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If F and G are two faces of P, then they are said to be incident if
F<Gor G<F.If F<G, then define the section
G/F:={H:F <H<G}.

3) For i=0,...n—1, if Fis a face of P of rank i —1 and G is
a face of P of rank / + 1 incident to F, then the section G/F
contains exactly two faces of P of rank /.

4) P is strongly connected. Meaning, given any section of P,
of rank greater than or equal to 2, and two proper faces F
and G of the section there is a sequence of proper faces of
the section from F to G such that successive faces in the
sequence are incident.
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A Few More Definitions

Automorphisms of polytopes are rank- and incidence- preserving
bijections.

An abstract polytope is called regular if its group of
automorphisms acts transitively on the set of flags.

A k-orbit polytope is a polytope in which the set of flags has k
orbits under the action by its automorphism group.

Every abstract regular n-polytope P has a Schlifli type
{p1,...pn—1} where p; is the number of i-faces in any section F/G
of P, where F is an (i + 1)-face and G is an (i — 2)-face of P.



String C-Groups

A string C-group T, of rank n, is a group with n distinguished
generators which is a quotient of a group with presentation

(p0, p1, - - pa-1lpip}"),

where p; = 2 unless / = j — 1, which satisfies the intersection
condition:
LNl =Tiny

where [, J C {0,1,...,n—1} and I} = {(pj|i € I).



Main Question

Question

Given a string C-group, I, and a number j > 1, is it always the case
that there is polytope P with j flag-orbits such that I'(P) = I7?
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@ For -1 </ < k—1and for i = n, the set of i -faces of [P]x is
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For -1 <i<k—2,FeP;=(Plk)i, G € Pix1 = ([Plk)i+1:
F <tp, G if and only if F <p G;

For FePyr_1, GE€Py, He Pra:

F <ip), (G, H) if and only if F <p G; (and hence

F <p G <p H);

Fork+1<i<n—-1, F,FFePy, G,G' € P;, He Pji1:
a. (F,G)<(F',H)ifandonlyif F=F" and G <p H’;

b. (F,G) < G’ if and only if G = G;

For

k+2<i<n—1F€Py, HePi_1, GE€Pj, HeE Pis1:
a. H <[p}, G if and only if H <p G;

b. H' is never incident to (F, H);

The n-face (which is unique) is incident to every (n — 1)-face.



Example




Theorem
[Pk is an n-polytope, for k =0,...,n— 1.
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Some Results

Theorem

Let1 < k< n-—1. If P is a regular polytope of rank n > 3 of
Schlifli type {p1, P2, ..., Pn_1} with px # 2, then T(P) = T ([P]«)

v

Theorem

Let P be a regular n-polytope and let 0 < k < n—1, and assume
that I'(P) = T([P]k). Then [P]k is an (n — k)-orbit polytope. In
particular, under the conditions of the previous theorem, [P] is an
(n — k)-orbit polytope.

v
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Strengths and Weaknesses

Strengths:

@ Generalization of truncation

@ Generalization of certain contructions of two-orbit polytopes
Weakness

@ Can only use this construction to generate polytopes with up
to n flag-orbits, where n is the rank of P.



Another Result

Theorem

Given a regular n-polytope P of Schlafli type {p1,...pn—1} with
p2 and p,_» not both 2, and automorphism group I = T'(P). Then
for every integer, j > 1 there is a j-orbit polytope with
automorphism group I'.
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n—1 n

2,...,2 %CQXCQX---XCQ.




Counterexample

Theorem

For any rank n > 2, there is no two-orbit n-polytope whose group

of automorphisms is isomorphic to the Coxeter group
n—1 n

2,...,2 ngXCQX---XCQ.

There are, however, polytopes with any number of flag orbits
greater than 3 which have this group as an automorphism group.
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Final Summary

@ In any odd rank the previous example is the only
counterexample.

@ In any even rank n, if the ' has Schlafli type is not
{27 2,..., 2} or {pla 2,p3,2,...,Pn-3,2, Pn—l} with Pi 7é 2 for
i odd, then there are polytopes with any positive number of
orbits.

@ Conjecture: If I has Schlafli type
{p1,2,p3,2,...,Pn-3,2, pn—1} With p; # 2 for i odd, then
there is no two-orbit polytope which has [ as an
automorphism group, but there are j-orbit polytopes which
have I as an automorphism group for j = 3,4,...



