Classical groups acting on polytopes

Peter Brooksbank

Bucknell University
Symmetry in Graphs, Maps and Polytopes
Fields Institute
October 24-27, 2011

Motivation

The principal motivation for this work was the paper:
D. Leemans and E. Schulte, Groups of type $L_{2}(q)$ acting on polytopes, Adv. Geometry (2007)

The paper determines the prime powers q such that $\operatorname{PSL}(2, q)$ is the automorphism group of an abstract regular polytope of rank at least 4 .

The method uses the very detailed description of the subgroup structure of $\operatorname{PSL}(2, q)$ given originally by Dickson in 1901.

Which members of other families of finite simple groups of Lie type arise as the automorphism group of an abstract regular polytope?

Existing Results

- $\operatorname{PSL}(2, q) \cong \operatorname{Aut}(\mathcal{P})$, where \mathcal{P} has...
...rank 3 if and only if $q \notin\{2,3,7,9\}$ [Sjerve-Cherkassoff] ..rank 4 if and only if $q \in\{11,19\}$ [Leemans-Schulte]

Existing Results

- $\operatorname{PSL}(2, q) \cong \operatorname{Aut}(\mathcal{P})$, where \mathcal{P} has...
...rank 3 if and only if $q \notin\{2,3,7,9\}$ [Sjerve-Cherkassoff] ...rank 4 if and only if $q \in\{11,19\}$ [Leemans-Schulte]
- $\operatorname{Sz}(q) \cong \operatorname{Aut}(\mathcal{P})$, where \mathcal{P} has rank 3. [Leemans]

Existing Results

- $\operatorname{PSL}(2, q) \cong \operatorname{Aut}(\mathcal{P})$, where \mathcal{P} has...
...rank 3 if and only if $q \notin\{2,3,7,9\}$ [Sjerve-Cherkassoff]
...rank 4 if and only if $q \in\{11,19\}$ [Leemans-Schulte]
- $\operatorname{Sz}(q) \cong \operatorname{Aut}(\mathcal{P})$, where \mathcal{P} has rank 3. [Leemans]
- All simple groups of Lie type that arise as the automorphism group of a polytope of rank 3 are known. [Nuzhin]

The Objective

Let $G(q)$ be a quasi-simple classical group defined naturally on a vector space V of dimension d over the field $k=\mathrm{GF}(q)$.

To what extent can the geometric properties of $G(q)$ be exploited to say something useful about the polytopes upon which it can act?

The Objective

Let $G(q)$ be a quasi-simple classical group defined naturally on a vector space V of dimension d over the field $k=\mathrm{GF}(q)$.

To what extent can the geometric properties of $G(q)$ be exploited to say something useful about the polytopes upon which it can act?

In this talk, I will discuss the case when $G(q) \leqslant \operatorname{GL}(3, q)$.
This is joint work with a former student, Deborah Vicinsky.

String C-groups

A string C-group is a group H together with a generating sequence $\rho_{0}, \rho_{1}, \ldots, \rho_{c-1}$ of involutions satisfying the following conditions:

- For $0 \leqslant i<j \leqslant c-1,\left[\rho_{i}, \rho_{j}\right]=1$ if and only if $|i-j|>1$.
- Intersection Property: For $I, J \subseteq\{0, \ldots, c-1\}$,

$$
\left\langle\rho_{i}: i \in I\right\rangle \cap\left\langle\rho_{j}: j \in J\right\rangle=\left\langle\rho_{k}: k \in I \cap J\right\rangle .
$$

String C-groups

A string C-group is a group H together with a generating sequence $\rho_{0}, \rho_{1}, \ldots, \rho_{c-1}$ of involutions satisfying the following conditions:

- For $0 \leqslant i<j \leqslant c-1,\left[\rho_{i}, \rho_{j}\right]=1$ if and only if $|i-j|>1$.
- Intersection Property: For $I, J \subseteq\{0, \ldots, c-1\}$,

$$
\left\langle\rho_{i}: i \in I\right\rangle \cap\left\langle\rho_{j}: j \in J\right\rangle=\left\langle\rho_{k}: k \in I \cap J\right\rangle .
$$

Key fact: $H=\left\langle\rho_{0}, \ldots, \rho_{c-1}\right\rangle$ is a string C-group if and only if $H \cong \operatorname{Aut}(\mathcal{P})$ for some abstract regular polytope \mathcal{P} of rank c.

Classical groups

- $k=\mathbb{F}_{q}$, the field of $q=p^{e}$ elements;
- $V=k$-vector space of dimension d.

Classical groups

- $k=\mathbb{F}_{q}$, the field of $q=p^{e}$ elements;
- $V=k$-vector space of dimension d.
- $\varphi=$ nondegenerate reflexive k-form on V.
- $g \in \mathrm{GL}(V)$ an isometry of φ if $\varphi(u g, v g)=\varphi(u, v)(\forall u, v \in V)$.
- $\operatorname{Isom}(\varphi)=\{g \in \operatorname{GL}(\varphi): g$ is an isometry of $\varphi\}$.
- $H \leqslant \operatorname{GL}(V)$ is a classical group if $\operatorname{Isom}(\varphi)^{\prime} \leqslant H \leqslant \operatorname{Isom}(\varphi)$.

Classical groups

- $k=\mathbb{F}_{q}$, the field of $q=p^{e}$ elements;
- $V=k$-vector space of dimension d.
- $\varphi=$ nondegenerate reflexive k-form on V.
- $g \in \mathrm{GL}(V)$ an isometry of φ if $\varphi(u g, v g)=\varphi(u, v)(\forall u, v \in V)$.
- $\operatorname{Isom}(\varphi)=\{g \in \operatorname{GL}(\varphi): g$ is an isometry of $\varphi\}$.
- $H \leqslant \operatorname{GL}(V)$ is a classical group if $\operatorname{Isom}(\varphi)^{\prime} \leqslant H \leqslant \operatorname{Isom}(\varphi)$.
- Fixing a basis v_{1}, \ldots, v_{d} of V one associates to φ the matrix $\Phi=\left[\left[\varphi\left(v_{i}, v_{j}\right)\right]\right] \in \mathbb{M}_{d}(k)$. Then g is an isometry if $g \Phi=\Phi g^{-\mathrm{tr}}$.

Involutions in $\operatorname{SL}(3, q)$, q even

Let ρ be an involution of $\operatorname{SL}(3, q)$.

Involutions in $\operatorname{SL}(3, q), q$ even

Let ρ be an involution of $\operatorname{SL}(3, q)$.

ρ is 1 on a line Δ, and on V / δ for some point δ lying on Δ.

Involutions in $\operatorname{SL}(3, q), q$ even

Let ρ be an involution of $\operatorname{SL}(3, q)$.

ρ is 1 on a line Δ, and on V / δ for some point δ lying on Δ.
ρ fixes all points on Δ and all lines through δ.

Involutions in $\operatorname{SL}(3, q), q$ even

Let ρ be an involution of $\operatorname{SL}(3, q)$.

ρ is 1 on a line Δ, and on V / δ for some point δ lying on Δ.
ρ fixes all points on Δ and all lines through δ.

$$
\rho \text { is conjugate to }\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Involutions in $\operatorname{SL}(3, q), q$ odd

Let ρ be an involution of $\operatorname{SL}(3, q)$.

Involutions in $\operatorname{SL}(3, q), q$ odd

Let ρ be an involution of $\operatorname{SL}(3, q)$. ρ is -1 on a line Δ, and 1 on δ for some point δ not lying on Δ.

Involutions in $\operatorname{SL}(3, q), q$ odd

Let ρ be an involution of $\operatorname{SL}(3, q)$. ρ is -1 on a line Δ, and 1 on δ for some point δ not lying on Δ.
ρ fixes all points on Δ and all lines through δ.

Involutions in $\operatorname{SL}(3, q), q$ odd

Let ρ be an involution of $\operatorname{SL}(3, q)$. ρ is -1 on a line Δ, and 1 on δ for some point δ not lying on Δ.
ρ fixes all points on Δ and all lines through δ.
ρ is conjugate to $\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$

Commuting involutions, q even

If σ is an involution with center γ and axis Γ, then:

$$
[\rho, \sigma]=1 \Longleftrightarrow \gamma=\delta \text { or } \Gamma=\Delta
$$

Commuting involutions, q odd

If σ is an involution with center γ and axis Γ, then:

$$
[\rho, \sigma]=1 \Leftrightarrow \gamma \in \Delta \text { and } \delta \in \Gamma
$$

Bounding the rank of a string C-group

Lemma:

$$
\text { If } G=\left\langle\rho_{0}, \ldots, \rho_{c-1}\right\rangle \leqslant \operatorname{SL}(3, q) \text { is a string } C \text {-group, then } c \leqslant 4 \text {. }
$$

Bounding the rank of a string C-group

Lemma:

$$
\text { If } G=\left\langle\rho_{0}, \ldots, \rho_{c-1}\right\rangle \leqslant \mathrm{SL}(3, q) \text { is a string } C \text {-group, then } c \leqslant 4 \text {. }
$$

Proof:

We just consider the (more interesting) case where q is odd.
For $i=0, \ldots, c-1$, let ρ_{i} have center δ_{i} and axis Δ_{i}.

Bounding the rank of a string C-group

Lemma:

If $G=\left\langle\rho_{0}, \ldots, \rho_{c-1}\right\rangle \leqslant \mathrm{SL}(3, q)$ is a string C-group, then $c \leqslant 4$.

Proof:

We just consider the (more interesting) case where q is odd.
For $i=0, \ldots, c-1$, let ρ_{i} have center δ_{i} and axis Δ_{i}.
There are two cases to deal with:

Bounding the rank of a string C-group

Lemma:

If $G=\left\langle\rho_{0}, \ldots, \rho_{c-1}\right\rangle \leqslant \mathrm{SL}(3, q)$ is a string C-group, then $c \leqslant 4$.

Proof:

We just consider the (more interesting) case where q is odd.
For $i=0, \ldots, c-1$, let ρ_{i} have center δ_{i} and axis Δ_{i}.
There are two cases to deal with:
[generic case] Here $\delta_{0} \neq \delta_{1}$ and $\Delta_{0} \neq \Delta_{1}$.

Bounding the rank of a string C-group

Lemma:

If $G=\left\langle\rho_{0}, \ldots, \rho_{c-1}\right\rangle \leqslant \operatorname{SL}(3, q)$ is a string C-group, then $c \leqslant 4$.

Proof:

We just consider the (more interesting) case where q is odd.
For $i=0, \ldots, c-1$, let ρ_{i} have center δ_{i} and axis Δ_{i}.
There are two cases to deal with:
[generic case] Here $\delta_{0} \neq \delta_{1}$ and $\Delta_{0} \neq \Delta_{1}$.
[special case] Either $\delta_{0}=\delta_{1}$ or $\Delta_{0}=\Delta_{1}$. Note: by duality, we need only look at one of these possibilities.

Proof of Lemma (cont'd)

The generic case: $\delta_{0} \neq \delta_{1}$ and $\Delta_{0} \neq \Delta_{1}$.

Suppose that ρ is any involution commuting with both ρ_{0} and ρ_{1}. Let ρ have center δ and axis Δ.

Proof of Lemma (cont'd)

The generic case: $\delta_{0} \neq \delta_{1}$ and $\Delta_{0} \neq \Delta_{1}$.

Suppose that ρ is any involution commuting with both ρ_{0} and ρ_{1}. Let ρ have center δ and axis Δ.

Since both δ_{0} and δ_{1} lie on Δ, and δ lies on both Δ_{0} and Δ_{1}, it follows that $\Delta=\left\langle\delta_{0}, \delta_{1}\right\rangle$ and $\delta=\Delta_{0} \cap \Delta_{1}$.

Proof of Lemma (cont'd)

The generic case: $\delta_{0} \neq \delta_{1}$ and $\Delta_{0} \neq \Delta_{1}$.

Suppose that ρ is any involution commuting with both ρ_{0} and ρ_{1}. Let ρ have center δ and axis Δ.

Since both δ_{0} and δ_{1} lie on Δ, and δ lies on both Δ_{0} and Δ_{1}, it follows that $\Delta=\left\langle\delta_{0}, \delta_{1}\right\rangle$ and $\delta=\Delta_{0} \cap \Delta_{1}$.

This uniquely determines ρ, so $c \leqslant 4$.

Proof of Lemma (cont'd)

The special case: $\delta_{0}=\delta_{1}$.

This time, let ρ be any involution commuting with ρ_{0}, ρ_{1} and ρ_{2}.

Proof of Lemma (cont'd)

The special case: $\delta_{0}=\delta_{1}$.

This time, let ρ be any involution commuting with ρ_{0}, ρ_{1} and ρ_{2}.

- $\delta_{2} \in \Delta_{0}$, so $\delta_{2} \neq \delta_{0}$.

Proof of Lemma (cont'd)

The special case: $\delta_{0}=\delta_{1}$.

This time, let ρ be any involution commuting with ρ_{0}, ρ_{1} and ρ_{2}.

- $\delta_{2} \in \Delta_{0}$, so $\delta_{2} \neq \delta_{0}$.
- $\delta_{0}=\delta_{1}, \delta_{2}$ on $\Delta \Rightarrow \Delta=\left\langle\delta_{0}, \delta_{2}\right\rangle$.

Proof of Lemma (cont'd)

The special case: $\delta_{0}=\delta_{1}$.

This time, let ρ be any involution commuting with ρ_{0}, ρ_{1} and ρ_{2}.

- $\delta_{2} \in \Delta_{0}$, so $\delta_{2} \neq \delta_{0}$.
- $\delta_{0}=\delta_{1}, \delta_{2}$ on $\Delta \Rightarrow \Delta=\left\langle\delta_{0}, \delta_{2}\right\rangle$.
- $\delta=\Delta_{0} \cap \Delta_{1}$ lies on Δ_{2}.

Proof of Lemma (cont'd)

The special case: $\delta_{0}=\delta_{1}$.
Choose basis e_{1}, e_{2}, e_{3} for V :

$$
\delta_{0}=\delta_{1}=\left\langle e_{1}\right\rangle, \delta_{2}=\left\langle e_{2}\right\rangle, \delta=\left\langle e_{3}\right\rangle .
$$

Proof of Lemma (cont'd)

The special case: $\delta_{0}=\delta_{1}$.
Choose basis e_{1}, e_{2}, e_{3} for V :

$$
\delta_{0}=\delta_{1}=\left\langle e_{1}\right\rangle, \delta_{2}=\left\langle e_{2}\right\rangle, \delta=\left\langle e_{3}\right\rangle .
$$

$$
\rho_{0}=\left[\begin{array}{ccc}
1 & \cdot & \dot{c} \\
\cdot & -1 & \vdots \\
\cdot & \cdot & -1
\end{array}\right], \rho_{1}=\left[\begin{array}{ccc}
1 & \cdot & \dot{c} \\
a & -1 & \vdots \\
\cdot & \cdot & -1
\end{array}\right],
$$

$$
\rho_{2}=\left[\begin{array}{ccc}
-1 & \cdots & \cdot \\
: & 1 & -1
\end{array}\right]
$$

Proof of Lemma (cont'd)

The special case: $\delta_{0}=\delta_{1}$.
Choose basis e_{1}, e_{2}, e_{3} for V :

$$
\begin{gathered}
\delta_{0}=\delta_{1}=\left\langle e_{1}\right\rangle, \delta_{2}=\left\langle e_{2}\right\rangle, \delta=\left\langle e_{3}\right\rangle \\
\rho_{0}=\left[\begin{array}{ccc}
1 & \cdot & \vdots \\
\cdot & -1 & \cdot \\
\cdot & -1
\end{array}\right], \rho_{1}=\left[\begin{array}{ccc}
1 & \cdot & \vdots \\
a & -1 & \cdot \\
& \cdot & -1
\end{array}\right] \\
\rho_{2}=\left[\begin{array}{ccc}
-1 & \ddots & \vdots \\
: & 1 & -1
\end{array}\right] . \\
\left(\rho_{0} \rho_{1}\right)^{2}=\left(\rho_{2} \rho_{1}\right)^{2} \text { is a nontrivial }
\end{gathered}
$$ transvection. Hence $\left\langle\rho_{0}, \rho_{1}\right\rangle \cap\left\langle\rho_{1}, \rho_{2}\right\rangle$ contains an element of order $p>2$.

Proof of Lemma (cont'd)

The special case: $\delta_{0}=\delta_{1}$.
Choose basis e_{1}, e_{2}, e_{3} for V :

$$
\delta_{0}=\delta_{1}=\left\langle e_{1}\right\rangle, \delta_{2}=\left\langle e_{2}\right\rangle, \delta=\left\langle e_{3}\right\rangle
$$

$$
\rho_{0}=\left[\begin{array}{ccc}
1 & \cdot & \vdots \\
\vdots & -1 & \vdots \\
\cdot & -1
\end{array}\right], \rho_{1}=\left[\begin{array}{ccc}
1 & \cdot & \vdots \\
a & -1 & \vdots \\
\cdot & \cdot & -1
\end{array}\right]
$$

$$
\rho_{2}=\left[\begin{array}{ccc}
-1 & \ddots & \vdots \\
: & 1 & -1
\end{array}\right]
$$

$\left(\rho_{0} \rho_{1}\right)^{2}=\left(\rho_{2} \rho_{1}\right)^{2}$ is a nontrivial transvection. Hence $\left\langle\rho_{0}, \rho_{1}\right\rangle \cap\left\langle\rho_{1}, \rho_{2}\right\rangle$ contains an element of order $p>2$.
This contradicts the intersection property, so $c<5$.

Irreducible string C-subgroups of $\mathrm{GL}(3, q)$

Theorem [B \& Vicinsky]
Let $H=\left\langle\rho_{0}, \ldots, \rho_{c-1}\right\rangle \leqslant \mathrm{GL}(3, q)$ be a string C-group acting irreducibly on $V=\mathbb{F}_{q}^{3}$. Then q is odd, and H preserves a nondegenerate, symmetric bilinear form φ on V.

Irreducible string C-subgroups of $\mathrm{GL}(3, q)$

Theorem [B \& Vicinsky]
Let $H=\left\langle\rho_{0}, \ldots, \rho_{c-1}\right\rangle \leqslant \mathrm{GL}(3, q)$ be a string C-group acting irreducibly on $V=\mathbb{F}_{q}^{3}$. Then q is odd, and H preserves a nondegenerate, symmetric bilinear form φ on V.

$\mathbb{M}=$ matrix algebra of degree 3 over $k=\mathbb{F}_{q}$
$\mathbb{S}=$ subspace of symmetric matrices (dim 6)
$\mathbb{D}=$ subspace of diagonal matrices $(\operatorname{dim} 3)$

Irreducible string C-subgroups of $\mathrm{GL}(3, q)$

Theorem [B \& Vicinsky]
Let $H=\left\langle\rho_{0}, \ldots, \rho_{c-1}\right\rangle \leqslant \mathrm{GL}(3, q)$ be a string C-group acting irreducibly on $V=\mathbb{F}_{q}^{3}$. Then q is odd, and H preserves a nondegenerate, symmetric bilinear form φ on V.

$\mathbb{M}=$ matrix algebra of degree 3 over $k=\mathbb{F}_{q}$
$\mathbb{S}=$ subspace of symmetric matrices (dim 6)
$\mathbb{D}=$ subspace of diagonal matrices $(\operatorname{dim} 3)$
Choose a basis of V such that

$$
\rho_{0}=\left[\begin{array}{ccc}
1 & \cdot & \dot{c} \\
\cdot & -1 & \cdot \\
\cdot & \cdot & -1
\end{array}\right] \text { and } \rho_{2}=\left[\begin{array}{ccc}
-1 & \cdot & \dot{C} \\
\cdot & -1 & \vdots \\
\cdot & \cdot & 1
\end{array}\right] .
$$

Observe $C_{\mathbb{M}}\left(\rho_{0}\right) \cap C_{\mathbb{M}}\left(\rho_{2}\right)=\mathbb{D}$

Proof of Theorem (cont'd)

Let $\Phi \in \mathbb{S}$ represent some symmetric form φ.

$$
\begin{aligned}
\left\langle\rho_{0}, \rho_{2}\right\rangle \text { preserves } \Phi & \Longleftrightarrow \rho_{i} \Phi=\Phi \rho_{i}^{- \text {tr }} \text { for } i=0,2 \\
& \Longleftrightarrow \rho_{i} \Phi=\Phi \rho_{i} \text { for } i=0,2 \\
& \Longleftrightarrow \Phi \in C_{\mathbb{M}}\left(\rho_{0}\right) \cap C_{\mathbb{M}}\left(\rho_{2}\right) \cap \mathbb{S} \\
& \Longleftrightarrow \Phi \in \mathbb{D}
\end{aligned}
$$

Proof of Theorem (cont'd)

Consider the rank 3 case. (The result for rank 4 follows easily.)
Let ρ be any involution of $\operatorname{SL}(3, q)$. Define

$$
\mathbb{X}_{\rho}=\left\{\Phi \in \mathbb{S}: \rho \Phi=\Phi \rho^{-\mathrm{tr}}=\Phi \rho^{\mathrm{tr}}\right\}
$$

the matrices representing symmetric bilinear forms preserved by ρ.

Proof of Theorem (cont'd)

Consider the rank 3 case. (The result for rank 4 follows easily.)
Let ρ be any involution of $\operatorname{SL}(3, q)$. Define

$$
\mathbb{X}_{\rho}=\left\{\Phi \in \mathbb{S}: \rho \Phi=\Phi \rho^{-\mathrm{tr}}=\Phi \rho^{\mathrm{tr}}\right\}
$$

the matrices representing symmetric bilinear forms preserved by ρ.

- $\operatorname{dim}\left(\mathbb{X}_{\rho}\right) \geqslant 4$. [Taussky-Zassenhaus]

Proof of Theorem (cont'd)

Consider the rank 3 case. (The result for rank 4 follows easily.)
Let ρ be any involution of $\operatorname{SL}(3, q)$. Define

$$
\mathbb{X}_{\rho}=\left\{\Phi \in \mathbb{S}: \rho \Phi=\Phi \rho^{-\mathrm{tr}}=\Phi \rho^{\mathrm{tr}}\right\}
$$

the matrices representing symmetric bilinear forms preserved by ρ.

- $\operatorname{dim}\left(\mathbb{X}_{\rho}\right) \geqslant 4$. [Taussky-Zassenhaus]
- $\operatorname{dim}\left(\mathbb{X}_{\rho} \cap \mathbb{D}\right) \geqslant 1$.

Proof of Theorem (cont'd)

Consider the rank 3 case. (The result for rank 4 follows easily.)
Let ρ be any involution of $\operatorname{SL}(3, q)$. Define

$$
\mathbb{X}_{\rho}=\left\{\Phi \in \mathbb{S}: \rho \Phi=\Phi \rho^{-\mathrm{tr}}=\Phi \rho^{\mathrm{tr}}\right\}
$$

the matrices representing symmetric bilinear forms preserved by ρ.

- $\operatorname{dim}\left(\mathbb{X}_{\rho}\right) \geqslant 4$. [Taussky-Zassenhaus]
- $\operatorname{dim}\left(\mathbb{X}_{\rho} \cap \mathbb{D}\right) \geqslant 1$.
- There exists $0 \neq \Phi \in \mathbb{S}$ preserved by ρ_{0}, ρ_{2} and ρ.

Proof of Theorem (cont'd)

Consider the rank 3 case. (The result for rank 4 follows easily.)
Let ρ be any involution of $\operatorname{SL}(3, q)$. Define

$$
\mathbb{X}_{\rho}=\left\{\Phi \in \mathbb{S}: \rho \Phi=\Phi \rho^{-\mathrm{tr}}=\Phi \rho^{\mathrm{tr}}\right\}
$$

the matrices representing symmetric bilinear forms preserved by ρ.

- $\operatorname{dim}\left(\mathbb{X}_{\rho}\right) \geqslant 4$. [Taussky-Zassenhaus]
- $\operatorname{dim}\left(\mathbb{X}_{\rho} \cap \mathbb{D}\right) \geqslant 1$.
- There exists $0 \neq \Phi \in \mathbb{S}$ preserved by ρ_{0}, ρ_{2} and ρ.
- $H=\left\langle\rho_{0}, \rho, \rho_{2}\right\rangle$ irreducible $\Rightarrow \Phi$ nonsingular.

Proof of Theorem (cont'd)

Consider the rank 3 case. (The result for rank 4 follows easily.)
Let ρ be any involution of $\operatorname{SL}(3, q)$. Define

$$
\mathbb{X}_{\rho}=\left\{\Phi \in \mathbb{S}: \rho \Phi=\Phi \rho^{-\mathrm{tr}}=\Phi \rho^{\mathrm{tr}}\right\}
$$

the matrices representing symmetric bilinear forms preserved by ρ.

- $\operatorname{dim}\left(\mathbb{X}_{\rho}\right) \geqslant 4$. [Taussky-Zassenhaus]
- $\operatorname{dim}\left(\mathbb{X}_{\rho} \cap \mathbb{D}\right) \geqslant 1$.
- There exists $0 \neq \Phi \in \mathbb{S}$ preserved by ρ_{0}, ρ_{2} and ρ.
- $H=\left\langle\rho_{0}, \rho, \rho_{2}\right\rangle$ irreducible $\Rightarrow \Phi$ nonsingular.
H preserves a nondegenerate, symmetric bilinear form φ on V.

Two questions

1. Is there an "obvious" geometric reason that a string C-subgroup of $\operatorname{GL}(3, q)$ preserves a symmetric form on $V=\mathbb{F}_{q}^{3}$?

Two questions

1. Is there an "obvious" geometric reason that a string C-subgroup of $\operatorname{GL}(3, q)$ preserves a symmetric form on $V=\mathbb{F}_{q}^{3}$?
2. To what extent can this "geometric approach" be used to determine which groups in other infinite families of classical groups (e.g. SL $(4, q)$) arise as automorphism groups of abstract regular polytopes?

Two questions

1. Is there an "obvious" geometric reason that a string C-subgroup of $\operatorname{GL}(3, q)$ preserves a symmetric form on $V=\mathbb{F}_{q}^{3}$?
2. To what extent can this "geometric approach" be used to determine which groups in other infinite families of classical groups (e.g. SL $(4, q)$) arise as automorphism groups of abstract regular polytopes?

Thank You!

