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Context:

Discrete structures with maximum possible symmetry (under
certain constraints), such as the following:

e compact Riemann surfaces of genus g > 1 with 84(g—1)
conformal automorphisms [meeting the Hurwitz bound]

e ecquivalently, regular maps of type {3,7}

e b5-arc-transitive cubic graphs

e 7/-arc-transitive 4-valent graphs

e hyperbolic 3-manifolds of largest possible symmetry-to-
volume ratio

e regular and chiral polytopes.

In these cases, the alternating groups A,, occur frequently as
automorphism groups. [‘Ubiquitous’ = ‘found everywhere’']



Now the context is set, a small digression ...
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Compact Riemann surfaces and regular maps

Let G be a group of orientation-preserving automorphisms
of a compact Riemann surface (or equivalently, a complex
algebraic curve) of genus g > 1. Then by a theorem of
Hurwitz (1893), |G| < 84(¢g — 1). Moreover, this bound is
attained if and only if G is a quotient of the ordinary (2,3,7)
triangle group (z,y | z° =y3 = (ay)’' = 1).

In particular, if G is the group Aut®°M of all orientation-
preserving automorphisms of a regular map M on an ori-
entable surface of genus g > 1, then G is a quotient of the
ordinary (2,k,m) triangle group, where {k,m} is the type,
and the maximum value that |G| can take is 84(g—1), which
happens when (k,m) = (3,7) or (7,3).



Quotients of the (2,3,7) triangle group are Hurwitz groups.

Examples include the following:

PSL(2,7), the group of Klein's quartic (of genus 3)
PSL(2,p) for prime p=4+1 mod 7

PSL(2,p3) for prime p=+2,4+3 mod 7

PSL(n,q) for all n > 287 and every prime-power g
Sp(2n,q) for all n > 371 and every prime-power g

the Ree groups 2G5(32™+1) for all m > 1

12 of the 26 sporadic simple groups, incl. the Monster
all but finitely many of the alternating groups A,

extensions by these groups of various other groups.



T heorem [MC, 1980] The group A, is a quotient of the
(2,3,7) triangle group for alln > 167 ... and for many smaller
values of n as well.

How to prove this? Ans: Use coset diagrams — which depict
permutation representations of finitely-generated groups.

e.g. below is a coset diagram for an action of the (2,3,7)
triangle group (z,y,z | 22 = y3 = 2’ = zyz = 1) on 7 points:

2 1
/ 2= (3,4)(6,7)
, y— (1,2,3)(4,5,6)
Z|_>(1747776757372)
5 6 7



Composition of coset diagrams

Often two coset diagrams for the same group G on (say)
m and n points can be composed to produce a transitive
permutation representation of larger degree m + n,

e.g.

L
X



We can now string together copies of coset diagrams:
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>

>

>

>

>

This can be used to do all sorts of things, such as prove

that certain finitely-presented groups are infinite.

If diagrams P and ) have m points and n points, then we
can string together p copies of P and g copies of () and get
a diagram on m = ap + bg points, and if gcd(p,q) = 1, then
m = ap + bg can be any sufficiently large positive integer.

Then add a single copy of an extra diagram R (with r points)
to disturb the cycle structure of particular elements, and
make the permutations from the new diagram generate the
alternating group A,,4, or the symmetric group S,,4,.



Symmetric graphs

A graph is called symmetric if its automorphism group has
a single orbit on arcs (ordered pairs of adjacent vertices).

An s-arc in a graph is a sequence (vg,v1,v2,...,vs) Of s+ 1
vertices such that any two consecutive v; are adjacent and
any three consecutive v; are distinct. A graph is s-arc-
transitive if its automorphism group is transitive on s-arcs.

Tutte's Theorem (1947): If X is a connected finite symmet-
ric 3-valent graph then |Aut X| < 48|V (X)|, and this bound
is attained if and only if X is 5-arc-transitive.



Tutte’'s 8-cage
(5-arc-transitive)

Associated with
1-factorisations of Kg



Theorem [Djokovi¢ & Miller (1980), adapted slightly] The
group G is the automorphism group of a connected finite
5-arc-transitive 3-valent graph if and only if G is a smooth
quotient of the finitely-presented group

Gs = (h,p,q,7,5,a | RS =p° =¢? =12 =35°=0a’ =1,

pq — 4gp, pr —1rp, ps — Sp, qr — rq, s — 84,
(rs)? =pg, h~lph =p, h=1qh =r, h=1rh = pgr,
shs =h"1 alpa=g¢q, a"lra=s)

Correspondence between graph and group:

Vertex-stabilizer: SqgxCr = (h,p,q,r1,8)
Edge-stabilizer: (D4 x Cp):Cr» = {a,p,q,7,8)
1-arc-stabilizer: DgxCyr = (p,q,r,8)
2-arc-stabilizer: CoxCorxCyr = (p,q,r)
3-arc-stabilizer: CoxCy = (p, >
4-arc-stabilizer: Co = (p)



T heorem [MC, 1988] For all but finitely many n, both the
alternating group A, and the symmetric group S, are the
automorphism groups of 5-arc-transitive 3-valent graphs.

[So in particular, 5-arc-transitive cubic graphs are plentiful.]

How to prove this? Use coset diagrams for the group Gy
to construct permutation representations, with composition
achieved by using 2-cycles of the edge-reversing generator a
to link together sub-orbits of the arc-stabilizer A = (p,q, s, r)
between orbits of the vertex-stabilizer V = (h,p,q, s, 7):

a
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A A A A A




Theorems [Richard Weiss (1981)] There are no finite 8-
arc-transitive graphs of valency k£ > 2, and if X is a finite
7-arc-transitive graph, then its valency is 1 + 3! for some t.

[Proof relies on the classification of doubly-transitive groups.]

Moreover, if X is a finite connected 7-arc-transitive 4-valent
graph, its automorphism group is a quotient of the group

R4,7—<hp,q,rstuvb|h4=p =3 =r3=s3=t3=
u3 = v2 = b2 = (hu)3 = (w)? = (huv)? = [h2 u] = [h2,v] =
lg,7] = lg,s] = lg,t] = [r,s] = [r,t] = [p,q] = [p,r] = Ip,s] =
[pa t] — 17 [Sat] — D, h_lph — D, h_lqh — q_lr, ]’L_]"I"h = qr,
h_lsh — pq—17,—18—1t—17 h_lth — p_lqr_ls_lt, u_lpu = p,
u_lqu = q, uwlry = q_lr, u sy = s, uw Lty = pqrst,

vVpUv = p_l, VqU = q_l, vrv = 1, VSV = 8, vitv = t_l,

bpb=¢q 1, bgp =p~ L, brb=s"1, bsb=1r"1, btb =u"1,

bub=t"1, bub=v, bh?b = h%v ).



Theorem [MC & Cameron Walker, 1998] For all but
finitely many n, both the alternating group A, and the
symmetric group S, are the automorphism groups of 7-arc-
transitive 4-valent graphs.

[So in particular, 7-arc-transitive cubic graphs are plentiful.]

How to prove this? Use coset diagrams for the group Ry 7
to construct permutation representations, with composition
achieved by using 2-cycles of the edge-reversing generator b
to link sub-orbits of the arc-stabilizer A = (h?,p,q,r,s,t,u,v)
between orbits of the vertex-stabilizer V= (h,p, q,7,s,t,u,v).



Hyperbolic 3-manifolds

A hyperbolic n-manifold M is a quotient space H"/K, where
K is a torsion-free discrete subgroup of the group Iso+(H”)
of orientation-preserving isometries of hyperbolic space H™.

For each n > 3, there exists an upper bound on the quotient
Isot(M)|/vol(M), and this bound is attained for some M.

By a recent theorem of Gehring, Marshall & Martin (2009),
the largest value of this ‘symmetry-to-volume’ ratio occurs
for the case n = 3 when the group Isot (M) is a finite smooth
quotient of the orientation-preserving subgroup of the nor-
maliser in Iso(H3) of the [3, 5, 3]-Coxeter group:

e
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The Coxeter group [3,5,3] has four involutory generators
a,b,c,d subject to defining relations a2 = b2 = 2 = d? =
(ab)3 = (bc)® = (ed)3 = (ac)? = (ad)? = (bd)? = 1, and its
normalizer in Iso(H?3) is obtained by adding a new involutory
generator ¢ that conjugates (a,b,c,d) to (d,c,b,a), thereby
reversing the Dynkin diagram. Call this group [3,5,3]:2.

For largest symmetry-to-volume ratio, the group Iso+(M)
must be a finite smooth quotient of the subgroup generated
by ab, be, da and t. Call this group [3,5,3]°:2.

This group [3,5,3]°:2 is the 3-dimensional analogue of the
ordinary (2,3,7)-triangle group (from the 2-manifold case).



Theorem [MC & Anna Torstensson, 2003] For all but
finitely many n, both the alternating group A, and the sym-
metric group S, are the symmetry groups of compact hyper-
bolic 3-manifolds with largest possible symmetry to volume
ratio. In fact, all but finitely many A, and S, are smooth
quotients of both [3,5,3]°:2 and [3,5,3]:2.

The proof uses coset diagrams for the group [3,5,3]:2, but
with a slightly different method of composition, involving
sets of 2-cycles of the ‘reflecting’ generator t.



Locally s-arc-transitive edge-transitive graphs

A graph X is said to be locally s-arc-transitive if the stabilizer
in Aut X of every vertex v is transitive on all the s-arcs
emanating from w.

If X is also vertex-transitive, then X is s-arc-transitive. But
if X is edge-transitive but not vertex-transitive, then Aut X
has two orbits on vertices, say U and V, and hence X is
bipartite, with parts U and V.

Theorem [Stellmacher, 1996] If the finite connected edge-
transitive graph X is locally s-arc-transitive, then s < 9.

Until July this year, the only known graphs meeting this
bound were generalised octagons associated with the Ree
groups 2F4(227t1) and certain covers of these.



T heorem [MC, July 2011] For all but finitely many n,
the alternating group A, is the automorphism group of an
edge-transitive, locally 9-arc-transitive bipartite graph (with
vertices of valency 3 in one part and 5 in the other).

The proof uses the fact that the Ree group 2F4(2) (of order
35,942,400) is a product of subgroups A and B of orders
12288 and 20480 with intersection C = AN B of order 4096
having index 3 in A and 5 in B. These three subgroups act
as the stabilizers of two (adjacent) vertices v and v and the
edge {u,v}, respectively.

The rest of the proof involves constructing transitive per-
mutation representations of the free product A xo B, using
coset diagrams for each of A and B, linked together using
sub-orbits of the intersection C = AN B.



Regular and chiral polytopes

Abstract polytopes are generalisations of geometric struc-
tures that can be viewed as a partially ordered set:

For the most regular of these, the symmetry group is always
an image of a Coxeter group.



Theorem [Fernandes & Leemans, 2011] For every n > 3,
the symmetric group Sy, is the automorphism group of some
regular abstract r-polytope, for each r such that 3<r<n-—1.

Corollary: For any given r > 3, all but finitely many S,, are
the automorphism group of a regular polytope of rank r.

Chiral polytopes

In an abstract polytope, a flag is a maximal chain (of mutu-
ally incident elements), and two flags are said to be adjacent
if they differ in just one element. The polytope P said to
be chiral if any two adjacent flags lie in different orbits of
the automorphism group of P. If P is maximally chiral (so
that Aut’P has just two orbits on flags, with adjacent flags
in different orbits), then Aut’P is a smooth quotient of the
orientation-preserving subgroup of some Coxeter group.



The first known finite (maximally) chiral polytopes of rank
greater than 4 were discovered only recently: rank 5 by Con-
der/Hubard/Pisanski, and ranks 6,7,8 by Conder/Devillers).

T heorem [Daniel Pellicer, 2010] There exist (maximally)
chiral polytopes of rank » for all » > 3.

Conjecture [MC, 2011] For any given r > 3, all but
finitely many of the alternating groups A, and symmetric
groups Sy, are the automorphism group of a (maximally)
chiral polytope of rank r.

It's likely this is provable by constructing transitive permuta-
tion representations of the group [3,3,...,3,k]° from coset
diagrams for the subgroup [3,3,...,3]° (isomorphic to A,).



T hank You!



