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Motivation

The principal motivation for this work was the paper:

D. Leemans and E. Schulte, Groups of type L2(q) acting on polytopes,
Adv. Geometry (2007)

The paper determines the prime powers q such that PSL(2, q) is the
automorphism group of an abstract regular polytope of rank at least 4.

The method uses the very detailed description of the subgroup
structure of PSL(2, q) given originally by Dickson in 1901.

Which members of other families of finite simple groups of Lie type
arise as the automorphism group of an abstract regular polytope?
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Existing Results

• PSL(2, q) ∼= Aut(P), where P has...
...rank 3 if and only if q 6∈ {2, 3, 7, 9} [Sjerve-Cherkassoff]
...rank 4 if and only if q ∈ {11, 19} [Leemans-Schulte]

• Sz(q) ∼= Aut(P), where P has rank 3. [Leemans]
• All simple groups of Lie type that arise as the automorphism

group of a polytope of rank 3 are known. [Nuzhin]
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The Objective

Let G(q) be a quasi-simple classical group defined naturally on a
vector space V of dimension d over the field k = GF(q).

To what extent can the geometric properties of G(q) be exploited to
say something useful about the polytopes upon which it can act?

In this talk, I will discuss the case when G(q) 6 GL(3, q).

This is joint work with a former student, Deborah Vicinsky.
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String C-groups

A string C-group is a group H together with a generating sequence
ρ0, ρ1, . . . , ρc−1 of involutions satisfying the following conditions:

• For 0 6 i < j 6 c− 1, [ρi, ρj] = 1 if and only if |i− j| > 1.
• Intersection Property: For I, J ⊆ {0, . . . , c− 1},

〈ρi : i ∈ I〉 ∩ 〈ρj : j ∈ J〉 = 〈ρk : k ∈ I ∩ J〉.

Key fact: H = 〈ρ0, . . . , ρc−1〉 is a string C-group if and only if
H ∼= Aut(P) for some abstract regular polytope P of rank c.
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Classical groups

• k = Fq, the field of q = pe elements;
• V = k-vector space of dimension d.

• ϕ = nondegenerate reflexive k-form on V .
• g ∈ GL(V) an isometry of ϕ if ϕ(ug, vg) = ϕ(u, v) (∀u, v ∈ V).
• Isom(ϕ) = {g ∈ GL(ϕ) : g is an isometry of ϕ}.
• H 6 GL(V) is a classical group if Isom(ϕ)′ 6 H 6 Isom(ϕ).
• Fixing a basis v1, . . . , vd of V one associates to ϕ the matrix

Φ = [[ϕ(vi, vj)]] ∈Md(k). Then g is an isometry if gΦ = Φg−tr.
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Involutions in SL(3, q), q even

Let ρ be an involution of SL(3, q).

ρ is 1 on a line ∆, and on V/δ for
some point δ lying on ∆.

ρ fixes all points on ∆ and all lines
through δ.

ρ is conjugate to

 1 0 0
1 1 0
0 0 1
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Involutions in SL(3, q), q odd

Let ρ be an involution of SL(3, q).

ρ is −1 on a line ∆, and 1 on δ for
some point δ not lying on ∆.

ρ fixes all points on ∆ and all lines
through δ.

ρ is conjugate to

 1 0 0
0 −1 0
0 0 −1
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Commuting involutions, q even

If σ is an involution with center
γ and axis Γ, then:

[ρ, σ] = 1⇐⇒ γ = δ or Γ = ∆.
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Commuting involutions, q odd

If σ is an involution with center
γ and axis Γ, then:

[ρ, σ] = 1⇔ γ ∈ ∆ and δ ∈ Γ.
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Bounding the rank of a string C-group

Lemma:
If G = 〈ρ0, . . . , ρc−1〉 6 SL(3, q) is a string C-group, then c 6 4.

Proof:
We just consider the (more interesting) case where q is odd.
For i = 0, . . . , c− 1, let ρi have center δi and axis ∆i.

There are two cases to deal with:

[generic case] Here δ0 6= δ1 and ∆0 6= ∆1.

[special case] Either δ0 = δ1 or ∆0 = ∆1. Note: by duality, we
need only look at one of these possibilities.
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Proof of Lemma (cont’d)

The generic case: δ0 6= δ1 and ∆0 6= ∆1.

Suppose that ρ is any involution
commuting with both ρ0 and ρ1. Let
ρ have center δ and axis ∆.

Since both δ0 and δ1 lie on ∆, and δ
lies on both ∆0 and ∆1, it follows
that ∆ = 〈δ0, δ1〉 and δ = ∆0 ∩∆1.

This uniquely determines ρ, so c 6 4.
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Proof of Lemma (cont’d)

The special case: δ0 = δ1.

This time, let ρ be any involution
commuting with ρ0, ρ1 and ρ2.

• δ2 ∈ ∆0, so δ2 6= δ0.
• δ0 = δ1, δ2 on ∆⇒∆ = 〈δ0, δ2〉.
• δ = ∆0 ∩∆1 lies on ∆2.
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Proof of Lemma (cont’d)

The special case: δ0 = δ1.

Choose basis e1, e2, e3 for V:
δ0 = δ1 = 〈e1〉, δ2 = 〈e2〉, δ = 〈e3〉.

ρ0 =
[ 1 · ·
· −1 ·
· · −1

]
, ρ1 =

[ 1 · ·
a −1 ·
· · −1

]
,

ρ2 =
[−1 · ·
· 1 ·
· · −1

]
.

(ρ0ρ1)2 = (ρ2ρ1)2 is a nontrivial
transvection. Hence 〈ρ0, ρ1〉 ∩ 〈ρ1, ρ2〉
contains an element of order p > 2.

This contradicts the intersection
property, so c < 5.
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Irreducible string C-subgroups of GL(3, q)

Theorem [B & Vicinsky]
Let H = 〈ρ0, . . . , ρc−1〉 6 GL(3, q) be a string C-group acting
irreducibly on V = F3

q. Then q is odd, and H preserves a
nondegenerate, symmetric bilinear form ϕ on V.

M = matrix algebra of degree 3 over k = Fq

S = subspace of symmetric matrices (dim 6)
D = subspace of diagonal matrices (dim 3)

Choose a basis of V such that

ρ0 =
[ 1 · ·
· −1 ·
· · −1

]
and ρ2 =

[−1 · ·
· −1 ·
· · 1

]
.

Observe CM(ρ0) ∩ CM(ρ2) = D
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Proof of Theorem (cont’d)

Let Φ ∈ S represent some symmetric form ϕ.

〈ρ0, ρ2〉 preserves Φ ⇐⇒ ρiΦ = Φρ−tr
i for i = 0, 2

⇐⇒ ρiΦ = Φρi for i = 0, 2
⇐⇒ Φ ∈ CM(ρ0) ∩ CM(ρ2) ∩ S
⇐⇒ Φ ∈ D
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Proof of Theorem (cont’d)

Consider the rank 3 case. (The result for rank 4 follows easily.)

Let ρ be any involution of SL(3, q). Define

Xρ = {Φ ∈ S : ρΦ = Φρ−tr = Φρtr},

the matrices representing symmetric bilinear forms preserved by ρ.

• dim(Xρ) > 4. [Taussky-Zassenhaus]
• dim(Xρ ∩ D) > 1.
• There exists 0 6= Φ ∈ S preserved by ρ0, ρ2 and ρ.
• H = 〈ρ0, ρ, ρ2〉 irreducible⇒ Φ nonsingular.

H preserves a nondegenerate, symmetric bilinear form ϕ on V . �
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Two questions

1. Is there an “obvious” geometric reason that a string C-subgroup
of GL(3, q) preserves a symmetric form on V = F3

q?

2. To what extent can this “geometric approach” be used to
determine which groups in other infinite families of classical
groups (e.g. SL(4, q)) arise as automorphism groups of abstract
regular polytopes?

Thank You!
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