Constructions of Abstract Polytopes with Preassigned Automorphism Group and Number of Flag-Orbits

llanit Helfand

Northeastern University

October 24, 2011

1) \mathcal{P} has a unique minimal and unique maximal face.

1) \mathcal{P} has a unique minimal and unique maximal face. Maximal chains (by inclusion) are called *flags*.

2) Every flag of \mathcal{P} contains exactly n+2 faces.

1) \mathcal{P} has a unique minimal and unique maximal face.

Maximal chains (by inclusion) are called *flags*.

2) Every flag of P contains exactly n+2 faces.

If *F* and *G* are two faces of \mathcal{P} , then they are said to be *incident* if $F \leq G$ or $G \leq F$. If $F \leq G$, then define the *section* $G/F := \{H : F \leq H \leq G\}.$

3) For i = 0, ..., n-1, if F is a face of \mathcal{P} of rank i-1 and G is a face of \mathcal{P} of rank i+1 incident to F, then the section G/F contains exactly two faces of \mathcal{P} of rank i.

1) \mathcal{P} has a unique minimal and unique maximal face.

Maximal chains (by inclusion) are called *flags*.

2) Every flag of \mathcal{P} contains exactly n+2 faces.

If *F* and *G* are two faces of \mathcal{P} , then they are said to be *incident* if $F \leq G$ or $G \leq F$. If $F \leq G$, then define the *section* $G/F := \{H : F \leq H \leq G\}.$

3) For i = 0, ..., n-1, if F is a face of \mathcal{P} of rank i-1 and G is a face of \mathcal{P} of rank i+1 incident to F, then the section G/F contains exactly two faces of \mathcal{P} of rank i.

4) \mathcal{P} is strongly connected. Meaning, given any section of \mathcal{P} , of rank greater than or equal to 2, and two proper faces F and G of the section there is a sequence of proper faces of the section from F to G such that successive faces in the sequence are incident.

A Few More Definitions

Automorphisms of polytopes are rank- and incidence- preserving bijections.

A Few More Definitions

Automorphisms of polytopes are rank- and incidence- preserving bijections.

An abstract polytope is called *regular* if its group of automorphisms acts transitively on the set of flags.

Automorphisms of polytopes are rank- and incidence- preserving bijections.

An abstract polytope is called *regular* if its group of automorphisms acts transitively on the set of flags.

A *k*-orbit polytope is a polytope in which the set of flags has k orbits under the action by its automorphism group.

Automorphisms of polytopes are rank- and incidence- preserving bijections.

An abstract polytope is called *regular* if its group of automorphisms acts transitively on the set of flags.

A *k*-orbit polytope is a polytope in which the set of flags has k orbits under the action by its automorphism group.

Every abstract regular *n*-polytope \mathcal{P} has a *Schläfli type* $\{p_1, \ldots, p_{n-1}\}$ where p_i is the number of *i*-faces in any section F/G of \mathcal{P} , where F is an (i + 1)-face and G is an (i - 2)-face of \mathcal{P} .

A string C-group Γ , of rank *n*, is a group with *n* distinguished generators which is a quotient of a group with presentation

$$\langle \rho_0, \rho_1, \ldots, \rho_{n-1} | \rho_i \rho_j^{p_{ij}} \rangle,$$

where $p_{ij} = 2$ unless i = j - 1, which satisfies the intersection condition:

 $\Gamma_{I} \cap \Gamma_{J} = \Gamma_{I \cap J}$ where $I, J \subset \{0, 1, \dots, n-1\}$ and $\Gamma_{I} = \langle \rho_{i} | i \in I \rangle$.

Question

Given a string C-group, Γ , and a number $j \ge 1$, is it always the case that there is polytope \mathcal{P} with j flag-orbits such that $\Gamma(\mathcal{P}) \cong \Gamma$?

Let \mathcal{P} be a polytope of rank $n \geq 3$ and let \mathcal{P}_i be the set of *i*-faces of \mathcal{P} . For $0 \leq k \leq n-1$, define $[\mathcal{P}]_k$ to be the ranked poset, of rank n, whose faces are as follows:

Let \mathcal{P} be a polytope of rank $n \geq 3$ and let \mathcal{P}_i be the set of *i*-faces of \mathcal{P} . For $0 \leq k \leq n-1$, define $[\mathcal{P}]_k$ to be the ranked poset, of rank n, whose faces are as follows:

• For $-1 \le i \le k-1$ and for i = n, the set of i -faces of $[\mathcal{P}]_k$ is \mathcal{P}_i .

Let \mathcal{P} be a polytope of rank $n \geq 3$ and let \mathcal{P}_i be the set of *i*-faces of \mathcal{P} . For $0 \leq k \leq n-1$, define $[\mathcal{P}]_k$ to be the ranked poset, of rank n, whose faces are as follows:

• For $-1 \le i \le k-1$ and for i = n, the set of i -faces of $[\mathcal{P}]_k$ is \mathcal{P}_i .

2 The set of k-faces of
$$[\mathcal{P}]_k$$
 is

 $\{(F,G)|F\in \mathcal{P}_k, G\in \mathcal{P}_{k+1}, F\leq_{\mathcal{P}} G\}.$

Let \mathcal{P} be a polytope of rank $n \geq 3$ and let \mathcal{P}_i be the set of *i*-faces of \mathcal{P} . For $0 \leq k \leq n-1$, define $[\mathcal{P}]_k$ to be the ranked poset, of rank n, whose faces are as follows:

• For $-1 \le i \le k-1$ and for i = n, the set of i -faces of $[\mathcal{P}]_k$ is \mathcal{P}_i .

2 The set of k-faces of
$$[\mathcal{P}]_k$$
 is

$$\{(F,G)|F\in \mathcal{P}_k, G\in \mathcal{P}_{k+1}, F\leq_{\mathcal{P}} G\}.$$

• For $k+1 \le i \le n-1$, the set of *i*-faces of $[\mathcal{P}]_k$ is:

 $\mathcal{P}_i \cup \{(F,G) | F \in \mathcal{P}_k, G \in \mathcal{P}_{i+1}, F \leq_{\mathcal{P}} G\}.$

The partial order on $[\mathcal{P}]_k$ is determined (by transitivity) by the following order relationship:

The partial order on $[\mathcal{P}]_k$ is determined (by transitivity) by the following order relationship:

• For
$$-1 \leq i \leq k-2$$
, $F \in \mathcal{P}_i = ([\mathcal{P}]_k)_i$, $G \in \mathcal{P}_{i+1} = ([\mathcal{P}]_k)_{i+1}$:
 $F \leq_{[\mathcal{P}]_k} G$ if and only if $F \leq_{\mathcal{P}} G$;

The partial order on $[\mathcal{P}]_k$ is determined (by transitivity) by the following order relationship:

$$F \leq_{\mathcal{P}} G \leq_{\mathcal{P}} H$$
;

The partial order on $[\mathcal{P}]_k$ is determined (by transitivity) by the following order relationship:

• For $-1 \leq i \leq k-2$, $F \in \mathcal{P}_i = ([\mathcal{P}]_k)_i$, $G \in \mathcal{P}_{i+1} = ([\mathcal{P}]_k)_{i+1}$: $F \leq_{[\mathcal{P}]_k} G$ if and only if $F \leq_{\mathcal{P}} G$;

2 For
$$F \in \mathcal{P}_{k-1}$$
, $G \in \mathcal{P}_k$, $H \in \mathcal{P}_{k+1}$:
 $F \leq_{[\mathcal{P}]_k} (G, H)$ if and only if $F \leq_{\mathcal{P}} G$; (and hence
 $F \leq_{\mathcal{P}} G \leq_{\mathcal{P}} H$);

For k + 1 ≤ i ≤ n − 1, F, F' ∈ P_k, G, G' ∈ P_i, H ∈ P_{i+1}:
a. (F, G) ≤ (F', H) if and only if F = F' and G ≤_P H';
b. (F, G) ≤ G' if and only if G = G';

The partial order on $[\mathcal{P}]_k$ is determined (by transitivity) by the following order relationship:

• For $-1 \leq i \leq k-2$, $F \in \mathcal{P}_i = ([\mathcal{P}]_k)_i$, $G \in \mathcal{P}_{i+1} = ([\mathcal{P}]_k)_{i+1}$: $F \leq_{[\mathcal{P}]_k} G$ if and only if $F \leq_{\mathcal{P}} G$;

2 For
$$F \in \mathcal{P}_{k-1}$$
, $G \in \mathcal{P}_k$, $H \in \mathcal{P}_{k+1}$:
 $F \leq_{[\mathcal{P}]_k} (G, H)$ if and only if $F \leq_{\mathcal{P}} G$; (and hence
 $F \leq_{\mathcal{P}} G \leq_{\mathcal{P}} H$);

So For k + 1 ≤ i ≤ n − 1, F, F' ∈ \mathcal{P}_k , G, G' ∈ \mathcal{P}_i , H ∈ \mathcal{P}_{i+1} : a. (F, G) ≤ (F', H) if and only if F = F' and G ≤_P H'; b. (F, G) ≤ G' if and only if G = G';

4 For

$$\begin{array}{l} k+2 \leq i \leq n-1, F \in \mathcal{P}_k, \ H' \in \mathcal{P}_{i-1}, \ G \in \mathcal{P}_i, \ H \in \mathcal{P}_{i+1}: \\ \text{a. } H' \leq_{[\mathcal{P}]_k} G \text{ if and only if } H' \leq_{\mathcal{P}} G; \\ \text{b. } H' \text{ is never incident to } (F, H); \end{array}$$

The partial order on $[\mathcal{P}]_k$ is determined (by transitivity) by the following order relationship:

• For $-1 \leq i \leq k-2$, $F \in \mathcal{P}_i = ([\mathcal{P}]_k)_i$, $G \in \mathcal{P}_{i+1} = ([\mathcal{P}]_k)_{i+1}$: $F \leq_{[\mathcal{P}]_k} G$ if and only if $F \leq_{\mathcal{P}} G$;

2 For
$$F \in \mathcal{P}_{k-1}$$
, $G \in \mathcal{P}_k$, $H \in \mathcal{P}_{k+1}$:
 $F \leq_{[\mathcal{P}]_k} (G, H)$ if and only if $F \leq_{\mathcal{P}} G$; (and hence
 $F \leq_{\mathcal{P}} G \leq_{\mathcal{P}} H$);

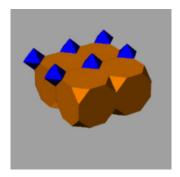
So For k + 1 ≤ i ≤ n − 1, F, F' ∈ \mathcal{P}_k , G, G' ∈ \mathcal{P}_i , H ∈ \mathcal{P}_{i+1} : a. (F, G) ≤ (F', H) if and only if F = F' and G ≤_P H'; b. (F, G) ≤ G' if and only if G = G';

4 For

 $\begin{array}{l} k+2\leq i\leq n-1, F\in \mathcal{P}_k,\ H'\in \mathcal{P}_{i-1},\ G\in \mathcal{P}_i,\ H\in \mathcal{P}_{i+1}:\\ \text{a. } H'\leq_{[\mathcal{P}]_k}G \text{ if and only if } H'\leq_{\mathcal{P}}G;\\ \text{b. } H' \text{ is never incident to } (F,H); \end{array}$

③ The *n*-face (which is unique) is incident to every (n - 1)-face.

Example



Theorem $[\mathcal{P}]_k$ is an *n*-polytope, for k = 0, ..., n-1.

Let $1 \le k \le n-1$. If \mathcal{P} is a regular polytope of rank $n \ge 3$ of Schläfli type $\{p_1, p_2, \dots, p_{n-1}\}$ with $p_k \ne 2$, then $\Gamma(\mathcal{P}) \cong \Gamma([\mathcal{P}]_k)$.

Let $1 \le k \le n-1$. If \mathcal{P} is a regular polytope of rank $n \ge 3$ of Schläfli type $\{p_1, p_2, \ldots, p_{n-1}\}$ with $p_k \ne 2$, then $\Gamma(\mathcal{P}) \cong \Gamma([\mathcal{P}]_k)$.

Theorem

Let \mathcal{P} be a regular n-polytope and let $0 \le k \le n-1$, and assume that $\Gamma(\mathcal{P}) \cong \Gamma([\mathcal{P}]_k)$. Then $[\mathcal{P}]_k$ is an (n-k)-orbit polytope. In particular, under the conditions of the previous theorem, $[\mathcal{P}]_k$ is an (n-k)-orbit polytope.

Strengths and Weaknesses

Strengths:

- Generalization of truncation
- Generalization of certain contructions of two-orbit polytopes

Strengths and Weaknesses

Strengths:

- Generalization of truncation
- Generalization of certain contructions of two-orbit polytopes

Weakness

• Can only use this construction to generate polytopes with up to n flag-orbits, where n is the rank of \mathcal{P} .

Given a regular n-polytope \mathcal{P} of Schläfli type $\{p_1, \ldots, p_{n-1}\}$ with p_2 and p_{n-2} not both 2, and automorphism group $\Gamma = \Gamma(\mathcal{P})$. Then for every integer, $j \ge 1$ there is a j-orbit polytope with automorphism group Γ .

For any rank $n \ge 2$, there is no two-orbit n-polytope whose group of automorphisms is isomorphic to the Coxeter group

$$[\overbrace{2,\ldots,2}^{n-1}]\cong\overbrace{C_2\times C_2\times\cdots\times C_2}^n.$$

For any rank $n \ge 2$, there is no two-orbit n-polytope whose group of automorphisms is isomorphic to the Coxeter group $[2, ..., 2] \cong \overbrace{C_2 \times C_2 \times \cdots \times C_2}^n$.

There are, however, polytopes with any number of flag orbits greater than 3 which have this group as an automorphism group.

Final Summary

• In any odd rank the previous example is the *only* counterexample.

Final Summary

- In any odd rank the previous example is the *only* counterexample.
- In any even rank n, if the Γ has Schläfli type is not
 {2,2,...,2} or {p₁,2,p₃,2,...,p_{n-3},2,p_{n-1}} with p_i ≠ 2 for
 i odd, then there are polytopes with any positive number of
 orbits.

Final Summary

- In any odd rank the previous example is the *only* counterexample.
- In any even rank n, if the Γ has Schläfli type is not
 {2,2,...,2} or {p₁,2,p₃,2,...,p_{n-3},2,p_{n-1}} with p_i ≠ 2 for
 i odd, then there are polytopes with any positive number of
 orbits.
- Conjecture: If Γ has Schläfli type { $p_1, 2, p_3, 2, \ldots, p_{n-3}, 2, p_{n-1}$ } with $p_i \neq 2$ for i odd, then there is no two-orbit polytope which has Γ as an automorphism group, but there are j-orbit polytopes which have Γ as an automorphism group for $j = 3, 4, \ldots$