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Outline

I Examples of “composite” optimization:
I exact penalties
I compressed sensing
I low-rank matrix completion. . .

I A general-purpose proximal algorithm

I Acceleration and “partly smooth” geometry

I Semi-algebraic sets and generic variational geometry

I Wild versus tame optimization: examples

I Nonsmooth optimization via BFGS.
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Composite optimization: the framework

Solve
min
x∈Rn

h
(
c(x)

)
for given functions

nonsmooth h : Rm → R finite, convex (for now)

C2-smooth c : Rn → Rm.

Key computational assumption
“Structure” in h lets us easily solve proximal linearizations

min
d∈Rn

h
(
c̃(d)

)
+ µ∥d∥2,

for linear approximations c̃.
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A proximal algorithm
Current iterate x , prox parameter µ > 0.
Linear approximation

c̃(d) = c(x) +∇c(x)d ≈ c(x + d).

Find the unique proximal step d(x , µ) minimizing

h
(
c̃(d)

)
+ µ∥d∥2.

If
actual decrease = h

(
c(x)

)
− h

(
c(x + d)

)
less than half

predicted decrease = h
(
c(x)

)
− h

(
c̃(d)

)
,

reject: µ← 2µ; otherwise,
accept: x ← x + d , µ← µ

2 .
Repeat.
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Example: exact penalties
Replace constrained optimization

min
x

{
f (x) : gi (x) ≤ 0

}
by unconstrained minimization of

f (x) + ν
∑

i

g+
i (x) = h

(
c(x)

)
(for some ν > 0), where

c = (f , g1, . . . , gk), h(f , g1, . . . , gk) = f + ν
∑

i

g+
i .

Easy proximal linearizations

min
d

aT
0 d +

∑
i

(aT
i d + bi )

+ + µ∥d∥2

(via specialized quadratic programming).

Related ideas: Yuan ’85, Burke ’85, Fletcher-Sainz de la Maza ’89,
Wright ’90, KNITRO (Byrd et al. ’05), Friedlander et al. 07.
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Examples: Compressive sensing. . .
(Candès, Donoho, Tao et al. ’06. . . )
We seek sparse solutions to linear systems Ex = g via

min
x
∥Ex − g∥2 + τ∥x∥1.

In statistics, LASSO and LARS (Tibshirani et al. ’96, ’04) similar.

Proximal linearizations are separable:

min
d∈Rn

aTd + τ∥x + d∥1 + µ∥d∥2.

Need just O(n) operations: implemented as SpaRSA
(Wright-Nowak-Figueiredo ’09)

Analogously, for low-rank X satisfying a linear system E (X ) = g ,
Candès et al. ’08 suggest

min
X
∥E (X )− g∥2 + τ∥X∥∗,

where ∥ · ∥∗ is the nuclear norm (sum of singular values).
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Convergence theory

Subgradients: v ∈ ∂h(u) means 0 minimizes

d 7→ h(u + d)− vTd .

Theorem
Minimizers x̄ for h ◦ c are critical: for some Lagrange multiplier y ,

y ∈ ∂h
(
c(x̄)

)
and ∇c(x̄)∗y = 0.

For some ρ > 0, the proximal step satisfies

∥d(x , µ)∥ ≤ ρ∥x − x̄∥

for all x near x̄ and µ > 0.

Theorem (L-Wright ’09)

Limit points of the proximal algorithm are critical.
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Speed

The proximal algorithm is

I simple

I versatile

I applicable to huge problems

but slow. For example:

I h = id gives steepest descent with trust region radius 1
2µ .

I c = id gives the classical proximal point method
(Rockafellar ’76).

Both methods typically converge linearly but slowly.

Previous special cases use the initial step d to predict active
constraints, and hence accelerate using a second-order model.
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Geometry for acceleration
I The critical point x̄ is nondegenerate:

y ∈ ri ∂h
(
c(x̄)

)
and ∇c(x̄)∗y = 0.

The function h is partly smooth (Lewis ’03, Wright ’93) relative to
an active manifold M around c(x̄):

I h is smooth on M;
I ∂h is continuous on M, and orthogonal to it (sharpness).

Eg: h = distP for P polyhedral; M ⊂ P open facet.
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Acceleration

Theorem (Hare-L ’05)

Assuming nondegeneracy and partial smoothness, if the proximal
algorithm generates xr → x̄ and steps dr , then eventually it
identifies M:

cr = c(xr ) +∇c(xr )dr ∈ M.

If h is simple, ∂h(cr ) is computable, and orthogonal to M at cr .

So we

I “track” M

I use second-order properties of c and h|M .

(Cf. earlier references and Mifflin-Sagastizábal ’05.)
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Sensitivity

Partial smoothness gives nice sensitivity analysis.

Theorem (L ’03)

Assume nondegeneracy, partial smoothness,

I transversality:

z ⊥ M at c(x̄) and ∇c(x̄)∗z = 0 ⇒ z = 0,

I h
(
c(·)

)
grows quadratically on M around x̄.

Then there’s a unique local minimizer of

h(c(x))− vT x

near x̄ , lying on c−1(M), and depending smoothly on v.
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Structure versus intrinsic geometry

Explicit structure in the presentation of h may help us

I implement acceleration ideas

I check second-order conditions for sensitivity analysis.

But the key idea, partial smoothness, is geometric: intrinsic to h.

So, how typical is

I nondegeneracy

I partial smoothness

I quadratic growth?

For simplicity, fix c = id. . .
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Generic optimality conditions

Generic strict complementarity, primal-dual nondegeneracy for

I nonlinear programs (Spingarn-Rockafellar ’79)

I complementarity problems (Saigal-Simon ’73)

I semidefinite programs (Alizadeh-Haeberly-Overton ’97,
Shapiro ’97)

I conic convex programs (Pataki-Tunçel ’01).

In our setting, given data v ∈ Rn, consider minx

{
h(x)− vT x

}
.

Theorem (Mazur ’33)

For convex coercive h and generic v , the optimal solution is unique.

Theorem (Sard ’42, Spingarn-Rockafellar ’79)

For C2 h and almost all v , quadratic growth holds at all local mins.
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An intrinsic approach: semi-algebraic sets

Earlier work on generic optimality relies on

the structural presentation of h.

By contrast, we assume only that

the graph of h is semi-algebraic.

That is, it can be presented as

a finite union of sets, each defined by finitely-many
polynomial inequalities.

But our approach is intrinsic, independent of this presentation.

We can recognize semi-algebraic sets via “quantifier elimination”:
linear maps preserve semi-algebraicity (Tarski-Seidenberg ’31).

Furthermore, semi-algebraic sets have dimension, so,
for a semi-algebraic subset of a convex set generic ⇔ dense.
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Prevalence of partial smoothness

Theorem (Bolte-Daniilidis-L ’09)

Given semi-algebraic convex h : Rn → R̄ = R ∪ {+∞}, consider

min
x

{
h(x)− vT x

}
(= − h∗(v)).

For generic v in

{v : optimal value finite} (= domh∗)

there’s a unique optimal solution, and it satisfies

I nondegeneracy

I partial smoothness relative to a unique manifold

I quadratic growth

I smooth dependence on v.

Semi-algebraic assumptions rule out many more pathologies. . .
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Example: Sard’s theorem and metric regularity

Set-valued F : Rn →→ Rm is metrically regular at x̄ for ȳ ∈ F (x̄) if
an error bound holds:

dist(x , F−1(y))

dist(y ,F (x))
bounded near (x̄ , ȳ).

Otherwise, ȳ is critical. (Key to sensitivity/convergence analysis.)

Theorem (Sard ’42)

Sufficiently smooth F : Rn → Rm have almost no critical values.

Theorem (Bolte-Daniiliidis-L ’06)

Semi-algebraic f : Rn → R have only finitely many critical values.

Much more generally. . .

Theorem (Ioffe ’07)

Noncritical values are generic for any semi-algebraic F : Rn →→ Rm.
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Example: thin subdifferential graphs

If f : Rn → R is smooth, ∇f has everywhere n-dimensional graph.

Theorem (Minty ’62)

If f : Rn → R̄ is convex, ∂f has everywhere n-dimensional graph.

(. . . with computational implications for equations on the graph.)

For continuous f : Rn → R, we say y ∈ ∂f (x) if

0 minimizes d 7→ f (x + d)− ⟨y , d⟩+ o(d).

∂f typically has large graph: 2n-dimensional (Borwein-Wang ’00).

But. . .

Theorem (Drusvyatskiy-L-Ioffe ’10)

If f : Rn → R̄ is semi-algebraic, ∂f has everywhere n-dimensional
graph.
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Minimization by BFGS

To minimize smooth f : Rn → R. . .

Current iterate x ∈ Rn and positive definite H ≈ ∇2f (x)−1. Define

p = −H∇f (x), xnew = x + ᾱp,

where step ᾱ > 0 chosen by line search (eg doubling and bisection)
on ϕ(α) = f (x + αp) to satisfy Wolfe conditions:

ϕ(ᾱ)− ϕ(0) <
1

3
ϕ′(0)ᾱ and ϕ′(ᾱ) >

2

3
ϕ′(0).

Update H and repeat.

I In practice, if feasible, BFGS is often most popular.

I In theory, BFGS converges for convex coercive f but may fail
for C∞ nonconvex f (Powell ’76, ’84).

I BFGS often works well for nonsmooth f (Lemaréchal ’82)!
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BFGS for nonsmooth optimization (L-Overton ’10)

Function values for BFGS applied to
f (x , y) = w |y − x2|+ (1− y)2, with w = 1, 2, 4, 8.

19 / 21



A conjecture

Apply BFGS to any semi-algebraic Lipschitz f : Rn → R, with
random initial point and H. Then almost surely:

I function values converge linearly;

I limit points of iterates are Clarke stationary.

(There are small convex combinations of nearby gradients.)
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Summary

I A simple and versatile proximal algorithm for composite
optimization

I Partial smoothness as a conceptual tool for sensitivity and
acceleration

I Generic properties in semi-algebraic variational analysis

I Nonsmooth optimization via BFGS.
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