Group Actions Applied to Virus Architecture

Philippe Cara

Vrije Universiteit Brussel
pcara@vub.ac.be
joint work with A. Devillers (UWA) and R. Twarock (Univ. of York, UK)

> Workshop on Symmetry in Graphs,
> Maps and Polytopes

October 25th, $2011=200$ th anniversary of Galois!!!
Fields Institute, Toronto, 24-27 October 2011

Viruses

- 1956 Crick and Watson: "The only reasonable way to build a protein shell is to use the same type of molecule over and over again." "subunits would be packed so as to provide each with an identical environment. This is possible only if they are packed symmetrically." They predicted cubic symmetry.
- Later: icosahedral symmetry is preferred in virus structure.

1962 Caspar and Klug theory

- subunits of few different types in quasi-equivalent environments.
- triangulations of icosahedron faces with capsomers in corners of triangles.

1962 Caspar and Klug theory

- subunits of few different types in quasi-equivalent environments.
- triangulations of icosahedron faces with capsomers in corners of triangles.

Triangular lattice

- (h, k) are co-ordinates of vertex of icosahedron.
- embedding of icsahedron in triagular lattice.
- A capsomer in corner of each triangle.
- T number is square of distance between two icosahedron vertices. This is exactly $h^{2}+h k+k^{2}$.
- There are $60 T$ capsomers, clustered as 12 pentamers and $10(T-1)$ hexamers.

Triangular lattice

- (h, k) are co-ordinates of vertex of icosahedron. This yields a pentamer.
- embedding of icsahedron in triagular lattice.
- A capsomer in corner of each triangle.
- T number is square of distance between two icosahedron vertices. This is exactly $h^{2}+h k+k^{2}$
- There are $60 T$ capsomers, clustered as 12 pentamers and $10(T-1)$ hexamers.

Triangular lattice

- (h, k) are co-ordinates of vertex of icosahedron. This yields a pentamer.
- embedding of icsahedron in triagular lattice.
- A capsomer in corner of each triangle.
- T number is square of distance between two icosahedron vertices. This is exactly $h^{2}+h k+k^{2}$.
- There are $60 T$ capsomers, clustered as 12 pentamers and $10(T-1)$ hexamers.

Triangular lattice

- (h, k) are co-ordinates of vertex of icosahedron. This yields a pentamer.
- embedding of icsahedron in triagular lattice.
- A capsomer in corner of each triangle.
- T number is square of distance between two icosahedron vertices. This is exactly $h^{2}+h k+k^{2}$.
- There are $60 T$ capsomers, clustered as 12 pentamers and $10(T-1)$ hexamers.

Papovaviridae

- Has more pentamers!
- $T=7$
- Twarock 2004: Use other tiles!
- Capsomers only at corners which have same angle
- Rhombs and kites tiling also explains dimer and trimer interactions.

Papovaviridae

- Has more pentamers!
- $T=7$
- Twarock 2004: Use other tiles!
- Cansomers only at corners which have same angle
- Rhombs and kites tiling also explains dimer and trimer interactions.

Papovaviridae

- Has more pentamers!
- $T=7$
- Twarock 2004: Use other tiles!
- Capsomers only at corners which have same angle
- Rhombs and kites tiling also explains dimer and trimer interactions.

Papovaviridae

- Has more pentamers!
- $T=7$
- Twarock 2004: Use other tiles!
- Capsomers only at corners which have same angle
- Rhombs and kites tiling also explains dimer and trimer interactions.

Papovaviridae

- Has more pentamers!
- $T=7$
- Twarock 2004: Use other tiles!
- Capsomers only at corners which have same angle
- Rhombs and kites tiling also explains dimer and trimer interactions.

Viral Tiling Theory

- Superposition of tilings can explain more complex structures like crosslinking.
- Also dynamical properties of the capsid. How genetic material is released; resonant frequencies of the capsid

Viral Tiling Theory

- Superposition of tilings can explain more complex structures like crosslinking.
- Also dynamical properties of the capsid. How genetic material is released; resonant frequencies of the capsid (\rightarrow new treatment, desinfection!!!), . .

Aperiodic tilings, quasicrystals

- crystallographic groups stabilize a lattice (i.e. a \mathbb{Z}-span of a basis).
- Coxeter groups of type H_{3} and H_{4} are not crystallographic.
- H_{3} is the icosahedral group.
- There are "lattice-like" structures...

Affine extensions

b

We extend the group $s /(3, \mathbb{C})$ with a translation. This yields a triangular lattice.

Affine extension of H_{2}

Affine extension of H_{2}

- We extend the group C_{5} with a translation T. This yields a dense orbit.
- If we restrict the number of times we are allowed to use the translation, we get part of quasi-lattice.
- For $s \in \mathbb{N}$ we define $M^{s}=\left\{\right.$ words made from $C_{5} \cup\{T\}$ where T appears at most s times $\}$.

Affine extension of H_{3}

- We extend the group H_{3} with a translation T.
- If we restrict the number of times we are allowed to use the translation, we get part of quasi-lattice.
- For $s \in \mathbb{N}$ we define $M^{s}=\left\{\right.$ words made from $H_{3} \cup\{T\}$ where T appears at most s times $\}$.

Affine extension of H_{3}

- We extend the group H_{3} with a translation T.
- If we restrict the number of times we are allowed to use the translation, we get part of quasi-lattice.
- For $s \in \mathbb{N}$ we define $M^{s}=\left\{\right.$ words made from $H_{3} \cup\{T\}$ where T appears at most s times $\}$.

Layers in capsid structure

(Keef, Twarock, Elsawy 2008)

Other translations?

- Consider a finite group $G \leqslant G L\left(\mathbb{R}^{k}\right)$. Example: \mathcal{I}.
- For $v \in \mathbb{R}^{k}$ we can look at the orbit $G(v)$, a starting configuration. Example: the 12 vertices of an icosahedron.
- Locate the axes of (rotational) symmetry of $G(v)$.
- A translation T along an axis of symmetry is called admissible if there are at least two elements $u_{1}, u_{2} \in G(v)$ for which $T u_{1}$ and $T u_{2}$ both on (different) axes of symmetry.

Other translations?

- Consider a finite group $G \leqslant G L\left(\mathbb{R}^{k}\right)$. Example: \mathcal{I}.
- For $v \in \mathbb{R}^{k}$ we can look at the orbit $G(v)$, a starting configuration. Example: the 12 vertices of an icosahedron.
- Locate the axes of (rotational) symmetry of $G(v)$.
- A translation T along an axis of symmetry is called admissible if there are at least two elements $u_{1}, u_{2} \in G(v)$ for which $T u_{1}$ and $T u_{2}$ both on (different) axes of symmetry.

Other translations?

- Consider a finite group $G \leqslant G L\left(\mathbb{R}^{k}\right)$. Example: \mathcal{I}.
- For $v \in \mathbb{R}^{k}$ we can look at the orbit $G(v)$, a starting configuration. Example: the 12 vertices of an icosahedron.
- Locate the axes of (rotational) symmetry of $G(v)$.
- A translation T along an axis of symmetry is called admissible if there are at least two elements $u_{1}, u_{2} \in G(v)$ for which $T u_{1}$ and $T u_{2}$ both on (different) axes of symmetry.

Other translations?

- Consider a finite group $G \leqslant G L\left(\mathbb{R}^{k}\right)$. Example: \mathcal{I}.
- For $v \in \mathbb{R}^{k}$ we can look at the orbit $G(v)$, a starting configuration. Example: the 12 vertices of an icosahedron.
- Locate the axes of (rotational) symmetry of $G(v)$.
- A translation T along an axis of symmetry is called admissible if there are at least two elements $u_{1}, u_{2} \in G(v)$ for which $T u_{1}$ and $T u_{2}$ both on (different) axes of symmetry.

Admissible translations for C_{5}

Admissible translations for \mathcal{I}

	five fold	three fold	two fold
v vertex	3	4	6
v center of face	4	3	5
v center of edge	6	5	5

Admissible translations for \mathcal{I}

five fold three fold two fold

Application

- VIPER database contains data about capsids of many viruses.
- Choose a virus.
- Compare outer layer to 41 outer layers we have.
- Scale the whole model.
- For Paricoto virus we get a good prediction of the fine structure of the capsid.
- You can combine several clouds.
- Group theoretical X-ray analysis of viruses!

Application

- VIPER database contains data about capsids of many viruses.
- Choose a virus.
- Compare outer layer to 41 outer layers we have.
- Scale the whole model.
- For Paricoto virus we get a good prediction of the fine structure of the capsid.
- You can combine several clouds.
- Group theoretical X-ray analysis of viruses!

Application

- VIPER database contains data about capsids of many viruses.
- Choose a virus.
- Compare outer layer to 41 outer layers we have.
- Scale the whole model.
- For Paricoto virus we get a good prediction of the fine structure of the capsid.
- You can combine several clouds.
- Group theoretical X-ray analysis of viruses!

Application

- VIPER database contains data about capsids of many viruses.
- Choose a virus.
- Compare outer layer to 41 outer layers we have.
- Scale the whole model.
- For Paricoto virus we get a good prediction of the fine structure of the capsid.
- You can combine several clouds.
- Group theoretical X-ray analysis of viruses!

Application

- VIPER database contains data about capsids of many viruses.
- Choose a virus.
- Compare outer layer to 41 outer layers we have.
- Scale the whole model.
- For Paricoto virus we get a good prediction of the fine structure of the capsid.
- You can combine several clouds.
- Group theoretical X-ray analysis of viruses!

Application

- VIPER database contains data about capsids of many viruses.
- Choose a virus.
- Compare outer layer to 41 outer layers we have.
- Scale the whole model.
- For Paricoto virus we get a good prediction of the fine structure of the capsid.
- You can combine several clouds.
- Group theoretical X-ray analysis of viruses!

Application

- VIPER database contains data about capsids of many viruses.
- Choose a virus.
- Compare outer layer to 41 outer layers we have.
- Scale the whole model.
- For Paricoto virus we get a good prediction of the fine structure of the capsid.
- You can combine several clouds.
- Group theoretical X-ray analysis of viruses!

