 イヨト イヨト

- Abstract regular polytopes
- Thin regular residually connected geometries with a linear diagram
- String C-groups

The groups we deal with :

Finite almost simple groups

- - E - E

- 4 ⊒ ▶

- Abstract regular polytopes
- Thin regular residually connected geometries with a linear diagram
- String C-groups

The groups we deal with :

- Finite almost simple groups
- i.e. G such that $S \leq G \leq Aut(S)$ for some simple group S.

・ロト ・回ト ・ヨト ・ヨト

3

Abstract regular polytopes versus Abstract chiral polytopes

<回と < 回と < 回と

► Abstract regular polytopes versus Abstract chiral polytopes More specific questions: given a family of (almost) simple groups

- - E + - E +

Abstract regular polytopes versus Abstract chiral polytopes
 More specific questions: given a family of (almost) simple groups

What is the highest rank of a polytope having a group of that family as regular automorphism group ?

伺下 イヨト イヨト

Abstract regular polytopes versus Abstract chiral polytopes
 More specific questions: given a family of (almost) simple groups

- What is the highest rank of a polytope having a group of that family as regular automorphism group ?
- How many polytopes are there up to isomorphism ?

・ 同 ト ・ ヨ ト ・ ヨ ト

A **C-group** is a group *G* generated by pairwise distinct involutions $\rho_0, \ldots, \rho_{n-1}$ which satisfy the following property, called the **intersection property**.

・ 同 ト ・ ヨ ト ・ ヨ ト …

A **C-group** is a group *G* generated by pairwise distinct involutions $\rho_0, \ldots, \rho_{n-1}$ which satisfy the following property, called the **intersection property**.

$$\forall J, K \subseteq \{0, \ldots, n-1\},$$

$$\langle \rho_j \mid j \in J \rangle \cap \langle \rho_k \mid k \in K \rangle = \langle \rho_j \mid j \in J \cap K \rangle$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

A **C-group** is a group *G* generated by pairwise distinct involutions $\rho_0, \ldots, \rho_{n-1}$ which satisfy the following property, called the **intersection property**.

$$\forall J, K \subseteq \{0, \ldots, n-1\},$$

$$\langle \rho_j \mid j \in J \rangle \cap \langle \rho_k \mid k \in K \rangle = \langle \rho_j \mid j \in J \cap K \rangle$$

A C-group $(G, \{\rho_0, \dots, \rho_{n-1}\})$ is a **string C-group** if its generators satisfy the following relations.

$$(\rho_j \rho_k)^2 = 1_G \forall j, k \in \{0, \dots, n-1\}$$
 with $|j-k| \ge 2$

・ 同 ト ・ ヨ ト ・ ヨ ト

The **rank** of a string C-group $(G, \{\rho_0, \ldots, \rho_{n-1}\})$ is *n*.

・聞き ・ ほき・ ・ ほう

3

The **rank** of a string C-group $(G, \{\rho_0, \ldots, \rho_{n-1}\})$ is *n*. The **Schläfli symbol** of a string C-group $(G, \{\rho_0, \ldots, \rho_{n-1}\})$ is the ordered sequence $\{o(\rho_0\rho_1), \ldots, o(\rho_{n-1}\rho_n)\}$ where o(g) denotes the order of the element $g \in G$.

- 4 周 と 4 き と 4 き と … き

A **CPR graph** of a string C-group $\mathcal{P} := (G, \{\rho_0, \dots, \rho_{d-1}\})$ of rank *d* is a permutation representation of $\Gamma := \langle \rho_0, \dots, \rho_{d-1} \rangle$ represented on a graph as follows.

イロト イポト イヨト イヨト 二日

A **CPR graph** of a string C-group $\mathcal{P} := (G, \{\rho_0, \dots, \rho_{d-1}\})$ of rank *d* is a permutation representation of $\Gamma := \langle \rho_0, \dots, \rho_{d-1} \rangle$ represented on a graph as follows.

Let ϕ be an embedding of Γ into the symmetric group S_n for some n. The **CPR graph** \mathcal{G} of \mathcal{P} determined by ϕ is the multigraph with n vertices, and with edge labels in the set $\{0, \ldots, d-1\}$, such that any two vertices v, w are joined by an edge of label j if and only if $(v)(\phi(\rho_j)) = w$.

イロト イポト イヨト イヨト 二日

Example : take the symmetric group S_n with its natural action on a set $\Omega := \{1, \ldots, n\}$ of n points.

(本間) (本語) (本語) (語)

Example : take the symmetric group S_n with its natural action on a set $\Omega := \{1, \ldots, n\}$ of n points. Consider the string C-group of the (n - 1)-simplex $\Gamma = \langle \rho_0, \ldots, \rho_{n-2} \rangle$ where $\rho_i := (i + 1, i + 2)$ with $i \in \{0, \ldots, n-2\}$.

(4月) (4日) (日) (日)

Example : take the symmetric group S_n with its natural action on a set $\Omega := \{1, ..., n\}$ of n points. Consider the string C-group of the (n - 1)-simplex $\Gamma = \langle \rho_0, ..., \rho_{n-2} \rangle$ where $\rho_i := (i + 1, i + 2)$ with $i \in \{0, ..., n - 2\}$.

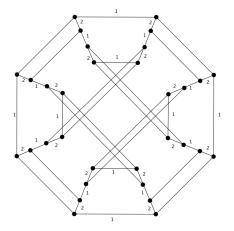
(本間) (本語) (本語) (語)

Two embeddings of the regular toroidal polytope $\{4,4\}_{(2,0)}$

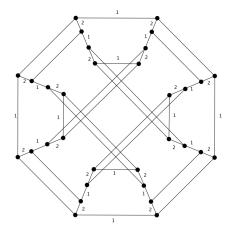
Dimitri Leemans University of Auckland Polytopes of high rank arising from almost simple groups

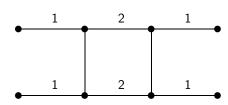
・ 回 と ・ ヨ と ・ ヨ と

Two embeddings of the regular toroidal polytope $\{4,4\}_{(2,0)}$



Two embeddings of the regular toroidal polytope $\{4,4\}_{(2,0)}$

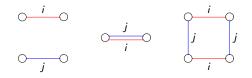




• 3 >

Since we deal with string C-groups, the connected components of the graphs induced by edges with labels i and j for |i - j| > 1 must either be single vertices, single edges, double edges, or alternating squares.

This is due to the fact that if ρ_i and ρ_j commute, we have $\rho_i^{\rho_j} = \rho_i$ and therefore, when conjugating ρ_i by ρ_j , the set of edges corresponding to ρ_i in the CPR graph is stabilized. In other words, ρ_j must permute the edges corresponding to ρ_i .



イロト イポト イヨト イヨト

Atlases of regular polytopes available :

 Hartley : all polytopes with less than 2000 chambers (Periodica Math. Hung. 2006)

・ 同 ト ・ ヨ ト ・ ヨ ト

Atlases of regular polytopes available :

- Hartley : all polytopes with less than 2000 chambers (Periodica Math. Hung. 2006)
- ► Leemans and Vauthier : all polytopes with automorphism group G such that S ≤ G ≤ Aut(S), with S a simple group in the Atlas of Finite Groups, of order less than 900,000 (Aequationes Math. 2006)

・ 同 ト ・ ヨ ト ・ ヨ ト …

Atlases of regular polytopes available :

- Hartley : all polytopes with less than 2000 chambers (Periodica Math. Hung. 2006)
- ► Leemans and Vauthier : all polytopes with automorphism group G such that S ≤ G ≤ Aut(S), with S a simple group in the Atlas of Finite Groups, of order less than 900,000 (Aequationes Math. 2006)
- Hartley-Hulpke : all polytopes with automorphism group a sporadic simple group up to the Held group (CDM 2010).

・ 同 ト ・ ヨ ト ・ ヨ ト

Atlases of chiral polytopes available (paper submitted to AMC) :

Hartley, Hubard and Leemans : all polytopes arising as quotients of regular polytopes with less than 2000 chambers

向下 イヨト イヨト

Atlases of chiral polytopes available (paper submitted to AMC) :

- Hartley, Hubard and Leemans : all polytopes arising as quotients of regular polytopes with less than 2000 chambers
- ► Hartley, Hubard and Leemans : all polytopes with automorphism group G such that S ≤ G ≤ Aut(S), with S a simple group in the Atlas of Finite Groups, of order less than 900,000

く 同 ト く ヨ ト く ヨ ト

D. Leemans and L. Vauthier, *An atlas of abstract regular polytopes for small groups*, Aequationes Math. **72** (2006), 313-320 The groups analysed are subdivided into six families, namely

- Sporadic groups and their automorphism groups;
- Alternating groups and their automorphism groups;
- PSL(2, q) groups and their automorphism groups;
- Other linear groups and their automorphism groups;
- Unitary groups and their automorphism groups;
- Suzuki groups and their automorphism groups.

・ 同 ト ・ ヨ ト ・ ヨ ト …

What is the highest rank ? LV atlas + HH atlas :

個 と く ヨ と く ヨ と

What is the highest rank ? LV atlas + HH atlas :

► Sporadic : 5;

・ 同下 ・ ヨト ・ ヨト

What is the highest rank ? LV atlas + HH atlas :

- Sporadic : 5;
- Alternating : 8;

Image: A image: A

- Sporadic : 5;
- Alternating : 8;
- ▶ *PSL*(2, *q*) : 4;

Image: A image: A

- Sporadic : 5;
- Alternating : 8;
- PSL(2, q) : 4;
- Other linear groups : 5;

A (1) > (1) > (1)

- Sporadic : 5;
- Alternating : 8;
- PSL(2, q) : 4;
- Other linear groups : 5;
- Unitary groups : 5;

< ∃ >

- Sporadic : 5;
- Alternating : 8;
- PSL(2, q) : 4;
- Other linear groups : 5;
- Unitary groups : 5;
- Suzuki groups : 3.

A ■

伺い イヨト イヨト

All simple groups except the sporadics : Nuzhin, Algebra and Logic, 1997.

・ 同 ト ・ ヨ ト ・ ヨ ト …

All simple groups except the sporadics : Nuzhin, Algebra and Logic, 1997.

Sporadics : Abasheev - Norton (see for instance Timofeenko,

Discrete Mathematics and Applications, 2003)

See also Mazurov, Siberian Math. Journal, 2003

・ 同 ト ・ ヨ ト ・ ヨ ト …

All simple groups except the sporadics : Nuzhin, Algebra and Logic, 1997.

Sporadics : Abasheev - Norton (see for instance Timofeenko,

Discrete Mathematics and Applications, 2003)

See also Mazurov, Siberian Math. Journal, 2003

Those that don't have : $A_6 = L_2(9)$, A_7 , A_8 , $L_2(7)$, $L_3(q)$, $L_4(2^n)$, $U_4(2^n)$, $U_3(q)$, $PSp_4(3)$, M_{11} , M_{22} , M_{23} , McL.

・ 同 ト ・ ヨ ト ・ ヨ ト

5. Almost simple groups of Suzuki type

Jones and Silver, J. London Math. Soc. 1993 : there are regular maps of type $\{4,5\}$ for each Suzuki group Sz(q).

・ 同 ト ・ ヨ ト ・ ヨ ト ・

5. Almost simple groups of Suzuki type

Jones and Silver, J. London Math. Soc. 1993 : there are regular maps of type $\{4,5\}$ for each Suzuki group Sz(q).

Theorem (Proc. AMS, 2006)

Let $Sz(q) \leq G \leq Aut(Sz(q))$ with $q = 2^{2e+1}$ and e > 0 a positive integer. Then G is a C-group if and only if G = Sz(q). Moreover, if $(G, \{\rho_0, \ldots, \rho_{n-1}\})$ is a string C-group, then n = 3.

In abstract regular polytopes theory, it means that

イロト イポト イヨト イヨト 二日

Jones and Silver, J. London Math. Soc. 1993 : there are regular maps of type $\{4,5\}$ for each Suzuki group Sz(q).

Theorem (Proc. AMS, 2006)

Let $Sz(q) \leq G \leq Aut(Sz(q))$ with $q = 2^{2e+1}$ and e > 0 a positive integer. Then G is a C-group if and only if G = Sz(q). Moreover, if $(G, \{\rho_0, \ldots, \rho_{n-1}\})$ is a string C-group, then n = 3.

In abstract regular polytopes theory, it means that

▶ if Sz(q) < G ≤ Aut(Sz(q)), then G is not the automorphism group of an abstract regular polytope;

イロト イポト イヨト イヨト 二日

Jones and Silver, J. London Math. Soc. 1993 : there are regular maps of type $\{4,5\}$ for each Suzuki group Sz(q).

Theorem (Proc. AMS, 2006)

Let $Sz(q) \leq G \leq Aut(Sz(q))$ with $q = 2^{2e+1}$ and e > 0 a positive integer. Then G is a C-group if and only if G = Sz(q). Moreover, if $(G, \{\rho_0, \ldots, \rho_{n-1}\})$ is a string C-group, then n = 3.

In abstract regular polytopes theory, it means that

- ▶ if Sz(q) < G ≤ Aut(Sz(q)), then G is not the automorphism group of an abstract regular polytope;
- If G = Sz(q), there exists an abstract regular polytope P such that G = Aut(P). Moreover, if P is an abstract regular polytope such that G = Aut(P), then P must be an abstract polyhedron, i.e. a rank three polytope.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Theorem (with Kiefer, JCTA, 2010)

A given Suzuki group Sz(q) with $q = 2^{2e+1}$ and $e \ge 0$, acts on

$$\frac{1}{2} \sum_{2f+1|2e+1} \mu(\frac{2e+1}{2f+1}) \sum_{\substack{n|2f+1\\n\neq 1}} \lambda(n)\psi(n,2f+1)$$

polyhedra up to isomorphism and duality, where

$$\lambda(n) = \frac{1}{n} \sum_{d|n} \mu(\frac{n}{d}) \cdot 2^d$$

$$\psi(n, 2f+1) = \sum_{\substack{m \mid \frac{2f+1}{n}}} \frac{\sum_{d|m} \mu(\frac{m}{d})(2^{nd}-1)}{m}$$

A (1) > (1) > (1)

5. Almost simple groups of Suzuki type

е	q	Number of polytopes
1	8	7
2	32	93
3	128	1143
4	512	14476
5	2048	190371
6	8192	2580165
7	32768	35788085
8	131072	505278705
9	524288	7233587739
10	2097152	104715242943
11	8388608	1529754761127
12	33554432	22517996123568
13	134217728	333599964936448
14	536870912	4969489216225845

・ 「「」 ト ・ 三 ト ・ 二 三 ト ・

Theorem (with Vauthier, Aequationes Math., 2006) Let $G \cong PSL(2, q)$. If $(G, \{\rho_0, \dots, \rho_{n-1}\})$ is a string C-group, then $n \leq 4$.

・ 何 ト ・ ヨ ト ・ ヨ ト

Theorem (with Vauthier, Aequationes Math., 2006) Let $G \cong PSL(2, q)$. If $(G, \{\rho_0, \dots, \rho_{n-1}\})$ is a string C-group, then $n \leq 4$.

Theorem (with Schulte, Adv. Geom., 2007) Let $G \cong PSL(2, q)$. If $(G, \{\rho_0, \dots, \rho_3\})$ is a string C-group, then q = 11 or 19.

イロト イポト イヨト イヨト 二日

Theorem (with Vauthier, Aequationes Math., 2006) Let $G \cong PSL(2, q)$. If $(G, \{\rho_0, \dots, \rho_{n-1}\})$ is a string C-group, then $n \leq 4$.

Theorem (with Schulte, Adv. Geom., 2007) Let $G \cong PSL(2, q)$. If $(G, \{\rho_0, \dots, \rho_3\})$ is a string C-group, then q = 11 or 19. Or in other words : Let $G \cong PSL(2, q)$. If \mathcal{P} is a polytope of rank four on which G acts regularly, then q = 11 or 19.

イロト イポト イヨト イヨト 二日

PSL(2, q): Conder, Potocnik and Siran computed the number of regular (hyper)maps up to isomorphism (J. Aust. Math. Soc. 2008)

・ 同 ト ・ ヨ ト ・ ヨ ト …

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (with Schulte, Ars Math. Contemp., 2009) Let $G \cong PGL(2, q)$. If $(G, \{\rho_0, \dots, \rho_{n-1}\})$ is a string C-group, then $n \leq 4$. Moreover, if n = 4, then q = 5.

Theorem (with Schulte, Ars Math. Contemp., 2009) Let $G \cong PGL(2, q)$. If $(G, \{\rho_0, \dots, \rho_{n-1}\})$ is a string C-group, then $n \leq 4$. Moreover, if n = 4, then q = 5. Or in other words : Let $G \cong PGL(2, q)$. If \mathcal{P} is a polytope of rank ≥ 4 on which G acts regularly, then n = 4 and q = 5.

イロト イポト イヨト イヨト 二日

Theorem (with Schulte, Ars Math. Contemp., 2009) Let $G \cong PGL(2, q)$. If $(G, \{\rho_0, \dots, \rho_{n-1}\})$ is a string C-group, then $n \leq 4$. Moreover, if n = 4, then q = 5. Or in other words : Let $G \cong PGL(2, q)$. If \mathcal{P} is a polytope of rank ≥ 4 on which G acts regularly, then n = 4 and q = 5. PGL(2, q) : Conder, Potocnik and Siran computed the number of regular (hyper)maps up to isomorphism (J. Aust. Math. Soc.

2008)

(日)(4月)(4日)(4日)(日)

No polytope of any rank found for these groups in the Atlas.

A (10) × (10) × (10) ×

No polytope of any rank found for these groups in the Atlas.

Theorem (Brooksbank-Vicinsky, DCG, 2010) The group $PSL(3,q) \le G \le PGL(3,q)$ is not the automorphism

group of an abstract regular polytope.

・ 同 ト ・ ヨ ト ・ ヨ ト …

・ 同 ト ・ ヨ ト ・ ヨ ト

 \Rightarrow for every $n \ge 3$, there is an abstract regular polytope of rank n-1 whose automorphism group is S_n .

A (10) × (10) × (10) ×

 \Rightarrow for every $n \ge 3$, there is an abstract regular polytope of rank n-1 whose automorphism group is S_n .

Sjerve and Cherkassoff show in 1993 that S_n is a group generated by three involutions, two of which commute, provided that $n \ge 4$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

 \Rightarrow for every $n \ge 3$, there is an abstract regular polytope of rank n-1 whose automorphism group is S_n .

Sjerve and Cherkassoff show in 1993 that S_n is a group generated by three involutions, two of which commute, provided that $n \ge 4$. The examples they give satisfy the intersection condition and therefore are rank three abstract regular polyhedra. So every group S_n with $n \ge 4$ is the automorphism group of at least one abstract regular polytope of rank 3 and one polytope of rank n - 1.

イロト イポト イヨト イヨト

 \Rightarrow for every $n \ge 3$, there is an abstract regular polytope of rank n-1 whose automorphism group is S_n .

Sjerve and Cherkassoff show in 1993 that S_n is a group generated by three involutions, two of which commute, provided that $n \ge 4$. The examples they give satisfy the intersection condition and therefore are rank three abstract regular polyhedra. So every group S_n with $n \ge 4$ is the automorphism group of at least one abstract regular polytope of rank 3 and one polytope of rank n - 1. Earlier work by Conder in the early 1980's covers all but a few cases of the results of S-C for the alternating and symmetric groups. These days, it takes a few seconds to handle the missing cases for S_n with MAGMA.

・ロト ・回ト ・ヨト ・ヨト

Moreover, Conder observed that one may just take x = (1, 2) and y = (1, 2, 3, ..., n - 1, n) as standard generators of S_n , which have been known for at least 100 years. This generating pair is "reflexible" within S_n , e.g. by conjugation by $t = (1, 2)(3, n)(4, n - 1) \dots (n/2, 3 + n/2)(1 + n/2, 2 + n/2)$ if n is even or $(1, 2)(3, n)(4, n - 1) \dots ((n + 1)/2, (n + 5)/2)$ if n is odd. In particular, S_n is generated by the three involutions xt, yt and t, for any n > 2.

(4月) (4日) (4日)

In the LV atlas, symmetric groups up to n = 9 are available.

G	Rank 3	Rank 4	Rank 5	Rank 6	Rank 7	Rank 8
S_5	4	1	0	0	0	0
S_6	2	4	1	0	0	0
<i>S</i> ₇	35	7	1	1	0	0
S_8	68	36	11	1	1	0
S_9	129	37	7	7	1	1

In the LV atlas, symmetric groups up to n = 9 are available.

G	Rank 3	Rank 4	Rank 5	Rank 6	Rank 7	Rank 8
S_5	4	1	0	0	0	0
S_6	2	4	1	0	0	0
<i>S</i> ₇	35	7	1	1	0	0
S_8	68	36	11	1	1	0
S_9	129	37	7	7	1	1

Looking at these results, three observations are easily made.

In the LV atlas, symmetric groups up to n = 9 are available.

G	Rank 3	Rank 4	Rank 5	Rank 6	Rank 7	Rank 8
S_5	4	1	0	0	0	0
S_6	2	4	1	0	0	0
<i>S</i> ₇	35	7	1	1	0	0
S_8	68	36	11	1	1	0
S_9	129	37	7	7	1	1

Looking at these results, three observations are easily made.

1. the (n-1)-simplex is, up to isomorphism, the unique regular (n-1)-polytope having S_n as automorphism group;

In the LV atlas, symmetric groups up to n = 9 are available.

G	Rank 3	Rank 4	Rank 5	Rank 6	Rank 7	Rank 8
S_5	4	1	0	0	0	0
S_6	2	4	1	0	0	0
<i>S</i> ₇	35	7	1	1	0	0
S_8	68	36	11	1	1	0
S_9	129	37	7	7	1	1

Looking at these results, three observations are easily made.

- 1. the (n-1)-simplex is, up to isomorphism, the unique regular (n-1)-polytope having S_n as automorphism group;
- 2. for $n \ge 7$, there exists, up to isomorphism and duality, a unique regular (n 2)-polytope whose automorphism group is S_n .

In the LV atlas, symmetric groups up to n = 9 are available.

G	Rank 3	Rank 4	Rank 5	Rank 6	Rank 7	Rank 8
S_5	4	1	0	0	0	0
S_6	2	4	1	0	0	0
<i>S</i> ₇	35	7	1	1	0	0
S_8	68	36	11	1	1	0
S_9	129	37	7	7	1	1

Looking at these results, three observations are easily made.

- 1. the (n-1)-simplex is, up to isomorphism, the unique regular (n-1)-polytope having S_n as automorphism group;
- 2. for $n \ge 7$, there exists, up to isomorphism and duality, a unique regular (n-2)-polytope whose automorphism group is S_n .
- 3. there are polytopes of rank r with $3 \le r \le n-1$; moreover, there is more than one r-polytope provided $r \le n-3$.

Let S be a family of elements of a group G. We say that S is an **independent set** if $s \notin \langle S \setminus \{s\} \rangle$, for all $s \in S$.

・ 回 と ・ ヨ と ・ ヨ と

Let *S* be a family of elements of a group *G*. We say that *S* is an **independent set** if $s \notin \langle S \setminus \{s\} \rangle$, for all $s \in S$. Moreover, if in addition $\langle S \rangle = G$ we say that *S* is an **independent generating set**. Particularly, if Γ is a string C-group, $\{\rho_0, \ldots, \rho_{r-1}\}$ is an independent generating set for *G*. We use Γ_{i_1,\ldots,i_m} to denote $\langle \rho_j \mid j \notin \{i_1,\ldots,i_m\} \rangle$.

- 4 周 と 4 き と 4 き と … き

Let *S* be a family of elements of a group *G*. We say that *S* is an **independent set** if $s \notin \langle S \setminus \{s\} \rangle$, for all $s \in S$. Moreover, if in addition $\langle S \rangle = G$ we say that *S* is an **independent generating set**. Particularly, if Γ is a string C-group, $\{\rho_0, \ldots, \rho_{r-1}\}$ is an independent generating set for *G*. We use Γ_{i_1,\ldots,i_m} to denote $\langle \rho_j \mid j \notin \{i_1,\ldots,i_m\} \rangle$.

Proposition (Whiston, J. Algebra 2000)

The size of an independent set in S_n is at most n - 1, with equality only if the set generates the whole group S_n .

(ロ) (同) (E) (E) (E)

Let *S* be a family of elements of a group *G*. We say that *S* is an **independent set** if $s \notin \langle S \setminus \{s\} \rangle$, for all $s \in S$. Moreover, if in addition $\langle S \rangle = G$ we say that *S* is an **independent generating set**. Particularly, if Γ is a string C-group, $\{\rho_0, \ldots, \rho_{r-1}\}$ is an independent generating set for *G*. We use Γ_{i_1,\ldots,i_m} to denote $\langle \rho_j \mid j \notin \{i_1,\ldots,i_m\} \rangle$.

Proposition (Whiston, J. Algebra 2000)

The size of an independent set in S_n is at most n - 1, with equality only if the set generates the whole group S_n .

 \Rightarrow maximal rank is n-1 !

イロト イポト イヨト イヨト 二日

Theorem (with Fernandes, Adv. Math 2011)

For $n \ge 5$, the (n-1)-simplex is, up to isomorphism, the unique polytope of rank n-1 having a group S_n as automorphism group. For n = 4, there are, up to isomorphism and duality, two abstract regular polyhedra whose automorphism group is S_4 , namely the hemicube and the tetrahedron. Finally, for n = 3, there is, up to isomorphism, a unique abstract regular polygon whose automorphism group is S_3 , namely the triangle.

イロト イポト イヨト イヨト

Sketch proof :

Proposition (Cameron, Cara, J. Algebra 2002)

If S is an independent generating set for S_n of size n - 1, with $n \ge 7$, then one of the following holds:

- 1. S is a set of transpositions;
- 2. There exist a transposition $s \in S$ and a set of transpositions T such that

$$S = \{s\} \cup \{(st)^{\varepsilon(t)} \mid t \in T\}, \quad \textit{where } \varepsilon(t) = \pm 1.$$

Theorem (with Fernandes, Adv. Math. 2011)

For $n \ge 7$, there exists, up to isomorphism and duality, a unique (n-2)-polytope \mathcal{P} having a group S_n as automorphism group. The Schläfli symbol of \mathcal{P} is $\{4, 6, 3^{n-5}\}$.

Remarks :

- ▶ n = 6 : four polytopes of rank 4, of respective Schläfli symbols {3,4,4}, {3,6,4}, {4,4,4} and {4,6,4}.
- ▶ n = 5 : four polytopes of rank 3, of respective Schläfli symbols {4,5}, {4,6}, {5,6} and {6,6}.
- ▶ $n \ge 8$: at least two non-isomorphic (n-3)-polytopes with automorphism group S_n , for instance the ones with respective Schläfli symbols $\{4, 6, 3^{n-6}\}$ and $\{4, 6, 3^{n-8}, 6, 4\}$.
- ► The facet of the (n 2)-polytope with automorphism group S_n is a (n 3)-polytope with automorphism group S_{n-1}.

Sketch proof:

O'Nan-Scott theorem : list of the maximal subgroups of S_n , putting them in three categories, namely

- the primitive groups,
- the imprimitive but transitive groups and
- the intransitive groups.

Naturally, any proper subgroup of S_n belongs to one of these three categories as well.

A (10) × (10) × (10) ×

Exhaustive lists of primitive subgroups of S_n exist up to a certain degree (see for instance Buekenhout, Leemans, J. Symbolic Comput. 1996, or Roney-Dougal, J. Algebra 2005).

Exhaustive lists of primitive subgroups of S_n exist up to a certain degree (see for instance Buekenhout, Leemans, J. Symbolic Comput. 1996, or Roney-Dougal, J. Algebra 2005).

Proposition (Wielandt, 1964)

Every non trivial normal subgroup of a primitive group is transitive.

・ 「「」 ト ・ 三 ト ・ 二 三 ト ・

Exhaustive lists of primitive subgroups of S_n exist up to a certain degree (see for instance Buekenhout, Leemans, J. Symbolic Comput. 1996, or Roney-Dougal, J. Algebra 2005).

Proposition (Wielandt, 1964)

Every non trivial normal subgroup of a primitive group is transitive.

Lemma

If $r \geq 3$, then Γ_1 and Γ_{r-2} are not primitive.

イロン イ部 とくほど くほとう ほ

Corollary Γ_1 and Γ_{n-4} are intransitive.

Corollary

 Γ_1 and Γ_{n-4} are intransitive.

Proposition (Maroti, J. Algebra 2002)

If G is a primitive subgroup of S_n not containing A_n , then $|G| < 3^n$. Moreover, if n > 24, then $|G| < 2^n$.

A (10) A (10)

Corollary

 Γ_1 and Γ_{n-4} are intransitive.

Proposition (Maroti, J. Algebra 2002)

If G is a primitive subgroup of S_n not containing A_n , then $|G| < 3^n$. Moreover, if n > 24, then $|G| < 2^n$.

Lemma

 Γ_0 and Γ_{n-3} are not primitive.

Corollary

 Γ_1 and Γ_{n-4} are intransitive.

Proposition (Maroti, J. Algebra 2002)

If G is a primitive subgroup of S_n not containing A_n , then $|G| < 3^n$. Moreover, if n > 24, then $|G| < 2^n$.

Lemma

 Γ_0 and Γ_{n-3} are not primitive.

Lemma

 Γ_i is not primitive for $i \in \{2, \ldots, n-5\}$.

(人間) とうり くうり

Theorem Let $n \ge 7$ and $i \in \{0, ..., n-3\}$. The subgroup Γ_i is intransitive.

・回 ・ ・ ヨ ・ ・ ヨ ・ …

3

Theorem

Let $n \ge 7$ and $i \in \{0, ..., n-3\}$. The subgroup Γ_i is intransitive. Use this to determine the possible shape of the CPR graph associated to a rank (n-2) regular polytope of S_n and show that, up to isomorphism and duality, this graph is unique.

Consequences :

Dimitri Leemans University of Auckland Polytopes of high rank arising from almost simple groups

- 4 回 2 - 4 □ 2 - 4 □

Consequences :

Theorem

Let Γ be a subgroup of S_n with $n \ge 7$. If Γ is the automorphism group of an abstract regular polytope of rank n - 2, with a connected Coxeter diagram, then Γ is isomorphic to S_n .

A B K A B K

Consequences :

Theorem

Let Γ be a subgroup of S_n with $n \ge 7$. If Γ is the automorphism group of an abstract regular polytope of rank n - 2, with a connected Coxeter diagram, then Γ is isomorphic to S_n .

Corollary

The group A_n with $n \ge 7$ has no abstract regular polytope of rank n-2.

Theorem (with Fernandes, Adv. Math 2011)

Let $n \ge 4$. For every $r \in \{3, ..., n-1\}$, there exists at least one r-polytope \mathcal{P} having a group S_n as automorphism group. Its Schläfli symbol is $\{n - r + 2, 6, 3^{r-3}\}$.

Theorem (with Fernandes, Adv. Math 2011)

Let $n \ge 4$. For every $r \in \{3, ..., n-1\}$, there exists at least one r-polytope \mathcal{P} having a group S_n as automorphism group. Its Schläfli symbol is $\{n - r + 2, 6, 3^{r-3}\}$.

Theorem (rephrased)

Given any integer r > 2, the symmetric group S_n has at least one polytope of rank r whenever n > r.

Can we count how many polytopes there are ?

- 4 回 2 - 4 □ 2 - 4 □

Can we count how many polytopes there are ? One step in that direction : number of pairs of commuting involutions.

・ 回 ト ・ ヨ ト ・ ヨ ト

8. Symmetric groups S_n

Theorem (with Kiefer, submitted)

Let n > 3 be a positive integer. Set $\lambda(k)$ and $\psi(k, n)$ as follows.

$$\lambda(k) = \lfloor (\frac{k+1}{2})^2 \rfloor$$

$$\psi(k,n) = \begin{cases} \left[\frac{1}{2}\left(k - \lfloor \frac{n-2k}{2} \rfloor\right)\right]^2 + \frac{1}{2}\left(k - \lfloor \frac{n-2k}{2} \rfloor\right) & \text{if } n \equiv 0,1 \mod 4, \\\\ \left[\frac{1}{2}\left(k - \lfloor \frac{n-2k}{2} \rfloor - 1\right)\right]^2 + k - \lfloor \frac{n-2k}{2} \rfloor & \text{if } n \equiv 2,3 \mod 4. \end{cases}$$

If $n \neq 6$, there are, up to isomorphism,

$$-\frac{3}{2} \cdot \lfloor \frac{n}{2} \rfloor + \sum_{k=1}^{\lfloor \frac{n}{2} \rfloor} \lambda(k) \cdot (\frac{1}{2} \lfloor \frac{n-2k}{2} \rfloor + 1) - \frac{1}{2} \cdot \sum_{k=\lfloor \frac{n}{4} \rfloor + 1}^{\lfloor \frac{n}{2} \rfloor} \psi(k, n)$$

pairs of commuting involutions in Sym(n). If n = 6, there are, up to isomorphism, five pairs of commuting involutions in Sym(n).

Dimitri Leemans University of Auckland

Polytopes of high rank arising from almost simple groups

Counting is still an OPEN QUESTION !!! Probably hopeless.

個 と く ヨ と く ヨ と

9. Alternating groups A_n

Theorem (with Kiefer, submitted)

Let n > 3 be a positive integer. Set $\lambda''(k)$ and $\mu(n)$ as follows.

$$\lambda^{\prime\prime}(k) = \begin{cases} \lambda(k) - 1 & \text{if } k \leq \lfloor \frac{n}{4} \rfloor + 1, \\ \lambda(k) - \psi(k, n) - 1 & \text{if } k > \lfloor \frac{n}{4} \rfloor + 1, \end{cases}$$

$$\begin{split} \mu(n) &= -2 \cdot \lfloor \frac{n}{4} \rfloor \\ &+ \sum_{\substack{k=1\\k \text{ even}}}^{\lfloor \frac{n}{2} \rfloor} \left[\lambda_{e}(k) \cdot \lceil \frac{1}{2} \cdot (\lfloor \frac{n-2k}{2} \rfloor + 1) \rceil + \lambda_{o}(k) \cdot \lfloor \frac{1}{2} \cdot (\lfloor \frac{n-2k}{2} \rfloor + 1) \rfloor \right] \end{split}$$

where $\lambda_e(k) = \frac{k^2}{8} + \frac{3k}{4} + 1$ and $\lambda_o(k) = \frac{k^2}{8} + \frac{k}{4}$. If $n \neq 6$, there are, up to isomorphism,

$$\frac{1}{2}\left(\mu(n)+\sum_{\substack{k=1\\k even}}^{\lfloor \frac{n}{2} \rfloor} \lambda^{\prime\prime}(k)\right)$$

pairs of commuting involutions in Alt(n).

If n = 6, there is, up to isomorphism, a unique pair of commuting involutions in Alt(n).

Dimitri Leemans University of Auckland Polytopes of high rank arising from almost simple groups

イロト イヨト イヨト

Question (Hartley, 2006) :

Find regular, chiral, or other polytopes whose automorphism groups are alternating groups A_n . In particular, given a rank r, for which n does A_n occur as the automorphism group of a regular or chiral polytope of rank r?

く 同 ト く ヨ ト く ヨ ト

▶ First main results on regular 3-polytopes with automorphism group A_n : Conder in his doctoral thesis, published in JLMS, 1980 and Quart. J. Oxford 1981.

- ▶ First main results on regular 3-polytopes with automorphism group A_n : Conder in his doctoral thesis, published in JLMS, 1980 and Quart. J. Oxford 1981.
- For every k > 6, all but finitely many A_n are the automorphism group of a regular map of type {3, k}.

- ▶ First main results on regular 3-polytopes with automorphism group *A_n* : Conder in his doctoral thesis, published in JLMS, 1980 and Quart. J. Oxford 1981.
- For every k > 6, all but finitely many A_n are the automorphism group of a regular map of type {3, k}.
- Bujalance, Costa and Conder, TAMS 2010 : extended these results to chiral maps.

- ▶ First main results on regular 3-polytopes with automorphism group *A_n* : Conder in his doctoral thesis, published in JLMS, 1980 and Quart. J. Oxford 1981.
- For every k > 6, all but finitely many A_n are the automorphism group of a regular map of type {3, k}.
- Bujalance, Costa and Conder, TAMS 2010 : extended these results to chiral maps.
- Nedela and Siran independently developed methods for constructing chiral maps of prescribed type from alternating groups.

- ▶ First main results on regular 3-polytopes with automorphism group *A_n* : Conder in his doctoral thesis, published in JLMS, 1980 and Quart. J. Oxford 1981.
- For every k > 6, all but finitely many A_n are the automorphism group of a regular map of type {3, k}.
- Bujalance, Costa and Conder, TAMS 2010 : extended these results to chiral maps.
- Nedela and Siran independently developed methods for constructing chiral maps of prescribed type from alternating groups.
- Pellicer, PhD thesis and EJC 2008.

 A_5 : Up to isomorphism and duality, the only two polytopes with group A_5 are the hemi-icosahedron and the hemi-great dodecahedron.

伺い イヨト イヨト

 A_5 : Up to isomorphism and duality, the only two polytopes with group A_5 are the hemi-icosahedron and the hemi-great dodecahedron.

 A_6 : no polytope

 A_5 : Up to isomorphism and duality, the only two polytopes with group A_5 are the hemi-icosahedron and the hemi-great dodecahedron.

- A_6 : no polytope
- A_7 : no polytope

伺下 イヨト イヨト

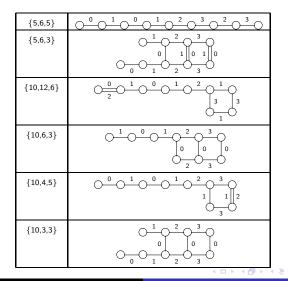
 A_5 : Up to isomorphism and duality, the only two polytopes with group A_5 are the hemi-icosahedron and the hemi-great dodecahedron.

- A_6 : no polytope
- A_7 : no polytope
- A_8 : no polytope

伺 と く き と く き と

9. Alternating groups A_n

 A_9 : 41 rank three and 6 rank four string C-groups.



Dimitri Leemans University of Auckland

Polytopes of high rank arising from almost simple groups

9. Alternating groups A_n

 A_{10} : 94 of rank three, 2 of rank four and 4 of rank five.

{5,10,6}	$\bigcirc 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 $
{5,6,6}	$\bigcirc \underbrace{\overset{2}{\longrightarrow}}_{0} \bigcirc \underbrace{\overset{1}{\longrightarrow}}_{0} \bigcirc \underbrace{\overset{0}{\longrightarrow}}_{1} \bigcirc \underbrace{\overset{1}{\longrightarrow}}_{2} \bigcirc \underbrace{\overset{3}{\longrightarrow}}_{2} \bigcirc \underbrace{\overset{2}{\longrightarrow}}_{3} \bigcirc \underbrace{\overset{3}{\longrightarrow}}_{2} \bigcirc \underbrace{\overset{2}{\longrightarrow}}_{1} \bigcirc \underbrace{\overset{3}{\longrightarrow}}_{2} \bigcirc \underbrace{\overset{2}{\longrightarrow}}_{1} \bigcirc \underbrace{\overset{3}{\longrightarrow}}_{1} \odot $
{5,5,6,5}	$\bigcirc 0 \bigcirc 1 \bigcirc 0 \bigcirc 1 \bigcirc 2 \bigcirc 3 \bigcirc 4 \bigcirc 3 \bigcirc 4 \bigcirc 0 \bigcirc 1 \bigcirc 0 \bigcirc 1 \bigcirc 0 \bigcirc 1 \bigcirc 0 \bigcirc 0 \bigcirc 0 \bigcirc 0$
{5,6,4,5}	$\bigcirc 0 \\ 2 \\ \bigcirc 1 \\ \bigcirc 0 \\ 2 \\ \bigcirc 1 \\ \bigcirc 0 \\ \bigcirc 1 \\ \bigcirc 0 \\ \bigcirc 1 \\ \bigcirc 2 \\ \bigcirc 2 \\ \bigcirc 2 \\ \bigcirc 4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
{5,10,4,5}	$\bigcirc 0 \\ \bigcirc 1 \\ \bigcirc 0 \\ 2 \\ \bigcirc 1 \\ \bigcirc 2 \\ \bigcirc 1 \\ \bigcirc 2 \\ \bigcirc 2 \\ \bigcirc 3 \\ 4 \\ \bigcirc 2 \\ \bigcirc 4 \\ \bigcirc 4 \\ \bigcirc 2 \\ \bigcirc 4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
{5,3,6,5}	$\bigcirc \underbrace{\overset{2}{\longrightarrow}}_{0} \bigcirc \underbrace{\overset{1}{\longrightarrow}}_{0} \bigcirc \underbrace{\overset{0}{\longrightarrow}}_{1} \bigcirc \underbrace{\overset{2}{\longrightarrow}}_{0} \bigcirc \underbrace{\overset{3}{\longrightarrow}}_{4} \bigcirc \underbrace{\overset{3}{\longrightarrow}}_{4} \bigcirc \underbrace{\overset{4}{\longrightarrow}}_{0} \bigcirc \underbrace{\overset{3}{\longrightarrow}}_{4} \bigcirc \underbrace{\overset{4}{\longrightarrow}}_{0} \bigcirc \underbrace{\overset{2}{\longrightarrow}}_{0} \odot \underbrace{\overset{2}{\longrightarrow}}_{0} \bigcirc \underbrace{\overset{2}{\longrightarrow}}_{0} \odot $

(1日) (日) (日)

 A_{11} : rank three and six. NO rank four or five !!!

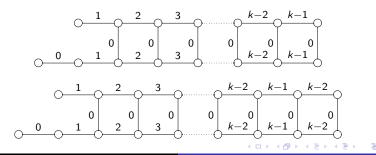
<回と < 回と < 回と

3

9. Alternating groups A_n

Theorem (with Fernandes and Mixer, JCTA 2012)

For each rank $k \ge 3$, there is a regular k-polytope \mathcal{P} with automorphism group isomorphic to an alternating group A_n for some n. In particular, for each even rank $r \ge 4$, there is a regular polytope with Schläfli type $\{10, 3^{r-2}\}$ and group isomorphic to A_{2r+1} , and for each odd rank $q \ge 5$, there is a regular polytope with Schläfli type $\{10, 3^{q-4}, 6, 4\}$ and group isomorphic to A_{2q+3} .



Dimitri Leemans University of Auckland

Polytopes of high rank arising from almost simple groups

Theorem (with Fernandes and Mixer, submitted)

For each $n \notin \{3, 4, 5, 6, 7, 8, 11\}$, there is a rank $\lfloor \frac{n-1}{2} \rfloor$ string *C*-group representation of the alternating group A_n .

Group	Schläfli Type	CPR Graph
A_{2r+2} $(r \ge 6)$	$\{5, 6, 3^{r-6}, 6, 6, 3\}$	$\bigcirc \bigcirc $
		$\bigcirc _{2} \bigcirc _{r-3} \bigcirc _{r-2} \bigcirc _{r-1} \odot _{r-1} \bigcirc _{r-1} \odot _$
A_{2r+1} (r \geq 7)	$\{5, 5, 6, 3^{r-7}, 6, 6, 3\}$	$\bigcirc \underbrace{0}_{2} \bigcirc \underbrace{1}_{2} \bigcirc \underbrace{0}_{2} \bigcirc \underbrace{1}_{2} \bigcirc \underbrace{2}_{3} \bigcirc \underbrace{0}_{r-3} \bigcirc \underbrace{r-3}_{r-3} \bigcirc \underbrace{r-1}_{r-3} \bigcirc \underbrace{r-1}_{r$
		$\bigcirc 3 \bigcirc 7 $

・ 同 ト ・ ヨ ト ・ ヨ ト

Conjecture (Fernandes, Leemans, Mixer)

Let $n \ge 12$. The highest rank of a string C-group having A_n as automorphism group is $\lfloor \frac{n-1}{2} \rfloor$.

・ 回 と ・ ヨ と ・ ヨ と

Prove latter conjecture for the maximum rank of a string C-group with group A_n.

・ 回 と ・ ヨ と ・ ヨ と

æ

- Prove latter conjecture for the maximum rank of a string C-group with group A_n.
- Either find examples of rank four for the Ree groups or prove that they do not exist.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Prove latter conjecture for the maximum rank of a string C-group with group A_n.
- Either find examples of rank four for the Ree groups or prove that they do not exist.
- Try to count string C-groups of rank 3, ... for S_n and A_n .

・ 同 ト ・ ヨ ト ・ ヨ ト

- Prove latter conjecture for the maximum rank of a string C-group with group A_n.
- Either find examples of rank four for the Ree groups or prove that they do not exist.
- Try to count string C-groups of rank 3, ... for S_n and A_n .
- Prove similar results for chiral polytopes.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

THANK YOU !

Dimitri Leemans University of Auckland Polytopes of high rank arising from almost simple groups

<ロ> (四) (四) (三) (三) (三)