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ABSTRACT. A subset of one of the algebraic systems €, H, or O©
is a basic system of integers if: (1) the trace and the norm
of each element are rational integers; (2) the elements form a
discrete subring of €, H, or © with the units forming a finite
mul tiplicative group or loop; and (3) when €, H, or © is taken
as a two-, four-, or eight-dimensional wvector space over R, the
elements are the points of a two-, four-, or eight-dimensional
lattice spanned by the units. The ring of rational integers
can be regarded as a one-dimensional basic system. The rings
of Gaussian and Eisenstein complex integers are well known.
A. T. Welss and T proved that there are exactly three basic
systems of integral quaternions. Here I show that there are
just four such systems of octonions. As lattice points, the
integers of each basic system are the vertices of some regular

or uniform Euclidean honeycomb of dimension 1, 2, 4, or 8.



Complex Numbers

The field € of complex numbers is a two-dimensional
vector space over IR with a commutative multiplication
of vectors, defined by the mapping

R2 — R2*2. with (x, y)'ﬁ( X y),

and the usual matrix multiplication. The transpose of
the matrix for a complex number z = (x, y) = x + yi
Is the matrix for its conjugate z = (x, -y) = x — yi.

Each complex number z has a trace

trz =z+2z2 = 2x
and a norm

N(iz) = 2Z = x?+ y>.



Quaternions

The division ring IH of quaternions is a four-dimen-
sional vector space over R with a noncommutative
multiplication of vectors. Each quaternion

X = Xqo+ X1+ Xy] +X5K

has a conjugate

A

X = Xg— Xq1—Xy] — X5K,
in terms of which we can define its frace

trx = x+X = 2x,
and its norm

S T 2 2 2
N(X) = XX = Xp° + X7+ X,° + X3°.



Octonions

The alternative division ring O of octonions is an eight-
dimensional vector space over IR with a nonassociative
multiplication of vectors. Each octonion

has a conjugate
X = XO_X1e1 . ""X7e7,

In terms of which we can define its trace

trx = x+X = 2x,
and its norm



The Rank Equation
The trace is additive and the norm is multiplicative:

tr{x+y) = trx + try,
Nixy) = N(x)-Nly).

Every complex number, quaternion, or octonion a sat-
iIsfies what Dickson (1923) called its "rank equation":

x’-(a+3a)x+aa = 0.

The nonzero complex numbers, quaternions, or octo-
nions form a multiplicative group GL(C) or GL(IH) or
Moufang loop GM(OD).



Integers

According to Dickson (1923), a set of complex, quater-
nionic, or octonionic integers should have the following
properties:

(1) for each number in the set, the coefficients of its
rank equation are rational integers;

(2) the set is closed under subtraction and multiplica-
tion;

(3) the set contains 1;

(4) the set is maximal, i.e., not a subset of a larger
set meeting the other criteria.



Basic Systems

A basic system of integral elements is a subset of C,
IH, or O such that:

(1) the trace and the norm of each element are ratio-
nal integers;

(2) the elements form a subring of C, H, or O with a
set of invertible units (elements of norm 1) closed
under multiplication;

(3) when C, IH, or O is taken as a vector space over
IR, the elements are the points of a two-, four-,
or eight-dimensional lattice spanned by the units.

A basic system is maximal if it is not a subset of a larger
set meeting the other criteria.



Real and Complex Integers

The only basic system of integral real numbers is the
ring of rational integers Z, with two units, 1 and -1.

The two basic systems of integral complex numbers
are the rings of Gaussian and Eisenstein integers

G Z[i] and [E = Z[w],

i

where i = V-1 and @ = —3+3V-3. The units 1 and
i of G span the square lattice C,, and the units 1 and
w» of [E span the hexagonal lattice A,.
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Quaternionic Integers

There are three basic systems of integral quaternions
(Johnson & Weiss 1999), viz., the rings of Hamilton,
hybrid, and Hurwitz integers

Ham = Zl1i,}], Hyb = Zlw, ], Hur = Zlu, v],
where ® = -4+ 3V/3i and where
u=*+-ti-2j+3k and v = 3+3%i—3j-3k.

The systems have 8, 12, and 24 units, respectively,
spanning four-dimensional lattices C,, A,® A,, and D,.



Quaternionic Systems

System Units Lattice Honeycomb
Ham 8 C, {4, 3, 3, 4}
IHyb 12 A, DA, {3, 6} x {3, 6}

IHur 24 D, {3, 3, 4, 3}



Cayley-Graves Integers

The simplest basic system of octonionic integers con-
sists of all octonions

g = Ggo7tg.€4+---+gsey

whose eight components are all rational integers. We
denote this system by Ocg and call its elements the
Cayley-Graves integers or, following Conway & Smith
(2003), the Gravesian octaves. There are 16 units,
namely,

+1, +e,, *e, =*e; e, Le; *e; *e,

spanning an eight-dimensional lattice Cg.



GGravesian

Multiplication Table

e, | e, | e5 | €, | € | €5 | €y
e, | —1 €, | €5 |—€, | €5 |—€ |—€4
e, |-e, | -1 e; | €, —e3; | e, |—€;
ey |—€y |—€ |- € | e, —e, | €y
e, | e, |—e; |—ez | —1 e, | €3 |—€g
€ |—€5; | €5 |—e, |—e;, | -] e, | €,
€; | € |—-€e; | e, |- —e; | -1 e,




Coxeter-Dickson Integers

Dickson (1923) showed that certain sets of octonions
having all eight coordinates in Z, four in Z and four in
Z + %, or all eight in Z + % form a system of octonionic
integers. Coxeter (1946) found that there are actually
seven of these systems. Each system has 240 units,
consisting of the 16 Gravesian units and 224 others
having coordinates of the type

We shall denote any of these seven systems by Ocd
and call its elements the Coxeter-Dickson integers or
the Dicksonian octaves. The elements of any one sys-
tem are the points of a lattice Eg.



Dickson’s Notation

To bring out the connection with the complex numbers
and the quaternions, we may follow Dickson and de-
note the Gravesian units by

1, 1, |, k, e, 1e, Je, ke

and their negatives. This notation can be related to
- the one we have been using by the mapping

€4 €, €3 €4 € €6 €5
! I ! ! ! l {
i ] e k je —ke e

Coxeter also defines h = 3{i + ] +k+e). Then

Ocg = Z[i, j, el and Ocd = Zli, j, hl.



Coupled Hurwitz Integers

The ring IHur of Hurwitz integers is a four-dimensional
lattice D,, spanned by 1, u, v, and w, where

— 1 1s 1 1 1 1 1 1
Uw"z““'“z“l“"é“j'i"“z"k and V—'“2“+"2*l“'f2*j'""2"k

and w = (uv)™'. The quaternionic ring Hur has an
octonionic analogue, obtained by adjoining the unit e.
This is the system Och of coupled Hurwitz integers or
Hurwitzian octaves, which can be realized as an eight-
dimensional lattice D,®© D,. There are 48 units, con-
sisting of the 16 Gravesian units and 32 others having
four coordinates equal to +3 and the other four equal
to O. In Dickson’s notation

|

Och = Z[u, v, el.



Compound Eisenstein Integers

The ring IHyb of hybrid integers is a four-dimensional
lattice A, © A,, spanned by 1, w, j, and o, where

® = -++3V3i and wj = -1j+1V3k.

The quaternionic ring Hyb has an octonionic analogue,
the system Oce of compound Eisenstein integers or
Eisensteinian octaves, which can be realized as an
eight-dimensional lattice 4A, = A,© A, DA, D A,.
There are 24 units. In Dickson’s notation

Oce = Zlw, j, el.

Alternatively, if we let g = 3(i — j +ie —je), then
Oce = Z[u, g, el.



Finite Moufang Loops

Boddington & Rumynin (2007) and Curtis (2007) have
shown that a finite loop of octonions is either associa-
tive (and hence a group), a nonassociative double of a
finite group of quaternions, or the loop of units in the
system of Coxeter-Dickson integers. If commutative,
such a loop spans a two-dimensional subspace of O
isomorphic to C; if associative but noncommutative, it
spans a four-dimensional subspace of O isomorphic to
IH; if nonassocative, it spans the eight-dimensional
space 0.

Since the units of a basic system of integral octonions
form a finite loop, such a system is either a double of a
basic system of integral quaternions—i.e., Ocg, Oce, or
Och—or the system Ocd of Coxeter-Dickson integers.



Basic Systems of Integers

System Units Lattice Honeycomb
Z 2 C, {0}

G 4 C, {4, 4}

IE 6 A, {3, 6}

Ham 8 C, {4, 3, 3, 4}
IHyb 12 2A, {3, 6}2
IHur 24 D, {3, 3, 4, 3}
Ocg 16 o {4, 35, 4}
Oce 24 4A, {3, 6}*
Och 48 2D, {3, 3, 4, 3}?
Ocd 240 Eq {3°, 327}
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