Nonsmooth optimization and semi-algebraic sets

Adrian Lewis

ORIE Cornell

Fields Institute Workshop on Optimization

September 29, 2011

Outline

Examples of "composite" optimization:

- exact penalties
- compressed sensing
- Iow-rank matrix completion...
- A general-purpose proximal algorithm
- Acceleration and "partly smooth" geometry
- Semi-algebraic sets and generic variational geometry
- Wild versus tame optimization: examples
- Nonsmooth optimization via BFGS.

Composite optimization: the framework

Solve

$$\min_{x\in\mathbf{R}^n}h(c(x))$$

for given functions

nonsmooth $h: \mathbf{R}^m \to \mathbf{R}$ finite, convex (for now) \mathbf{C}^2 -smooth $c: \mathbf{R}^n \to \mathbf{R}^m$.

Key computational assumption

"Structure" in h lets us easily solve proximal linearizations

$$\min_{d\in\mathbf{R}^n} h(\tilde{c}(d)) + \mu \|d\|^2,$$

for linear approximations \tilde{c} .

A proximal algorithm

Current iterate x, prox parameter $\mu > 0$. Linear approximation

$$\tilde{c}(d) = c(x) + \nabla c(x)d \approx c(x+d).$$

Find the unique proximal step $d(x, \mu)$ minimizing

 $h(\tilde{c}(d)) + \mu \|d\|^2.$

lf

actual decrease
$$= h(c(x)) - h(c(x+d))$$

less than half

predicted decrease =
$$h(c(x)) - h(\tilde{c}(d))$$
,

reject: $\mu \leftarrow 2\mu$; otherwise, **accept:** $x \leftarrow x + d$, $\mu \leftarrow \frac{\mu}{2}$. **Repeat.**

Example: exact penalties

Replace constrained optimization

$$\min_{x} \left\{ f(x) : g_i(x) \le 0 \right\}$$

by unconstrained minimization of

$$f(x) + \nu \sum_{i} g_i^+(x) = h(c(x))$$

(for some $\nu > 0$), where

$$c = (f, g_1, \ldots, g_k), \quad h(f, g_1, \ldots, g_k) = f + \nu \sum_i g_i^+.$$

Easy proximal linearizations

$$\min_{d} a_{0}^{T}d + \sum_{i} (a_{i}^{T}d + b_{i})^{+} + \mu \|d\|^{2}$$

(via specialized quadratic programming).

Related ideas: Yuan '85, Burke '85, Fletcher-Sainz de la Maza '89, Wright '90, KNITRO (Byrd et al. '05), Friedlander et al. 07.

Examples: Compressive sensing... (Candès, Donoho, Tao et al. '06...) We seek sparse solutions to linear systems Ex = g via

$$\min_{x} \|Ex - g\|^2 + \tau \|x\|_1.$$

In statistics, LASSO and LARS (Tibshirani et al. '96, '04) similar. Proximal linearizations are separable:

$$\min_{d \in \mathbf{R}^n} a^T d + \tau \| x + d \|_1 + \mu \| d \|^2.$$

Need just O(n) operations: implemented as SpaRSA (Wright-Nowak-Figueiredo '09)

Analogously, for low-rank X satisfying a linear system E(X) = g, Candès et al. '08 suggest

$$\min_{X} \|E(X) - g\|^2 + \tau \|X\|_*,$$

where $\|\cdot\|_*$ is the nuclear norm (sum of singular values).

Convergence theory

Subgradients: $v \in \partial h(u)$ means 0 minimizes

$$d\mapsto h(u+d)-v^T d.$$

Theorem

Minimizers \bar{x} for $h \circ c$ are critical: for some Lagrange multiplier y,

$$y\in\partial hig(c(ar{x})ig)$$
 and $abla c(ar{x})^*y=0.$

For some $\rho > 0$, the proximal step satisfies

$$\|d(x,\mu)\| \le \rho \|x - \bar{x}\|$$

for all x near \bar{x} and $\mu > 0$.

Theorem (L-Wright '09)

Limit points of the proximal algorithm are critical.

Speed

The proximal algorithm is

- simple
- versatile
- applicable to huge problems

but slow. For example:

- h = id gives steepest descent with trust region radius $\frac{1}{2u}$.
- c = id gives the classical proximal point method (Rockafellar '76).

Both methods typically converge linearly but slowly.

Previous special cases use the initial step d to predict active constraints, and hence accelerate using a second-order model.

Geometry for acceleration

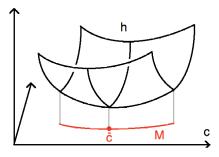
• The critical point \bar{x} is nondegenerate:

$$y\in {\sf ri}\,\partial hig(c(ar x)ig)$$
 and $abla c(ar x)^*y=0.$

The function *h* is partly smooth (Lewis '03, Wright '93) relative to an active manifold *M* around $c(\bar{x})$:

- h is smooth on M;
- ∂h is continuous on M, and orthogonal to it (sharpness).

Eg: $h = \text{dist}_P$ for P polyhedral; $M \subset P$ open facet.



Acceleration

Theorem (Hare-L '05)

Assuming nondegeneracy and partial smoothness, if the proximal algorithm generates $x_r \rightarrow \overline{x}$ and steps d_r , then eventually it identifies M:

$$c_r = c(x_r) + \nabla c(x_r)d_r \in M.$$

If *h* is simple, $\partial h(c_r)$ is computable, and orthogonal to *M* at c_r . So we

▶ "track" M

• use second-order properties of c and $h|_M$.

(Cf. earlier references and Mifflin-Sagastizábal '05.)

Sensitivity

Partial smoothness gives nice sensitivity analysis.

Theorem (L '03)

Assume nondegeneracy, partial smoothness,

transversality:

 $z\perp M \ \text{at } c(ar{x}) \ \ \text{and} \ \
abla c(ar{x})^*z=0 \ \ \Rightarrow \ \ z=0,$

▶ h(c(·)) grows quadratically on M around x̄.
 Then there's a unique local minimizer of

$$h(c(x)) - v^T x$$

near \bar{x} , lying on $c^{-1}(M)$, and depending smoothly on v.

Structure versus intrinsic geometry

Explicit structure in the presentation of h may help us

- implement acceleration ideas
- check second-order conditions for sensitivity analysis.

But the key idea, partial smoothness, is geometric: intrinsic to h.

So, how typical is

- nondegeneracy
- partial smoothness
- quadratic growth?

For simplicity, fix c = id...

Generic optimality conditions

Generic strict complementarity, primal-dual nondegeneracy for

- nonlinear programs (Spingarn-Rockafellar '79)
- complementarity problems (Saigal-Simon '73)
- semidefinite programs (Alizadeh-Haeberly-Overton '97, Shapiro '97)
- conic convex programs (Pataki-Tuncel '01).

In our setting, given data $v \in \mathbf{R}^n$, consider $\min_x \left\{ h(x) - v^T x \right\}$.

Theorem (Mazur '33)

For convex coercive h and generic v, the optimal solution is unique.

Theorem (Sard '42, Spingarn-Rockafellar '79) For C^2 h and almost all v, quadratic growth holds at all local mins. An intrinsic approach: semi-algebraic sets

Earlier work on generic optimality relies on the structural presentation of h.

By contrast, we assume only that

the graph of h is semi-algebraic.

That is, it can be presented as

a finite union of sets, each defined by finitely-many polynomial inequalities.

But our approach is intrinsic, independent of this presentation.

We can recognize semi-algebraic sets via "quantifier elimination": linear maps preserve semi-algebraicity (Tarski-Seidenberg '31).

Furthermore, semi-algebraic sets have dimension, so, for a semi-algebraic subset of a convex set generic \Leftrightarrow dense.

Prevalence of partial smoothness

Theorem (Bolte-Daniilidis-L '09) Given semi-algebraic convex $h: \mathbb{R}^n \to \overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty\}$, consider

$$\min_{x}\left\{h(x)-v^{T}x\right\} \quad (= -h^{*}(v)).$$

For generic v in

$$\{v : optimal value finite\} (= dom h^*)$$

there's a unique optimal solution, and it satisfies

- nondegeneracy
- partial smoothness relative to a unique manifold
- quadratic growth
- smooth dependence on v.

Semi-algebraic assumptions rule out many more pathologies...

Example: Sard's theorem and metric regularity

Set-valued $F : \mathbf{R}^n \rightrightarrows \mathbf{R}^m$ is metrically regular at \bar{x} for $\bar{y} \in F(\bar{x})$ if an error bound holds:

 $\frac{\operatorname{dist}(x, F^{-1}(y))}{\operatorname{dist}(y, F(x))} \quad \text{bounded near } (\bar{x}, \bar{y}).$

Otherwise, \bar{y} is critical. (Key to sensitivity/convergence analysis.) Theorem (Sard '42) Sufficiently smooth $F \colon \mathbb{R}^n \to \mathbb{R}^m$ have almost no critical values.

Theorem (Bolte-Daniiliidis-L '06) Semi-algebraic $f : \mathbf{R}^n \to \mathbf{R}$ have only finitely many critical values.

Much more generally...

Theorem (loffe '07)

Noncritical values are generic for any semi-algebraic $F : \mathbf{R}^n \rightrightarrows \mathbf{R}^m$.

Example: thin subdifferential graphs

If $f : \mathbf{R}^n \to \mathbf{R}$ is smooth, ∇f has everywhere *n*-dimensional graph.

Theorem (Minty '62)

If $f : \mathbf{R}^n \to \overline{\mathbf{R}}$ is convex, ∂f has everywhere n-dimensional graph. (... with computational implications for equations on the graph.) For continuous $f : \mathbf{R}^n \to \mathbf{R}$, we say $y \in \partial f(x)$ if

0 minimizes
$$d \mapsto f(x+d) - \langle y, d \rangle + o(d)$$
.

 ∂f typically has large graph: 2*n*-dimensional (Borwein-Wang '00). But...

Theorem (Drusvyatskiy-L-loffe '10)

If $f : \mathbf{R}^n \to \overline{\mathbf{R}}$ is semi-algebraic, ∂f has everywhere n-dimensional graph.

Minimization by BFGS

To minimize smooth $f: \mathbf{R}^n \to \mathbf{R}$...

Current iterate $x \in \mathbf{R}^n$ and positive definite $H \approx \nabla^2 f(x)^{-1}$. Define

$$p = -H\nabla f(x), \quad x_{new} = x + \bar{\alpha}p,$$

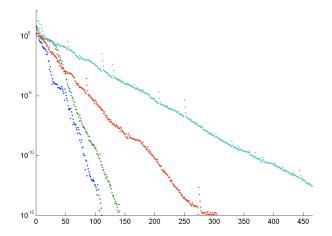
where step $\bar{\alpha} > 0$ chosen by line search (eg doubling and bisection) on $\phi(\alpha) = f(x + \alpha p)$ to satisfy Wolfe conditions:

$$\phi(ar{lpha})-\phi(0)<rac{1}{3}\phi'(0)ar{lpha} ext{ and } \phi'(ar{lpha})>rac{2}{3}\phi'(0).$$

Update *H* and **repeat**.

- ► In practice, if feasible, BFGS is often most popular.
- In theory, BFGS converges for convex coercive f but may fail for C[∞] nonconvex f (Powell '76, '84).
- ▶ BFGS often works well for nonsmooth *f* (Lemaréchal '82)!

BFGS for nonsmooth optimization (L-Overton '10)



Function values for BFGS applied to $f(x, y) = w|y - x^2| + (1 - y)^2$, with w = 1, 2, 4, 8.

A conjecture

Apply BFGS to any semi-algebraic Lipschitz $f : \mathbf{R}^n \to \mathbf{R}$, with random initial point and H. Then almost surely:

- function values converge linearly;
- Imit points of iterates are Clarke stationary.

(There are small convex combinations of nearby gradients.)

Summary

- A simple and versatile proximal algorithm for composite optimization
- Partial smoothness as a conceptual tool for sensitivity and acceleration
- Generic properties in semi-algebraic variational analysis
- Nonsmooth optimization via BFGS.