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H
Wave Propagation in Periodic Media I I I I I

For most A, beam(s) propagate
through crystal without scattering
(scattering cancels coherently).

But for some A (~ 2a), no light can
propagate: a band gap

( from S.G. Johnson )

1887 - Rayleigh 1987 — Yablonovitch & John
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Photonic Crystals I I I l I

3D Crystals Band Gap: Objective
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S. G. Johnson et al., Appl. Phys. Lett. 77, 3490 (2000)
Applications

By introducing “imperfections”
one can develop:

» Waveguides

* Hyperlens

* Resonant cavities
» Switches

* Splitters

° Mangan, et al., OFC 2004 PDP24
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The Optimal Design Problem for
Photonic Crystals

A photonic crystal with optimized 7th band gap.
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The Optimal Design Problem for I I I = -
Photonic Crystals I I

¢ Exploit linearity and periodicity to formulate Maxwell's equations as
an eigenvalue problem

A(e(r),R)u =Au =  Ae(r), k)

e(r) : dielectric function varying with the spatial position 7.
k : a parameterization of wave vector varying in the Brillouin zone B.
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The Optimal Design Problem for I I I = -
Photonic Crystals I

e The gap-midgap ratio between A and A™*! form > 1is
defined as

. m-+1 . m
11:161%1)\ (e(r), k) 1}{2;{)\ (e(r), k)

. m-+1 m )
min A" e(r), k) + max A" (e(r), k)

J(e(r)) =

A(e(r),k)u = Au
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The Optimal Design Problem for I I I = -

Photonic Crystals I I

e The design problem is to find an optimal dielectric distribution
eopt(r) that maximizes the gap-midgap ratio J(e(r)).

e This is in general a non-convex, nonlinear, and infinite scale
optimization problem.

A(e(r),k)u = Au
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H
Previous Work III I

There are some approaches proposed for solving the band gap
optimization problem:

« Cox and Dobson (2000) first considered the mathematical
optimization of the band gap problem and proposed a projected
generalized gradient ascent method.

*Sigmund and Jensen (2003) combined topology optimization with the
method of moving asymptotes (Svanberg (1987)).

*Kao, Osher, and Yablonovith (2005) used “the level set” method with
a generalized gradient ascent method.

However, these earlier proposals are gradient-based methods and use
eigenvalues as explicit functions. They suffer from the low regularity of
the problem due to eigenvalue multiplicity.
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H
Our Approach I I I I I

 Replace original eigenvalue formulation by a subspace method, and

» Convert the subspace problem to a convex semidefinite program
(SDP) via semi-definite inclusion and linearization.
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I H
First Step: Standard Discretizaton I I I I
/4%

e In practice, we only consider n;, wave vectors in the set

Sn={ki € 0B, 1<t<m}. .

k1 oB

e c(r) is discretized into (e1,...,e,.) sUchthat ep < e; < ep,1 <1 < n..

v

OQn=1{e:e € ler,ey|™} 2= aif]

e Discretize the eigenvalue problem by using FEM to obtain

b7

Ah(g‘-‘ k)ui — A?Lﬂfh(g)ui* J — m,m + 1 51', %:a|k+ﬁf3|/z

e Aj(e, k) € CNVN*N s a Hermitian stiffness matrix \ eSS

* My (e) € RV*V s a positive definite mass matrix.
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H
Optimization Formulation: P, I I I I I

A% — )\E
Py : max H
&AL )\h. + )\h

st AM(e,k) < AL, A < AMl(e k),
Ap(e, k)ui® = XM, (e)ul?,
Ap(e, k)u™™ = XM (e)ul T,
er < g; < €m,
Ah s Xy > 0.

Typically,
en = 10 ~ 20 o A,. M, are Hermitian, sparse, and banded
o . = 200 ~ 500
o N = 2,000 ~ 4,000
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H
Parameter Dependence I I I I I

e TE polarization q
A(e(r), k) = —(V + k) «E(—T)(V + k)

lFEM discretization I

nfe n‘E

1
AL (e k) =) —AE (k) M=) M

1 (4

e TM polarization
1
A(e(r), k) = ——(V +ik) - (V 4 k)

e(r)
lFEM discretization I
MNe e

ATM (k) =Y ATY (k) MM (e) =) e MM

1

1 1

All matrices are Hermitian, sparse, and banded.
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H
Change of Decision Variables I I I I I

e TE polarization

Y = (ylﬂ JEI ﬁyny) — (]‘/El" re 1/5”":"’)\5")\1[')

Set y; := 1/er and yy := 1/eg, thus,
er <ei<en < YL <Y < YH-

e TM polarization

&= = (313 ¢ .. ‘!zilz) — (’513 e s Eps J—/}‘P" J-/';\H)

The objective function becomes

A — )\ Zn.—1 — Zn.

R
A+ Af Zn.—1 + Zn.
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H N
Reformulating the problem: P, I I I I I

We demonstrate the reformulation in the TE case,

Yn, — Yn,—1
P;: max =% Y
Y Yny + Yny—1

)\m(y* "!‘) {: yn -1 < yny i )\El—l_l(yﬁ k-)._. Vk € Sha
Ny —2

Z Yy AYE (k)] = X M B,

h.i 17

j=m,m-+ 1,Vk € &},

yLEy-ailyH, t=1,...,my — 2,

yny—l > U‘! yny > 0.

This reformulation is exact, but non-convex and large-scale.

We use a subspace method to reduce the problem size.
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Subspace Method

For any given 3, (A}, u/ ) (3, k) are the eigenpairs of

Ap(§, k)u), = N M (9)up, 1< <N,
where N is large. We introduce
BU(k) = [ (k)| BY(K)] = [u, ... up'up™ .. uw))(g, k).

Here &Y (k) and $Y (k) consist of m lower and A — m upper
eigenvectors, respectively.
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H N
Subspace Method, continued I I I |

Then the condition
)\El(y-s k’) E Yny—1 E Yny, i: A?—'_l(y? k)" Vk € Sn

Is represented exactly as
(I’g*(k)[AgE(yﬁ k) — yﬂy—lﬂng]q’g(k) =0
U (k)[ALE (y, k) — yn, ME)|@Y(K) = 0.
It is represented approximately by keeping the subspace fixed at 3
U (k)AL (y, k) — yn,— 1 M]P]®] (k) < 0

U (k)[AL (Y, k) — v, M F]PY () = 0.
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H N
Subspace Method, continued I I I |

The constraints
Y (k) [ALE (y, k) — yn,—~1 M} E) @] (k) <
DU (R)[ALE (Y, k) — ya, M1 20 (K) =
are large-scale. We reduce the size by only considering the
“important” eigenvectors
By(k) = [uj, .. wp(§,k) = [T wp)(g, k) = Ry (k)
BU(k) i= [up o w](g k) = [up (g, k) = BE(K)

where a, b are small integers chosen heuristically by our method.
Typically, a,b ~ 3, ..., T.
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A H
Linear Fractional SDP : P} I I I I I

The problem P, is thus approximated as

P :

st ®Y(k)[ATE(y, k) — yn,—1MTE|®Y (k) <0, VEk¢E Sy,
(k) [ALE (y, k) — yn, My *1@%(k) = 0,  Vk € S,

yr < vy < yH, ?:=1,...,?’1y—2,
yny—l > 03 yny o i}

P.f has significantly smaller semi-definite inclusions than if
full subspaces were used, and it is a linear fractional SDP.
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H
Solution Procedure I I I l I

Step 1. Start with initial guess 3 := 9", and ¢,
Step 2. Foreach k € &, do:

Determine the subspace dimensions a and b,
Compute the subspaces ®7(k) and ®!(k),

Step 3. Form the convex semi-definite problem Py,

Step 4. Solve Pﬁ‘;" to obtain an optimal solution y*,

Step 5. If ||[y* — 7|| < €., Stop the procedure;
Else update y + y* and go to Step 2.

The SDP optimization problems can be solved efficiently using modern
interior-point methods [Toh et al. (1999)].
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Results: Optimal Structures I I I I

Optimization of the band gap between A%, and A3,

6

= (wlc)?

©
T

LA % =31.26%

Frequency A

0

r X
Optimization of the band gap between A%, and A%,

8

(wlc)?

Frequency A

M r
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Results: Computation Time

e TE polarization

Average Execution time (min)
Average Outer Iterations

e TM polarization

Average Execution time (min)
Average Outer Iterations

All computation performed on a Linux PC with Dual Core AMD Opteron 270, 2.0 GHz. The
eigenvalue problem is solved by using the ARPACK software.
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H N
Mesh Adaptivity : Refinement Criteria I I I I I

* Interface elements

T2

o

T4

« 2:1 rule
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H N
Mesh Adaptivity : Solution Procedure I I I I I

Step 0. Start with a coarse mesh, e.g., 8 x 8 grid,

Step 1. Start with an initial guess ¢ := 4" corresponding to the current mesh,
and an error tolerance e,

Step 2. For each wave vector k € §;,, do:
Determine the subspace dimensions a and b,
Compute the subspaces ®¥(k) and @g’{k),

Step 3. Form the semi-definite program Pif',

Step 4. Solve PE-‘;' for an optimal solution y*,

Step 5. If ||y* — 9]| < eta and currentRefineLevel > maxRefineLevel,
stop and return the optimal solution y*;

Elseif ||y* — 4|| < €01 and currentRefinelLevel < maxRefinelLevel,

refine those elements according to above and go to Step 1;

Elseif ||y* — 4|| > €01 and currentRefineLevel < maxRefinelevel,

update 7 < y* and go to Step 2.
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H
Results: Optimization Process III I

Optimization of the band gap between A%, and A%,

mesh 2xy) (13'12)“?‘3”“2)

Optimization of the band gap between A%, and A%,

mesh

(hy Al +h)
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H
Results: Computation Time I I I I I

e TE polarization

Execution time (min)
Uniform mesh
Adaptive mesh
Saving ratio

e TM polarization

Execution time (min)
Uniform mesh
Adaptive mesh
Saving ratio
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H
Multiple Band Gap Optimization I I I I I

Multiple band gap optimization is a natural extension of the previous single
band gap optimization that seeks to maximize the minimum of weighted
gap-midgap ratios:

1
11]111]1)'%.1%‘;rJr (e, k) — maxX, (e, k)
kES, kES

Imnax min w4

g s +1 M
€€Qp 15j=J min\, ' (e, k) + max\, (e, k)
kesy keSy

Ap(e, k)ul? )\‘}Lﬂfh(c)u"”,
m=m;,m;+1, 1 <3< J, k&P
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H
Multiple Band Gap Optimization I I I I I

Even with other things being the same (e.g., discretization, change of
variables, subspace construction), the multiple band gap optimization
problem cannot be reformulated as a linear fractional SDP. We start with:

max I
Y

st ¥ (k)(AfE(y, k) — 4;MIE) ¥ (k) % 0

Y (k) (AR (y, k) — uy My ™)WY (k) =0,
F < w; iy
u; >0,4; >0, 5=1,...,J

€E C thkESh

where Y = [1/51,....,]./Eﬂ&,,fl.,...,fj.,’li-l,. .H,'U,J,F]
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H I
Multiple Band Gap Optimization I I I I I

This linearizes to:

P%y max
Y

st OP (k) (AT (y. k) — M) (k) <0,

WE(R)(A P (y, k) — up MIF)WY (k) = 0,
(F 4wl + (F = wjuy + (0 + ) F < (£ + 1) F,
w, > 00,50, j=1,....J

€C Qn.kCSy.

where Yy = [1/&*1,.;..,I/E.”E,fh“.,fﬁj.,uh. ..._.'U,J,F]
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H I
Solution Procedure I I I I I

Step 0. Start with a coarse mesh, e.g., 8 x 8 grid,

Step 1. Start with an initial guess ¢ := y" corresponding to the current mesh,
and an error tolerance e,

Step 2. For each wave vector k € §,,, do:
Determine the subspace dimensions a; and b,
Compute the subspaces @i{k} and ¢I>§J_{I.-.},

Step 3. Form the semi-definite program Pf

Step 4. Solve P:f for an optimal solution y*,

Step 5. If [[y* — 7| < €t and currentRefineLevel > maxRefineLevel,
stop and return the optimal solution y*;

Elseif || — || < €01 and currentRefineLevel < maxRefinelLevel,

refine those elements according to above and go to Step 1;

Elseif |* — 4|| > €01 and currentRefineLevel < maxRefinelLevel,

update i < y* and go to Step 2.
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Sample Computational Results: I I I N -
2nd and 5" TM Band Gaps I I

Refinement level 1: Amin = 1/8

{mfc}g

fi 'S

ka

Frequency A
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- :

T
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Sample Computational Results:
2nd and 5" TM Band Gaps

Refinement level 3: hipin = 1 ;'32

[z}

R? % = 18.56%
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Frequency A
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Optimized Structures

» TE polarization,
« Triangular lattice,
* 1st and 3 band gaps

* TEM polarizations,

» Square lattice,

» Complete band gaps,
9t and 12 band gaps
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Results: Pareto Frontiers of 15t I I I O

and 3@ TE Band Gaps

» TE polarization

o Branch 2

x Branch 1
+ Branch 3
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Results: Computational Time

Square lattice

Execution Time (minutes)

Polarization

Az & Adgs

Adzs & Az

TE

3.8

7.3

™

1.5

1.9

TE/TM

2.8

8.8
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N
Future work I I I I I

- Design of 3-dimensional photonic crystals,

* Incorporate robust fabrication issues....

« Metamaterial designs for cloaking devices, superlenses, and
shockwave mitigation.

« Band-gap design optimization for other wave propagation
problems, e.g., acoustic, elastic ...

* Non-periodic structures, e.g., photonic crystal fibers.
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Need for Fabrication I I I N -
Robustness l l

Consider the optimized photonic crystal (PC) designs:

These two PC designs cannot be fabricated because
@ they are not connected, and
@ the boundary of the second design is too intricate
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Constructing Fabricable I I I el
Solutions l l

Standard mathematical optimization modeling fixes will not
work:

@ add connectivity constraint cuts as needed
@ add “boundary-smoothing” constraint cuts as needed

Instead, the user can construct “nearby” fabricable solutions by
hand:
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Constructing Fabricable I I I el
Solutions, continued I
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Quality of User-Constructed I I I 0
Solution l I

How good is the user-constructed fabricable solution?

B Relative bandgap | B Relative bandgap I

0349 0349

a/64 a/32 allé
Thickness of the connector
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Quality of User-Constructed I I I 0
Solution, continued ] I

B Relative bandgap | B Relative bandgap |I

0347 0349

1.98 % 4.03 % B.28% 18.46%
Percentage of pixels modified
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Fabrication Robustness I I I N -
Paradigm |

We consider a very general optimization problem:

2* = ming f{F)

gt =8

where S € R" is the feasible region. Let =* be an optimal
solution.

In many cases, it is not possible to fabricate/implement the
optimal solution z* due to any of the following reasons:

@ deliberate simplification of the model to keep it tractable
@ human factors

@ technological/economic factors
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Fabrication Robustness I I I N -
Paradigm, continued I I

We anticipate that any solution » can be easily converted to a
fabricable solution y that is within a distance 4 of =.

Replace f(z) with the (conservative) robust counterpart
function:

—

flz) = max, f(y)
s.t. |ly—zff <0 (Fs)

Yy ES.

where é > 0 is the FR parameter and || - || is some suitable
norm, and instead solve:

min, f ()

FR;
st. mEcS. (EH)
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N
Basic Results I I I I I

i

max, f(y) min, f(z)
s.tb. |ly—zx|| <9 st. zeS.

Yy € O.

In most instances, f(z) will not be convex even if f(z) is convex.
However:

Theorem

Suppose that S = R". If f(-) is a convex function, then f(-) is a
convex function.

If f(-) is a quasi-convex function, then f(-) is a quasi-convex
function.
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Fabrication Robustness: Basic I I I i I—

Model

f(z) =

max, f(y)
st. |ly — 2| <6
yES.

Lo 4

min, [ ()

st TES

Computing 3* is generally intractable because f{(-) involves
maximizing a convex function over a convex set, and f(z) is not
convex if S £ R".
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Computable FR Problems via I I I N -
Special Structure I I

Let us consider a cost function
f(z):= m

If S = R"™ then it is easy to derive that

-

f(z) = max l{ﬁg_ + &IIHEH*} 1 [:a.i]Tr,

=1 ...

where || - ||. is the dual nhorm of || - ||

Hence, the FR optimization problem is given by

" =argmin Flz).
This problem is computable since the FR cost function f(-) is

piecewise linear and convex.
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Computable FR Problems via I I I N -
Special Structure, continued l l

If S is a polyhedral set then we have

(z) =

where, fori =1

Note that computing f(x) amounts to solving m second-order
cone optimization problems.
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Computable FR Problems via I I I N -
Special Structure, continued l l

If S=[0,1]"and ||-|| = || - ||s then we have

.ﬁr} —  axy, fly)
s.t. ly—z|1 €96
D<yg; <1, 1<3¢<n.

By the change of variable 4 = y — » we can write:

max (b; + (a') z+ max (a*)d ]
—zp<d<e—r, ||d|| <4

Note that the maximization problem in the right-most expression
above is a very simple linear programming problem that can be solved
in O(nIn(n)) operations by ordering the |a;| values.

This structure is especially useful in photonic crystal design
optimization.
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