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An abstract polytope P, of rank n, is a poset which satisfies the
four bolded conditions. Elements of P are called faces.

1) P has a unique minimal and unique maximal face.

Maximal chains (by inclusion) are called flags.

2) Every flag of P contains exactly n + 2 faces.

If F and G are two faces of P, then they are said to be incident if
F ≤ G or G ≤ F . If F ≤ G , then define the section
G/F := {H : F ≤ H ≤ G}.

3) For i = 0, . . . n− 1, if F is a face of P of rank i − 1 and G is
a face of P of rank i + 1 incident to F , then the section G/F
contains exactly two faces of P of rank i .

4) P is strongly connected. Meaning, given any section of P,
of rank greater than or equal to 2, and two proper faces F
and G of the section there is a sequence of proper faces of
the section from F to G such that successive faces in the
sequence are incident.
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A Few More Definitions

Automorphisms of polytopes are rank- and incidence- preserving
bijections.

An abstract polytope is called regular if its group of
automorphisms acts transitively on the set of flags.

A k-orbit polytope is a polytope in which the set of flags has k
orbits under the action by its automorphism group.

Every abstract regular n-polytope P has a Schläfli type
{p1, . . . pn−1} where pi is the number of i-faces in any section F/G
of P, where F is an (i + 1)-face and G is an (i − 2)-face of P.
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String C-Groups

A string C-group Γ, of rank n, is a group with n distinguished
generators which is a quotient of a group with presentation

〈ρ0, ρ1, . . . , ρn−1|ρiρ
pij
j 〉,

where pij = 2 unless i = j − 1, which satisfies the intersection
condition:

ΓI ∩ ΓJ = ΓI∩J

where I , J ⊂ {0, 1, . . . , n − 1} and ΓI = 〈ρi |i ∈ I 〉.



Main Question

Question

Given a string C-group, Γ, and a number j ≥ 1, is it always the case
that there is polytope P with j flag-orbits such that Γ(P) ∼= Γ?



Construction

Let P be a polytope of rank n ≥ 3 and let Pi be the set of i-faces
of P. For 0 ≤ k ≤ n − 1, define [P]k to be the ranked poset, of
rank n, whose faces are as follows:

1 For −1 ≤ i ≤ k − 1 and for i = n, the set of i -faces of [P]k is
Pi .

2 The set of k-faces of [P]k is

{(F ,G )|F ∈ Pk ,G ∈ Pk+1,F ≤P G}.

3 For k + 1 ≤ i ≤ n − 1, the set of i-faces of [P]k is:

Pi ∪ {(F ,G )|F ∈ Pk ,G ∈ Pi+1,F ≤P G}.
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Construction Continued

The partial order on [P]k is determined (by transitivity) by the
following order relationship:

1 For −1 ≤ i ≤ k − 2,F ∈ Pi = ([P]k)i , G ∈ Pi+1 = ([P]k)i+1:
F ≤[P]k G if and only if F ≤P G ;

2 For F ∈ Pk−1, G ∈ Pk , H ∈ Pk+1:
F ≤[P]k (G ,H) if and only if F ≤P G ; (and hence
F ≤P G ≤P H);

3 For k + 1 ≤ i ≤ n − 1, F ,F ′ ∈ Pk , G ,G ′ ∈ Pi , H ∈ Pi+1:
a. (F ,G ) ≤ (F ′,H) if and only if F = F ′ and G ≤P H ′;
b. (F ,G ) ≤ G ′ if and only if G = G ′;

4 For
k + 2 ≤ i ≤ n − 1,F ∈ Pk , H ′ ∈ Pi−1, G ∈ Pi , H ∈ Pi+1:
a. H ′ ≤[P]k G if and only if H ′ ≤P G ;
b. H ′ is never incident to (F ,H);

5 The n-face (which is unique) is incident to every (n − 1)-face.
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Example



Theorem

[P]k is an n-polytope, for k = 0, . . . , n − 1.



Some Results

Theorem

Let 1 ≤ k ≤ n − 1. If P is a regular polytope of rank n ≥ 3 of
Schläfli type {p1, p2, . . . , pn−1} with pk 6= 2, then Γ(P) ∼= Γ([P]k).

Theorem

Let P be a regular n-polytope and let 0 ≤ k ≤ n − 1, and assume
that Γ(P) ∼= Γ([P]k). Then [P]k is an (n − k)-orbit polytope. In
particular, under the conditions of the previous theorem, [P]k is an
(n − k)-orbit polytope.
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Strengths and Weaknesses

Strengths:

Generalization of truncation

Generalization of certain contructions of two-orbit polytopes

Weakness

Can only use this construction to generate polytopes with up
to n flag-orbits, where n is the rank of P.
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Another Result

Theorem

Given a regular n-polytope P of Schläfli type {p1, . . . pn−1} with
p2 and pn−2 not both 2, and automorphism group Γ = Γ(P). Then
for every integer, j ≥ 1 there is a j-orbit polytope with
automorphism group Γ.



Counterexample

Theorem

For any rank n ≥ 2, there is no two-orbit n-polytope whose group
of automorphisms is isomorphic to the Coxeter group

[

n−1︷ ︸︸ ︷
2, . . . , 2] ∼=

n︷ ︸︸ ︷
C2 × C2 × · · · × C2.

There are, however, polytopes with any number of flag orbits
greater than 3 which have this group as an automorphism group.
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Final Summary

In any odd rank the previous example is the only
counterexample.

In any even rank n, if the Γ has Schläfli type is not
{2, 2, . . . , 2} or {p1, 2, p3, 2, . . . , pn−3, 2, pn−1} with pi 6= 2 for
i odd, then there are polytopes with any positive number of
orbits.

Conjecture: If Γ has Schläfli type
{p1, 2, p3, 2, . . . , pn−3, 2, pn−1} with pi 6= 2 for i odd, then
there is no two-orbit polytope which has Γ as an
automorphism group, but there are j-orbit polytopes which
have Γ as an automorphism group for j = 3, 4, . . .
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{2, 2, . . . , 2} or {p1, 2, p3, 2, . . . , pn−3, 2, pn−1} with pi 6= 2 for
i odd, then there are polytopes with any positive number of
orbits.

Conjecture: If Γ has Schläfli type
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