Reactions, mechanisms and simplexes

István Szalkai

Pannon University, Veszprém, Hungary
Department of Mathematics

Many thanks to

(1) Chemical reactions :

$$
2 \mathrm{H}_{2}+2 \mathrm{CO}=\mathrm{CH}_{4}+\mathrm{CO}_{2}
$$

Linear combination
(1) Chemical reactions :

$$
2 \mathrm{H}_{2}+2 \mathrm{CO}=\mathrm{CH}_{4}+\mathrm{CO}_{2}
$$

Linear combination

Minimal: none of them can be omitted.
(1) Chemical reactions :

$$
2 \mathrm{H}_{2}+2 \mathrm{CO}=\mathrm{CH}_{4}+\mathrm{CO}_{2}
$$

Linear combination

$$
\begin{array}{lr}
\mathrm{H}: & \left|\begin{array}{l}
2 \mid \\
\mathrm{C}: \\
\mathrm{O}:
\end{array} \quad 2 *\right| \begin{array}{l}
0 \\
0 \\
0
\end{array}|+2 *| \begin{array}{l}
4 \\
1 \\
1
\end{array}\left|-\left|\begin{array}{l}
0 \mid \\
1 \\
0
\end{array}\right|-\left|\begin{array}{l}
0 \\
1 \\
2 \mid
\end{array}\right|=\left|\begin{array}{l}
0 \mid \\
0 \mid \\
0
\end{array}\right|, ~\right.
\end{array}
$$

Minimal: none of them can be omitted.

(also for ions, e^{-}, cathalysts, etc.)
(2) Mechanisms :

$$
\begin{array}{rll}
1: \mathbf{C}+\mathbf{O}=\mathbf{C O} & \underline{\mathrm{x}}_{1}=[1,1,-1,0] \\
2: \mathbf{C}+\mathbf{O}=\mathbf{C O}_{2} & \underline{\mathrm{x}}_{2}=[1,2,0,-1] \\
\left(3: O+\mathrm{CO}=\mathrm{CO}_{2}\right. & \left.\underline{x}_{3}=[0,1,1,-1]\right) \\
4: \mathbf{C}+\mathbf{C O}_{2}=\mathbf{2 C O} & \underline{\mathrm{x}}_{4}=[1,0,-2,1]
\end{array}
$$

$$
2 * \underline{x}_{1}-\underline{x}_{2}=\underline{x}_{4}
$$

Linear combination

$$
2 * \underline{X}_{1}-\underline{\mathrm{x}}_{2}-\underline{\mathrm{X}}_{4}=\underline{0}
$$

(2) Mechanisms :

$1: \mathbf{C}+\mathbf{O}=\mathbf{C O}$	$\underline{\mathrm{x}}_{1}=[1,1,-1,0]$
$2: \mathbf{C}+\mathbf{2}=\mathbf{C O}$	$\underline{\mathrm{X}}_{2}=[1,2,0,-1]$
$\left(3: \mathrm{O}+\mathrm{CO}=\mathrm{CO}_{2}\right.$	$\left.\underline{\mathrm{X}}_{3}=[0,1,1,-1]\right)$
$4: \mathbf{C}+\mathbf{C O}_{2}=\mathbf{2 C O}$	$\underline{\mathrm{x}}_{4}=[1,0,-2,1]$

$$
2 * \underline{x}_{1}-\underline{x}_{2}=\underline{x}_{4}
$$

Linear combination

$$
2 * \underline{\mathrm{x}}_{1}-\underline{\mathrm{x}}_{2}-\underline{\mathrm{x}}_{4}=\underline{0}
$$

Minimal: none of them can be omitted.
(2) Mechanisms :

$1: \mathbf{C}+\mathbf{O}=\mathbf{C O}$	$\underline{\mathrm{x}}_{1}=[1,1,-1,0]$
$2: \mathbf{C}+\mathbf{2}=\mathbf{C O}$	$\underline{\mathrm{x}}_{2}=[1,2,0,-1]$
$\left(3: \mathrm{O}+\mathrm{CO}=\mathrm{CO}_{2}\right.$	$\left.\underline{\mathrm{X}}_{3}=[0,1,1,-1]\right)$
$4: \mathbf{C}+\mathbf{C O}_{2}=\mathbf{2 C O}$	$\underline{\mathrm{x}}_{4}=[1,0,-2,1]$

$$
2 * \underline{x}_{1}-\underline{x}_{2}=\underline{x}_{4}
$$

Linear combination

$$
2 * \underline{X}_{1}-\underline{\mathrm{x}}_{2}-\underline{\mathrm{X}}_{4}=\underline{0}
$$

Minimal: none of them can be omitted.

Prescribed: input-, output- materials
(3) Physical quantities (measure units/"dimension analysis"):

$$
\begin{aligned}
& {[\mathbf{1 , ~ 0 , ~ 0 , ~ 0 , ~ 0 , ~ 0 ~] ~}} \\
& {[\mathbf{0 , 1 , - 1 , 0 , 0 , 0}]} \\
& {[-3,0,0,1,0,0]} \\
& {[-1,0,-1,1,0,0]} \\
& {[\mathbf{0 , ~ 0 , - 2 , ~ 0 , ~ 1 , - 1]}} \\
& {[0,0,-3,1,0,-1]} \\
& {[1,0,-3,1,0,-1]}
\end{aligned}
$$

Minimal connection: $\quad v \cdot \kappa=\mu \cdot c \quad /$ for some $c \in R /$
(0) Homogeneous linear equations:

$$
\underline{\mathrm{A}} \cdot \underline{\mathrm{x}}=\underline{0}
$$

(0) Homogeneous linear equations:

$$
\underline{\mathrm{A}} \cdot \underline{\mathrm{x}}=\underline{0}
$$

Find all minimal solutions

Acta Mathematica Academiae Scientiarum Hungaricae Tomus 18 (1-2). 1967, pp. 19-23.

ON A CLASS OF SOLUTIONS OF ALGEBRAIC HOMOGENEOUS LINEAR EQUATIONS

By
A. PETH ${ }^{\circ}$ (Budapest)

Main Definition:

$\mathrm{S}=\left\{\underline{\mathrm{s}}_{1}, \underline{\mathrm{~s}}_{2}, \ldots, \underline{\mathrm{~s}}_{\mathrm{k}}\right\} \subset \mathrm{R}^{\mathrm{n}}$ is an algebraic simplex iff S is minimal dependent. \square
iff
S is dependent and $\mathrm{S} \backslash\left\{\mathrm{s}_{\mathrm{i}}\right\}$ is independent for all $\mathrm{i} \leq \mathrm{k}$.
i.e.

$$
\alpha_{1} \cdot \underline{s}_{1}+\alpha_{2} \cdot \underline{s}_{2}+\ldots+\alpha_{k} \cdot \underline{s}_{k}=\underline{0}
$$

and none of them can be omitted : $\alpha_{i} \neq 0 \quad$ for all $\mathrm{i} \leq \mathrm{k}$.
(minimal reactions, mechanisms, etc.)

Reminder: $\mathrm{S}=\left\{\underline{\mathrm{s}}_{1}, \underline{\mathrm{~s}}_{2}, \ldots, \underline{\mathrm{~s}}_{k}\right\} \subset \mathrm{R}^{\mathrm{n}}$ is an algebraic simplex iff S is dependent and $\mathrm{S} \backslash\left\{\mathrm{s}_{\mathrm{i}}\right\}$ is independent for all $\mathrm{i} \leq \mathrm{k}$.
i.e. $\quad \alpha_{1} \cdot \underline{s}_{1}+\alpha_{2} \cdot \underline{s}_{2}+\ldots+\alpha_{k} \cdot \underline{s}_{k}=\underline{0}$ and none of them can be omitted.
(minimal reactions, mechanisms, etc.)

TASK 1:

Algorithm for generating all simplexes $\mathrm{S} \subset \mathrm{H}$ in a given $\mathrm{H} \subset \mathrm{R}^{\mathrm{n}}$.
(all reactions, mechanisms, etc.)

+ Applications

Reminder: $\mathrm{S}=\left\{\underline{\mathrm{s}}_{1}, \underline{\mathrm{~s}}_{2}, \ldots, \underline{\mathrm{~s}}_{k}\right\} \subset \mathrm{R}^{\mathrm{n}}$ is an algebraic simplex iff S is dependent and $\mathrm{S} \backslash\left\{\mathrm{s}_{\mathrm{i}}\right\}$ is independent for all $\mathrm{i} \leq \mathrm{k}$.
i.e. $\quad \alpha_{1} \cdot \underline{s}_{1}+\alpha_{2} \cdot \underline{s}_{2}+\ldots+\alpha_{k} \cdot \underline{s}_{k}=\underline{0}$ and none of them can be omitted.
(minimal reactions, mechanisms, etc.)

TASK 1:

Algorithm for generating all simplexes $\mathrm{S} \subset \mathrm{H}$ in a given $\mathrm{H} \subset \mathrm{R}^{\mathrm{n}}$.
(all reactions, mechanisms, etc.)

+ Applications

Result: polynomial algorithm
$\sqrt{ }$ [1991] Hung.J.Ind.Chem. 289-292.
$\sqrt{ }$ [2000] J.Math.Chem.1-34.
E.g.

The species:
1st speci: H_{2}
2nd speci: O_{2}
3 st specit HO
4 h speci: HO_{2}
5th speci: $\mathrm{H}_{2} \mathrm{O}$
6 6h speci: $\mathrm{H}_{2} \mathrm{O}_{2}$

1. $+2 \mathrm{~L}_{2} \mathrm{H}_{2}+52 \mathrm{O}_{2}-1 \mathrm{HO}=0$
2. $+12 \mathrm{H}_{2}+1 \mathrm{O}_{2}-1 \mathrm{HO}_{2}=0$
$3+1 \mathrm{H}_{2}+12 \mathrm{O}_{2}-1 \mathrm{H}_{2} \mathrm{O}=0$
3. $+\mathrm{HH}_{2}+1 \mathrm{O}_{2}-1 \mathrm{H}_{2} \mathrm{O}_{2}=0$
4. $-1 / 2 \mathrm{H}_{2}+2 \mathrm{HO}_{2}-1 \mathrm{HO}_{2}=0$
$6 .+1 / 2 \mathrm{H}_{2}+1 \mathrm{HO}-1 \mathrm{H}_{2} \mathrm{O}=0$
$7 .+3 / 4 \mathrm{H}_{2}+\frac{1}{2} \mathrm{HO}_{2}-2 \mathrm{H}_{2} \mathrm{O}=0$
$8 .+1 / 2 \mathrm{H}_{2}+1 \mathrm{HO}_{2}-1 \mathrm{H}_{2} \mathrm{O}_{2}=0$
5. $-1 \mathrm{H}_{2}+2 \mathrm{H}_{2} \mathrm{O}-1 \mathrm{H}_{2} \mathrm{O}_{2}=0$
6. $+12 \mathrm{O}_{2}+1 \mathrm{HO}-1 \mathrm{HO}_{2}=0$
7. $+1 / 2 \mathrm{O}_{2}+2 \mathrm{HO}-1 \mathrm{H}_{2} \mathrm{O}=0$
8. $+3 / 2 \mathrm{O}_{2}+2 \mathrm{HO}_{2}-1 \mathrm{H}_{2} \mathrm{O}=0$
9. $-1 \mathrm{O}_{2}+2 \mathrm{HO}_{2}-1 \mathrm{H}_{2} \mathrm{O}_{2}=0$
10. $+12 \mathrm{O}_{2}+1 \mathrm{H}_{2} \mathrm{O}-1 \mathrm{H}_{2} \mathrm{O}=0$
$15 .+3 \mathrm{OH}+1 \mathrm{HO}_{2}-1 \mathrm{H}_{2} \mathrm{O}=0$
$16 .+2 \mathrm{OH}-1 \mathrm{H}_{2} \mathrm{O}_{2}=0$
11. $+23 \mathrm{OH}_{2}+23 \mathrm{H}_{2} \mathrm{O}-1 \mathrm{H}_{2} \mathrm{O}_{2}=0$

Reminder: $\mathrm{S}=\left\{\underline{\mathrm{s}}_{1}, \underline{\mathrm{~s}}_{2}, \ldots, \underline{\mathrm{~s}}_{k}\right\} \subset \mathrm{R}^{\mathrm{n}}$ is an algebraic simplex iff S is dependent and $\mathrm{S} \backslash\left\{\mathrm{s}_{\mathrm{i}}\right\}$ is independent for all $\mathrm{i} \leq \mathrm{k}$.
i.e. $\quad \alpha_{1} \cdot \underline{s}_{1}+\alpha_{2} \cdot \underline{s}_{2}+\ldots+\alpha_{k} \cdot \underline{s}_{k}=\underline{0}$ and none of them can be omitted.
(minimal reactions, mechanisms, etc.)

Task 2:

Question: For given $\mathrm{H} \subset \mathrm{R}^{\mathrm{n}}$ how many simplexes $\mathrm{S} \subset \mathrm{H}$ could be in H if $|\mathrm{H}|=m$ is given and H spans R^{n} ?
(how many reactions, mechanisms, etc.)

Reminder: $\mathrm{S}=\left\{\underline{\mathrm{s}}_{1}, \underline{\mathrm{~s}}_{2}, \ldots, \underline{\mathrm{~s}}_{k}\right\} \subset \mathrm{R}^{\mathrm{n}}$ is an algebraic simplex iff S is dependent and $\mathrm{S} \backslash\left\{\mathrm{s}_{\mathrm{i}}\right\}$ is independent for all $\mathrm{i} \leq \mathrm{k}$.
i.e. $\quad \alpha_{1} \cdot \underline{s}_{1}+\alpha_{2} \cdot \underline{s}_{2}+\ldots+\alpha_{k} \cdot \underline{s}_{k}=\underline{0}$ and none of them can be omitted.
(minimal reactions, mechanisms, etc.)

Task 2:

Question: For given $H \subset \mathrm{R}^{\mathrm{n}}$ how many simplexes $\mathrm{S} \subset \mathrm{H}$ could be in H if $|\mathrm{H}|=m$ is given and H spans R^{n} ?
(how many reactions, mechanisms, etc.)

Notation: $\operatorname{simp}(\mathbf{H}):=$ the number of simplexes $\mathrm{S} \subset \mathrm{H}$

Assuming: $|\mathrm{H}|=m, \mathrm{H}$ spans R^{n}

Theorem 1 [1995] (Laflamme-Szalkai)

$$
\operatorname{simp}(H) \leq\binom{ m}{n+1} \quad=O\left(\mathrm{~m}^{\mathrm{n}+1}\right)
$$

and $\operatorname{simp}(\mathrm{H})$ is maximal iff every n -element subset of H is independent.

Assuming: $|\mathrm{H}|=m, \mathrm{H}$ spans R^{n}

Theorem 1 [1995] (Laflamme-Szalkai)

$$
\operatorname{simp}(H) \leq\binom{ m}{n+1} \quad=O\left(\mathrm{~m}^{\mathrm{n}+1}\right)
$$

and $\operatorname{simp}(\mathrm{H})$ is maximal iff every n -element subset of H is independent. \square

Note:
Sperner's theorem is not enough: what is the structure of H ?

$|\mathrm{H}|=m, \mathrm{H}$ spans R^{n}

Theorem 2 [1995] (Laflamme-Szalkai)

$$
O\left(\mathrm{~m}^{2}\right)=\quad n \cdot\binom{m / n}{2} \leq \operatorname{simp}(H)
$$

and $\operatorname{simp}(\mathrm{H})$ is minimal iff m / n elements of H are parallel to $\underline{\mathrm{b}}_{\mathrm{i}}$ where $\left\{\underline{\mathrm{b}}_{1}, \ldots, \underline{\mathrm{~b}}_{\mathrm{n}}\right\}$ is any base of . \square
(parallel $=$ isomers, multiple doses,...)

$|\mathrm{H}|=m, \mathrm{H}$ spans R^{n}

Theorem 2 [1995] (Laflamme-Szalkai)

$$
O\left(\mathrm{~m}^{2}\right)=\quad n \cdot\binom{m / n}{2} \leq \operatorname{simp}(H)
$$

and $\operatorname{simp}(\mathrm{H})$ is minimal iff m / n elements
of H are parallel to $\underline{\mathrm{b}}_{\mathrm{i}}$ where $\left\{\underline{\mathrm{b}}_{1}, \ldots, \underline{\mathrm{~b}}_{\mathrm{n}}\right\}$ is any base of . \square
$($ parallel $=$ isomers, multiple doses,...$)$

Open Question:
if no parallel elements are in H ?

General Conjecture (1998) (Laflamme, Meng, Szalkai)

 no parallel $=>$ the minimal configurations in R^{n} are:? 1) If n is even $=>\mathrm{H}$ contains n linearly independent vectors $\left\{\underline{\mathrm{u}}_{\mathrm{i}}: \mathrm{i}=1, \ldots, \mathrm{n}\right\}$ and the remaining of H is divided as evenly as possible between the planes $\left[\underline{\mathrm{u}}_{\mathrm{i}}, \underline{\mathrm{u}}_{\mathrm{i}+1}\right]$ for $\mathrm{i}=1,3, \ldots, \mathrm{n}-1 . \square$
? 2) If n is odd $=>\mathrm{H}$ again contains n linearly independent vectors $\left\{\underline{u}_{i}: \mathrm{i}=1, \ldots, \mathrm{n}\right\}$, one extra vector in the plane $\left[\mathrm{u}_{\mathrm{n}-1}, \underline{\mathrm{u}}_{n}\right]$ and finally the remaining vectors are divided as evenly as possible between the planes $\left[\underline{\mathrm{u}}_{\mathrm{i}}, \underline{\mathrm{u}}_{\mathrm{i}+1}\right]$ for $\mathrm{i}=1,3, \ldots, \mathrm{n}-2$ with lower indices having precedence.

LATER!

Reducing the dimension ($\mathrm{n}=3$):

R^{3}

So, after the reduction we get:
Definition: (affine) simplexes in R^{2} are
i) 3 colinear points,
ii) 4 general points: no three colinear,

Elementary question in R^{2} :

What is the minimal number of (total) simplexes if the number of points (spanning R^{2}) is m ?

$|\mathrm{H}|=m, \mathrm{H}$ spans R^{n}, no parallel elements

$\mathrm{n}=3$
Theorem 3 [1998] (Laflamme-Szalkai)
For $\mathrm{H} \subset \mathrm{R}^{3}$

$$
\binom{m-2}{3}+1+\binom{m-3}{2} \leq \operatorname{simp}(\mathcal{H})
$$

and for $\mathrm{m} \geq 8: \operatorname{simp}(\mathrm{H})$ is minimal iff

$($ vectors $=$ points, planes $=$ lines $)$

Reducing the dimension ($\mathrm{n}=4$):
vectors $=>$ points, 2D-planes $=>$ lines, h.-planes $=>2 D$-planes

So, after the reduction we get:
Definition: (affine) simplexes in R^{3} are
i) 3 colinear points,
ii) 4 coplanar, no three colinear,

iii) 5 general points: no three or four as above.

So, after the reduction we get:
Definition: (affine) simplexes in R^{3} are
i) 3 colinear points,
ii) 4 coplanar, no three colinear,

iii) 5 general points: no three or four as above.

Still elementary question in R^{3} :

What is the minimal number of (total) simplexes if the number of points (spanning R^{3}) is m ?

$|\mathrm{H}|=m, \mathrm{H}$ spans R^{n}, no parallel elements

$\mathrm{n}=4$
Theorem 4 [2010] (Balázs Szalkai - I.Szalkai)
For $\mathrm{H} \subset \mathrm{R}^{4}$

$$
\operatorname{simp}(\mathcal{H}) \geq\binom{\lfloor m / 2\rfloor}{ 3}+\binom{\lceil m / 2\rceil}{ 3}
$$

and for $\mathrm{m} \geq 24 \operatorname{simp}(\mathrm{H})$ is minimal iff H is placed into two (skew) detour line

General Conjecture (1998) (Laflamme, Meng, Szalkai)

 no parallel => the only minimal configurations in R^{n} are:? 1) If n is even $=>\mathrm{H}$ contains n linearly independent vectors $\left\{\underline{\mathrm{u}}_{\mathrm{i}}: \mathrm{i}=1, \ldots, \mathrm{n}\right\}$ and the remaining of H is divided as evenly as possible between the planes $\left[\underline{u}_{i}, \underline{\mathrm{u}}_{\mathrm{i}+1}\right]$ for $\mathrm{i}=1,3, \ldots, \mathrm{n}-1 . \square$

$\left[u_{1}, \underline{u}_{2}\right] \quad\left[u_{3}, \underline{u}_{4}\right] \quad \ldots \quad\left[u_{i}, \underline{u}_{i+1}\right] \quad \ldots \quad\left[\underline{u}_{n-1}, \underline{u}_{n}\right]$

General Conjecture (1998) (Laflamme, Meng, Szalkai)

no parallel => the only minimal configurations in R^{n} are:
? 2) If n is odd $=>H$ contains n linearly independent vectors
$\left\{\underline{\mathrm{u}}_{\mathrm{i}}: \mathrm{i}=1, \ldots, \mathrm{n}\right\}$, one extra vector in the plane $\left[\underline{\mathrm{u}}_{\mathrm{n}-1}, \underline{u}_{\mathrm{n}}\right]$ and finally the remaining vectors are divided as evenly as possible between the planes $\left[\underline{\mathrm{u}}_{\mathrm{i}}, \underline{\mathrm{u}}_{\mathrm{i}+1}\right]$ for $\mathrm{i}=1,3, \ldots, \mathrm{n}-2$ with lower indices having precedence.

$\left[\underline{u}_{1}, \underline{u}_{2}\right] \quad\left[\underline{u}_{3}, \underline{u}_{4}\right] \quad \ldots \quad\left[\underline{u}_{i}, \underline{u}_{i+1}\right] \ldots\left[\underline{u}_{n-2}, \underline{u}_{n-1}\right],\left[\underline{u}_{n-1}, \underline{u}_{n}\right]$

Matroids (hypergraphs) :
What is the minimal and maximal number of cycles and bases in a matroid of size \mathbf{m} and given rank \mathbf{n} ?

Matroids (hypergraphs) :

What is the minimal and maximal number of cycles and bases in a matroid of size m and given rank n ?
$\sqrt{ }$ [2006] (Laflamme, Dósa, Szalkai) :

Theorem 5 If $\mathrm{m}>\mathrm{n}+1$ then only the uniform matroid $\mathrm{U}_{\mathrm{m}, \mathrm{n}}$ contains the maximum number of circuits: $\quad\binom{m}{n+1}$
If $\mathrm{m}=\mathrm{n}+1$ then all matroids of size m and of rank n contain exactly 1 circuit.

Theorem 6 If $\mathrm{m}>\mathrm{n}$ then only the uniform matroid $\mathrm{U}_{\mathrm{m}, \mathrm{n}}$ contains the maximum number of bases:

$$
\binom{m}{n}
$$

Matroids (hypergraphs) :

What is the minimal and maximal number of cycles and bases in a matroid of size m and given rank n ?
$\sqrt{ }$ [2006] (Laflamme, Dósa, Szalkai) :

Theorem 7 For each m and n there is a unique matroid M_{o} of size m and of rank n containing the minimum number of bases, namely $\mathbf{1}$ when we allow loops in the matroid.

Theorem 8 Any matroid M of size m and of rank n contains the minimum number $\mathbf{m}-\mathbf{n}$ circuits if and only if the circuits of the matroid are pairwise disjoint.

Many thanks to

You

