Geometric Representations of Graphs, Semidefinite Optimization, and Min-Max Theorems

Marcel de Carli Silva (with Levent Tunçel)

Department of Combinatorics and Optimization University of Waterloo

September 28th, 2011

Unit-distance representations

A unit-distance representation of $G=(V, E)$ is a map $p: V \rightarrow \mathbb{R}^{d}$ s.t.

$$
\|p(i)-p(j)\|=1 \quad \forall\{i, j\} \in E
$$

Every graph has a unit-distance representation

- complete graphs have a unit-distance repr. $i \mapsto \frac{1}{\sqrt{2}} e_{i} \in \mathbb{R}^{n}$

Every graph has a unit-distance representation

- complete graphs have a unit-distance repr. $i \mapsto \frac{1}{\sqrt{2}} e_{i} \in \mathbb{R}^{n}$

- a unit-distance repr. of G "contains" a unit-distance repr. of any subgraph of G

Petersen again

Petersen again

Petersen again

- Any unit-distance repr. of K_{p} contains a unit-distance repr. of any p-colorable graph.

Chromatic number of \mathbb{R}^{n}

- The graph $\left(\mathbb{R}^{n},\{\{x, y\}:\|x-y\|=1\}\right)$ "is" a unit-distance repr. of itself.
- Frankl and Wilson, Raigorodskii, Larman and Rogers: $(1+o(1)) 1.2^{n} \leq \operatorname{chromatic}\left(\mathbb{R}^{n}\right) \leq(3+o(1))^{n}$
- The "graph" \mathbb{R}^{n} has a unit-distance repr. in some \mathbb{R}^{d} with finite image.
- de Bruijn, Erdős '51: chromatic $\left(\mathbb{R}^{n}\right)=$ max chromatic (G) where G ranges over finite graphs with some unit-distance repr. in \mathbb{R}^{n}.

Outline

Hypersphere number and Lovász Theta Number

Homomorphisms and Sandwich Theorems

Generalizations

Outline

Hypersphere number and Lovász Theta Number

Homomorphisms and Sandwich Theorems

Generalizations

Hypersphere representations

- A hypersphere representation of $G=(V, E)$ is a unit-distance representation of G contained in a hypersphere centered at the origin, i.e.,
- A hypersphere representation of G is a map $p: V \rightarrow \mathbb{R}^{d}$ s.t.

$$
\begin{aligned}
\|p(i)\| & =r & & \forall i \in V \\
\|p(i)-p(j)\| & =1 & & \forall\{i, j\} \in E
\end{aligned}
$$

- hypersphere $(G):=[\text { min. radius } r \text { of a hypersph. repr. of } G]^{2}$

Optimal hypersphere representations of complete graphs

Optimal hypersphere representations of the 5-cycle

hypersphere (G) as an SDP

$$
\begin{array}{lll}
\text { hypersphere }(G)=\min & t & \\
& X_{i i}=t \quad \forall i \in V \\
& X_{i i}-2 X_{i j}+X_{i j}=1 \quad \forall\{i, j\} \in E, \\
& X \succeq 0 & \\
=\max & \sum_{\{i, j\} \in E} z_{\{i, j\}} & \\
& \operatorname{Diag}(y) \succeq \sum_{\{i, j\} \in E} z_{\{i, j\}}\left(e_{i}-e_{j}\right)\left(e_{i}-e_{j}\right)^{T} \\
& \sum_{i \in V} y_{i}=1
\end{array}
$$

- Dual may be interpreted as a problem in tensegrity theory.

Relation with Lovász Theta Number

- Lovász proved $2[$ hypersphere $(G)]+\frac{1}{\theta(\bar{G})}=1$

Sketch of Proof. Rewrite dual:

$$
\begin{aligned}
2[\text { hypersphere }(G)]=\max & \langle J-I, S\rangle \\
& S \succeq 0 \\
& S_{i j}=0 \quad \forall\{i, j\} \in \bar{E} \\
& \langle J, S\rangle=1
\end{aligned}
$$

Relation with Lovász Theta Number

- Lovász proved $2[$ hypersphere $(G)]+\frac{1}{\theta(\bar{G})}=1$

Sketch of Proof. Rewrite dual:

$$
\begin{aligned}
2[\text { hypersphere }(G)]=\max & 1-\langle I, S\rangle \\
& S \succeq 0 \\
& S_{i j}=0 \quad \forall\{i, j\} \in \bar{E} \\
& \langle J, S\rangle=1
\end{aligned}
$$

Reciprocal SDPs

$$
\begin{array}{rll}
1 / \theta(\bar{G}) & = & \\
\min & \langle I, S\rangle & \\
& S \succeq 0 & \\
& S_{i j}=0 \quad \forall\{i, j\} \in \bar{E} \\
& \langle J, S\rangle=1 &
\end{array}
$$

$$
\begin{aligned}
\theta(\bar{G})= & \\
\max & \langle J, X\rangle \\
& X \succeq 0 \\
& x_{i j}=0 \quad \forall\{i, j\} \in \bar{E} \\
& \langle I, X\rangle=1
\end{aligned}
$$

Min-Max Interpretation

- hypersphere $(G)=[\min . \text { radius of a hypersph. repr. of } G]^{2}$
- $\theta(G)=\max \{\sum_{i \in V} x_{i}: x \in \underbrace{\mathrm{TH}(G)}_{\text {theta body }}\}$

Theorem

- Let p be a hypersphere repr. of G with radius r
- Let $x \in \operatorname{TH}(\bar{G})$ with $x \neq 0$

Then

$$
2 r^{2}+\frac{1}{\sum_{i \in V} x_{i}} \geq 1
$$

Equality holds $\Longleftrightarrow r^{2}=$ hypersphere (G) and $\sum_{i \in V} x_{i}=\theta(\bar{G})$

SDP-free Interpretation

- An orthonormal representation of $G=(V, E)$ is a map u from V to the unit sphere in \mathbb{R}^{V} s.t. non-adjacent nodes are orthogonal

Theorem

- Let p be a hypersphere repr. of G with radius r
- Let c be a unit vector and u an orthonormal repr. of G

Then

$$
2 r^{2}+\frac{1}{\sum_{i \in V}\left(c^{T} u(i)\right)^{2}} \geq 1
$$

Equality $\Longleftrightarrow r^{2}=$ hypersphere (G) and $\sum_{i \in V}\left(c^{\top} u(i)\right)^{2}=\theta(\bar{G})$

Characterization of bipartite graphs

G is bipartite $\Longleftrightarrow \theta(\bar{G}) \leq 2$
(proof reduces to $\theta\left(\overline{C_{2 k+1}}\right)>2$)
Equivalently $\quad G$ is bipartite \Longleftrightarrow hypersphere $(G) \leq 1 / 4$

Characterization of bipartite graphs

$$
\begin{aligned}
& G \text { is bipartite } \Longleftrightarrow \theta(\bar{G}) \leq 2 \\
& \text { (proof reduces to } \theta\left(\overline{C_{2 k+1}}\right)>2 \text {) }
\end{aligned}
$$

Equivalently $\quad G$ is bipartite \Longleftrightarrow hypersphere $(G) \leq 1 / 4$

Proof.
(\Longrightarrow) : already done.

Characterization of bipartite graphs

$$
\begin{aligned}
& G \text { is bipartite } \Longleftrightarrow \theta(\bar{G}) \leq 2 \\
& \text { (proof reduces to } \theta\left(\overline{C_{2 k+1}}\right)>2 \text {) }
\end{aligned}
$$

Equivalently $\quad G$ is bipartite \Longleftrightarrow hypersphere $(G) \leq 1 / 4$

Proof.
(\Longrightarrow) : already done.
(\Longleftarrow) : In a hypersphere with radius $1 / 2$, the only pairs of points at distance 1 are the pairs of antipodal points.

Unit-distance representations in Euclidean balls

Recall:

- hypersphere $(G):=\left[\begin{array}{c}\text { min. radius of a hypersphere } \\ \text { containing a unit-distance repr. of } G\end{array}\right]^{2}$

Next:

- ball $(G):=\left[\begin{array}{c}\text { min. radius of a ball containing } \\ \text { a unit-distance repr. of } G\end{array}\right]^{2}$

Unit-distance representations in Euclidean balls

Recall:

- hypersphere $(G):=\left[\begin{array}{c}\text { min. radius of a hypersphere } \\ \text { containing a unit-distance repr. of } G\end{array}\right]^{2}$

Next:

- ball($G):=\left[\begin{array}{c}\text { min. radius of a ball containing } \\ \text { a unit-distance repr. of } G\end{array}\right]^{2}$
- ball(G) \leq hypersphere (G)

Unit-distance representations in Euclidean balls

Recall:

- hypersphere $(G):=\left[\begin{array}{c}\min . \text { radius of a hypersphere } \\ \text { containing a unit-distance repr. of } G\end{array}\right]^{2}$

Next:

- ball($G):=\left[\begin{array}{c}\text { min. radius of a ball containing } \\ \text { a unit-distance repr. of } G\end{array}\right]^{2}$
- ball $(G) \leq$ hypersphere (G)
- $\operatorname{ball}(G) \stackrel{?}{\stackrel{ }{n}}$ hypersphere (G)

Another min-max relation

2 hypersphere $(G)+\frac{1}{\theta(\bar{G})}=1$
where $\theta(\bar{G})=$

$$
\begin{aligned}
\max & \langle J, X\rangle \\
& X \succeq 0 \\
& X_{i j}=0 \quad \forall\{i, j\} \in \bar{E} \\
& \langle I, X\rangle=1
\end{aligned}
$$

$2 \operatorname{ball}(G)+\frac{1}{\theta_{b}(\bar{G})}=1$
where $\theta_{b}(\bar{G})=$

$$
\begin{array}{rll}
\max & \langle J, X\rangle \\
& X \succeq 0 & \\
& X_{i j}=0 \quad \forall\{i, j\} \in \bar{E} \\
& \langle I, X\rangle=1 & \\
& \sum_{j} X_{i j} \geq 0 \quad \forall j \in V
\end{array}
$$

Another min-max relation

$$
\begin{aligned}
& \text { 2hypersphere }(G)+\frac{1}{\theta(\bar{G})}=1 \\
& \text { where } \theta(\bar{G})= \\
& \qquad \begin{array}{l}
\max \quad\langle J, X\rangle \\
\quad X \succeq 0 \\
\quad X_{i j}=0 \quad \forall\{i, j\} \in \bar{E} \\
\quad\langle I, X\rangle=1
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 2 \text { ball }(G)+\frac{1}{\theta_{b}(\bar{G})}=1 \\
& \text { where } \theta_{b}(\bar{G})= \\
& \max \quad\langle J, X\rangle \\
& \quad X \succeq 0 \\
& \quad X_{i j}=0 \quad \forall\{i, j\} \in \bar{E} \\
& \quad\langle I, X\rangle=1 \\
& \quad \sum_{j} X_{i j} \geq 0 \quad \forall j \in V
\end{aligned}
$$

$$
\text { hypersphere }(\cdot)=\text { ball }(\cdot) \Longleftrightarrow \theta(\cdot)=\theta_{b}(\cdot)
$$

Hypersphere $=$ Euclidean Balls?

- But $\theta(\cdot)=\theta_{b}(\cdot)$!
- It was pointed out by Fernando Mario de Oliveira Filho that the following result can be used to prove $\theta(\cdot)=\theta_{b}(\cdot)$

Theorem (Prop. 9 in Gijswijt's PhD thesis, 2005)
Let $\mathbb{K} \subseteq \mathbb{S}^{n}$ s.t. $\operatorname{Diag}(h) X \operatorname{Diag}(h) \in \mathbb{K}$ whenever $X \in \mathbb{K}$ and $h \in \mathbb{R}_{+}^{n}$. If X^{*} is an optimal solution to

$$
\begin{equation*}
\max \left\{\langle J, X\rangle: \operatorname{Tr}(X)=1, X \in \mathbb{K} \cap \mathbb{S}_{+}^{n}\right\} \tag{1}
\end{equation*}
$$

then $\exists \mu>0$ s.t. $\operatorname{diag}\left(X^{*}\right)=\mu X^{*} \mathbb{1}$.

The Sandwich Theorem

- $\operatorname{clique}(G) \leq \theta(\bar{G}) \leq \operatorname{chromatic}(G)$
- $\equiv\left\{\begin{array}{l}\operatorname{hypersphere}\left(K_{\text {clique }}(G)\right) \leq \operatorname{hypersphere}(G) \\ \operatorname{hypersphere}(G) \leq \operatorname{hypersphere}\left(K_{\text {chromatic }(G)}\right)\end{array}\right.$
- $H \subseteq G \Longrightarrow$ hypersphere $(H) \leq$ hypersphere (G)

The Sandwich Theorem

- $\operatorname{clique}(G) \leq \theta(\bar{G}) \leq \operatorname{chromatic}(G)$
- $\equiv\left\{\begin{array}{l}\operatorname{hypersphere}\left(K_{\text {clique }(G)}\right) \leq \operatorname{hypersphere}(G) \\ \operatorname{hypersphere}(G) \leq \operatorname{hypersphere}\left(K_{\text {chromatic }(G)}\right)\end{array}\right.$
- $H \subseteq G \Longrightarrow$ hypersphere $(H) \leq$ hypersphere(G)
- if $c: V(G) \rightarrow\{1, \ldots, n\}$ is a n-colouring of G, and p is a hypersphere repr. of the complete graph on $\{1, \ldots, n\}$, then $p \circ c$ is a hypersphere repr. of G

Hypersphere representations of 2-colourable graphs

Hypersphere representations of 3-colourable graphs

Outline

Hypersphere number and Lovász Theta Number

Homomorphisms and Sandwich Theorems

Generalizations

Graph Homomorphisms

- A homomorphism from a graph G to a graph H is a function $f: V(G) \rightarrow V(H)$ that preserves edges, i.e., if $\{i, j\} \in E(G)$, then $\{f(i), f(j)\} \in E(H)$.

Graph Homomorphisms

- A homomorphism from a graph G to a graph H is a function $f: V(G) \rightarrow V(H)$ that preserves edges, i.e., if $\{i, j\} \in E(G)$, then $\{f(i), f(j)\} \in E(H)$.
- Notation: $G \rightarrow H \equiv \exists$ a homomorphism from G to H
- " \rightarrow " is transitive (compose homs.)

Graph Homomorphisms

- A homomorphism from a graph G to a graph H is a function $f: V(G) \rightarrow V(H)$ that preserves edges, i.e., if $\{i, j\} \in E(G)$, then $\{f(i), f(j)\} \in E(H)$.
- Notation: $G \rightarrow H \equiv \exists$ a homomorphism from G to H
- " \rightarrow " is transitive (compose homs.)
- G is a subgraph of $H \Longrightarrow G \rightarrow H$

Graph Homomorphisms

- A homomorphism from a graph G to a graph H is a function $f: V(G) \rightarrow V(H)$ that preserves edges, i.e., if $\{i, j\} \in E(G)$, then $\{f(i), f(j)\} \in E(H)$.
- Notation: $G \rightarrow H \equiv \exists$ a homomorphism from G to H
- " \rightarrow " is transitive (compose homs.)
- G is a subgraph of $H \Longrightarrow G \rightarrow H$
- $G \rightarrow K_{p} \Longleftrightarrow \operatorname{chromatic}(G) \leq p$
- chromatic $(G)=\min \left\{p: G \rightarrow K_{p}\right\}$

Homomorphism-monotone invariants

A real-valued graph invariant f is hom-monotone if

- $f(G) \leq f(H)$ if $G \rightarrow H$

Homomorphism-monotone invariants

A real-valued graph invariant f is hom-monotone if

- $f(G) \leq f(H)$ if $G \rightarrow H$ and
- there is a nondecreasing function $g: \operatorname{Im}(f) \rightarrow \mathbb{R}$ s.t. $g\left(f\left(K_{n}\right)\right)=n \quad \forall n \geq 1$.

Homomorphism-monotone invariants

A real-valued graph invariant f is hom-monotone if

- $f(G) \leq f(H)$ if $G \rightarrow H$ and
- there is a nondecreasing function $g: \operatorname{Im}(f) \rightarrow \mathbb{R}$ s.t. $g\left(f\left(K_{n}\right)\right)=n \quad \forall n \geq 1$.

Examples:

- clique(•)
- chromatic(•)
- chromatic* (\cdot)

Homomorphism-monotone invariants

A real-valued graph invariant f is hom-monotone if

- $f(G) \leq f(H)$ if $G \rightarrow H$ and
- there is a nondecreasing function $g: \operatorname{Im}(f) \rightarrow \mathbb{R}$ s.t. $g\left(f\left(K_{n}\right)\right)=n \quad \forall n \geq 1$.

Examples:

- clique(•)
- chromatic(•)
- chromatic* (\cdot)
- hypersphere(•)

Homomorphism-monotone invariants

A real-valued graph invariant f is hom-monotone if

- $f(G) \leq f(H)$ if $G \rightarrow H$ and
- there is a nondecreasing function $g: \operatorname{Im}(f) \rightarrow \mathbb{R}$ s.t.

$$
g\left(f\left(K_{n}\right)\right)=n \quad \forall n \geq 1 .
$$

Examples:

- clique(•)
- chromatic(•)
- chromatic* (\cdot)
- hypersphere(•)
- some variants of hypersphere(•)

Homomorphism-monotone invariants

A real-valued graph invariant f is hom-monotone if

- $f(G) \leq f(H)$ if $G \rightarrow H$ and
- there is a nondecreasing function $g: \operatorname{Im}(f) \rightarrow \mathbb{R}$ s.t.

$$
g\left(f\left(K_{n}\right)\right)=n \quad \forall n \geq 1
$$

Then clique $(G) \leq g(f(G)) \leq \operatorname{chromatic}(G)$.
Proof.

$$
\begin{aligned}
& K_{\text {clique }(G)} \rightarrow G \rightarrow K_{\text {chromatic }}(G) \\
\Longrightarrow & f\left(K_{\text {clique }}(G)\right) \leq f(G) \leq f\left(K_{\text {chromatic }(G)}\right) \\
\Longrightarrow & \operatorname{clique}(G)=g\left(f\left(K_{\text {clique }(G)}\right)\right) \leq g(f(G)) \leq g\left(f\left(K_{\text {chromatic }(G))}\right)\right. \\
& =\operatorname{chromatic}(G)
\end{aligned}
$$

Yet another variant

Define hypersphere' (G) similarly as hypersphere (G), but require edges to be at distance ≥ 1.

$$
\begin{array}{l|c}
2 \text { hypersphere }(G)+\frac{1}{\theta(\bar{G})}=1 & 2 \text { hypersphere }^{\prime}(G)+\frac{1}{\theta^{\prime}(\bar{G})}=1 \\
\text { where } \theta(\bar{G})= & \text { where } \theta^{\prime}(\bar{G})= \\
\max \langle J, X\rangle & \max \quad\langle J, X\rangle \\
X \succeq 0 & X \succeq 0 \\
X_{i j}=0 \quad \forall\{i, j\} \in \bar{E} & X_{i j}=0 \\
\langle I, X\rangle=1 & \\
& \langle I, X\rangle=1 \\
& X \geq 0
\end{array}
$$

$\theta^{\prime}(\cdot)$ was introduced by McEliece, Rodemich, Rumsey, and, independently, by Schrijver

An aside: sparse solutions to SDPs

Theorem (de C.S., Harvey, Sato 2011)
Let B_{1}, \ldots, B_{m} be psd $n \times n$ matrices. Set $B:=\sum_{i} B_{i}$. Then $\forall \varepsilon \in(0,1)$ there exists $y \in \mathbb{R}_{m}^{+}$with $\leq 4 n / \varepsilon^{2}$ nonzero entries and

$$
(1-\varepsilon) B \preceq \sum_{i} y_{i} B_{i} \preceq(1+\varepsilon) B .
$$

An aside: sparse solutions to SDPs

Theorem (de C.S., Harvey, Sato 2011)
Let B_{1}, \ldots, B_{m} be psd $n \times n$ matrices. Set $B:=\sum_{i} B_{i}$. Then $\forall \varepsilon \in(0,1)$ there exists $y \in \mathbb{R}_{m}^{+}$with $\leq 4 n / \varepsilon^{2}$ nonzero entries and

$$
(1-\varepsilon) B \preceq \sum_{i} y_{i} B_{i} \preceq(1+\varepsilon) B .
$$

When applied to the dual SDP for hypersphere' (G), we get:
for all $\varepsilon \in(0,1)$ and every graph G, there exists a spanning subgraph H of G such that

$$
|E(H)| \leq 8 \frac{|V(G)|}{\varepsilon^{2}}
$$

and

$$
\frac{\text { hypersphere }^{\prime}(G)}{1+\varepsilon} \leq \text { hypersphere }^{\prime}(H) \leq \text { hypersphere }^{\prime}(G) .
$$

Unit-Distance Dimension

- $\operatorname{dim}(G):=$ smallest d s.t. \exists a unit-distance repr. of G in \mathbb{R}^{d}.
- if $G \rightarrow H$ and H has a unit-distance repr. in \mathbb{R}^{d}, then so does G
- $\operatorname{dim}\left(K_{n}\right)=n-1$
- so $\operatorname{dim}(\cdot)$ is hom-monotone
- Sandwich: $\operatorname{clique}(G) \leq \operatorname{dim}(G)+1 \leq \operatorname{chromatic}(G)$

Unit-Distance Dimension

- $\operatorname{dim}(G):=$ smallest d s.t. \exists a unit-distance repr. of G in \mathbb{R}^{d}.
- if $G \rightarrow H$ and H has a unit-distance repr. in \mathbb{R}^{d}, then so does G
- $\operatorname{dim}\left(K_{n}\right)=n-1$
- so $\operatorname{dim}(\cdot)$ is hom-monotone
- Sandwich: $\operatorname{clique}(G) \leq \operatorname{dim}(G)+1 \leq \operatorname{chromatic}(G)$
- $\operatorname{dim}(G) \leq \operatorname{maxdegree}(G)$
- Brooks' Theorem $\Longrightarrow G$ is connected and not complete nor an odd cycle, then $\operatorname{dim}(G) \leq \operatorname{maxdegree}(G)-1$.

Golomb graph and Mosers' spindle

Golomb graph and Mosers' spindle

- Golomb \rightarrow Moser
- Assume $G \rightarrow H$
- $\operatorname{dim}(G) \leq \operatorname{dim}(H)$ and chromatic $(G) \leq \operatorname{chromatic}(H)$
- $\operatorname{chromatic}\left(\mathbb{R}^{\operatorname{dim}(H)}\right) \geq \operatorname{chromatic}(H) \geq \operatorname{chromatic}(G)$, i.e., G cannot improve the lower bound of chromatic $\left(\mathbb{R}^{\text {dim }(H)}\right)$ given by H.

Hardness

Deciding whether $\operatorname{dim}(G)=2$ is NP-complete.
Proof.

- k-Embeddability Problem:
- input: graph $G=(V, E)$ and prescribed edge lengths $\ell: E \rightarrow \mathbb{R}_{+}$
- decide if $\exists p: V \rightarrow \mathbb{R}^{k}$ such that $\|p(i)-p(j)\|=\ell_{i j}$ for all $i j \in E$.

Hardness

Deciding whether $\operatorname{dim}(G)=2$ is NP-complete.
Proof.

- k-Embeddability Problem:
- input: graph $G=(V, E)$ and prescribed edge lengths $\ell: E \rightarrow \mathbb{R}_{+}$
- decide if $\exists p: V \rightarrow \mathbb{R}^{k}$ such that $\|p(i)-p(j)\|=\ell_{i j}$ for all $i j \in E$.
- Saxe '79: $\forall k \geq 1$, the problem k-Embeddability is NP-complete, even if $\ell(E) \subseteq\{1,2\}$.

Hardness

Deciding whether $\operatorname{dim}(G)=2$ is NP-complete.
Proof.

- k-Embeddability Problem:
- input: graph $G=(V, E)$ and prescribed edge lengths $\ell: E \rightarrow \mathbb{R}_{+}$
- decide if $\exists p: V \rightarrow \mathbb{R}^{k}$ such that $\|p(i)-p(j)\|=\ell_{i j}$ for all $i j \in E$.
- Saxe '79: $\forall k \geq 1$, the problem k-Embeddability is NP-complete, even if $\ell(E) \subseteq\{1,2\}$.
- We show 2-Embeddability with $\ell(E) \subseteq\{1,2\}$ reduces to deciding if $\operatorname{dim}(G)=2$.

Hardness

Deciding whether $\operatorname{dim}(G)=2$ is NP-complete.
Proof.

- k-Embeddability Problem:
- input: graph $G=(V, E)$ and prescribed edge lengths $\ell: E \rightarrow \mathbb{R}_{+}$
- decide if $\exists p: V \rightarrow \mathbb{R}^{k}$ such that $\|p(i)-p(j)\|=\ell_{i j}$ for all $i j \in E$.
- Saxe '79: $\forall k \geq 1$, the problem k-Embeddability is NP-complete, even if $\ell(E) \subseteq\{1,2\}$.
- We show 2 -Embeddability with $\ell(E) \subseteq\{1,2\}$ reduces to deciding if $\operatorname{dim}(G)=2$.
- We need a gadget to force distance 2 using only distance 1 requirements.

Unique embedding of Mosers' spindle

Gadget

Outline

Hypersphere number and Lovász Theta Number

Homomorphisms and Sandwich Theorems

Generalizations

Weighted Hypersphere Number

We want to define hypersphere (G, w) for $w \in \mathbb{R}_{+}^{V}$ so that

$$
2 \text { hypersphere }(G, w)+\frac{1}{\theta(\bar{G}, w)}=1
$$

$$
\begin{array}{lll}
& \text { hypersphere }(G, w)= & \\
\min & t & \\
& X_{i i}=w_{i} t+\left(1-w_{i}\right) / 2 & \forall i \in V \\
& X_{i i}-2 X_{i j}+X_{j j}=1+(t-1 / 2)\left(w_{i}-2 \sqrt{w_{i} w_{j}}+w_{j}\right) & \forall\{i, j\} \in E \\
& X \succeq 0 &
\end{array}
$$

Solutions encode hypersphere repr. for graph obtained from G by "blowing up" each node i into a clique of size w_{i}.

Objective Function as Norm

- ball $(G)=\min \left\{\left\|\left(u_{i}^{T} u_{i}\right)_{i \in V}\right\|_{\infty}: u\right.$ a unit-distance repr. of $\left.G\right\}$

Objective Function as Norm

- ball $(G)=\min \left\{\left\|\left(u_{i}^{T} u_{i}\right)_{i \in V}\right\|_{\infty}: u\right.$ a unit-distance repr. of $\left.G\right\}$
- for $A \succeq 0$ and $p \in[1, \infty]$, define

$$
\operatorname{ellipse}_{p}(G, A):=\inf \left\{\left\|\left(u_{i}^{T} A u_{i}\right)_{i \in v}\right\|_{p}: u \text { a unit-distance repr. of } G\right\}
$$

Objective Function as Norm

- ball $(G)=\min \left\{\left\|\left(u_{i}^{T} u_{i}\right)_{i \in V}\right\|_{\infty}: u\right.$ a unit-distance repr. of $\left.G\right\}$
- for $A \succeq 0$ and $p \in[1, \infty]$, define
ellipse $_{p}(G, A):=\inf \left\{\left\|\left(u_{i}^{T} A u_{i}\right)_{i \in V}\right\|_{p}: u\right.$ a unit-distance repr. of $\left.G\right\}$
- for a fixed $A \succeq 0$, the invariant ellipse ${ }_{\infty}(\cdot, A)$ satisfies the first condition of hom-monotonicity, i.e.,

$$
G \rightarrow H \Longrightarrow \operatorname{ellipse}_{\infty}(G, A) \leq \operatorname{ellipse}_{\infty}(H, A)
$$

Action of the Orthogonal Group

ellipse $_{1}(G, A)=\min \left\{\sum_{i \in V}\left\|A^{1 / 2} u_{i}\right\|_{2}^{2}: u\right.$ a unit-distance repr. of $\left.G\right\}$

Action of the Orthogonal Group

$\operatorname{ellipse}_{1}(G, A)=\min \left\{\sum_{i \in V}\left\|A^{1 / 2} u_{i}\right\|_{2}^{2}: u\right.$ a unit-distance repr. of $\left.G\right\}$

$$
\begin{aligned}
\text { ellipse }_{1}(G, A)=\min _{Q \in O(V)} \min & \left\langle Q A Q^{T}, X\right\rangle \\
\text { s.t. } & X_{i i}-2 X_{i j}+X_{j j}=1 \quad \forall\{i, j\} \in E \\
& X \succeq 0
\end{aligned}
$$

Action of the Orthogonal Group

$\operatorname{ellipse}_{1}(G, A)=\min \left\{\sum_{i \in V}\left\|A^{1 / 2} u_{i}\right\|_{2}^{2}: u\right.$ a unit-distance repr. of $\left.G\right\}$

$$
\begin{aligned}
\text { ellipse }_{1}(G, A)=\min _{Q \in O(V)} \min & \left\langle Q A Q^{T}, X\right\rangle \\
\text { s.t. } & X_{i i}-2 X_{i j}+X_{j j}=1 \quad \forall\{i, j\} \in E \\
& X \succeq 0
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{ellipse}_{1}(G, A)=\min & \sum_{i=1}^{n} \lambda_{i}(A) \lambda_{n-i+1}(X) \\
\text { s.t. } & X_{i i}-2 X_{i j}+X_{j j}=1 \quad \forall\{i, j\} \in E \\
& X \succeq 0
\end{aligned}
$$

Complete Graphs

$$
\begin{aligned}
\text { ellipse }_{1}(G, A)=\min & \sum_{i=1}^{n} \lambda_{i}(A) \lambda_{n-i+1}(X) \\
\text { s.t. } & X_{i i}-2 X_{i j}+X_{i j}=1 \quad \forall\{i, j\} \in E \\
& X \succeq 0
\end{aligned}
$$

- for $G=K_{n}$, a matrix X is feasible iff X is of the form $\left(\mathbb{1} y^{T}+y \mathbb{1}^{T}+2 l\right) / 4$ with $\|\mathbb{1}\|\|y\| \leq 2+\mathbb{1}^{T} y$
- ellipse ${ }_{1}\left(K_{n}, A\right)=\operatorname{Tr}(A)-\lambda_{\max }(A)$ using SOC program

Hardness

- if A is $n \times n$ diagonal with $n-2$ one entries and 2 zeroes on the diagonal, then $\operatorname{ellipse}_{1}(G, A)=0$ if and only if $\operatorname{dim}(G) \leq 2$
- Computing ellipse ${ }_{1}(G, A)$ given G and $A \succeq 0$ as inputs is NP-hard.
- For any fixed $p \in[1, \infty]$, computing ellipse ${ }_{p}(G, A)$ given G and $A \succeq 0$ as inputs is NP-hard.

