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My scientific origin

• Msc: ELTE (Eötvös Loránd Univ.), Budapest, 
Hungary, 1987

• PhD: Szeged, Hungary, 2009
– from the hands of J. Csirik, 

– supervisor: B. Vizvari, 

– basically on the common works with Yong He

• Yong He, Hangzhou, 7 papers

• Zsolt Tuza, Leah Epstein, Xin Han,…

• I work at Univ. of Pannonia, Hungary, near 
Balaton (biggest lake in middle Europe)
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Hangzhou, (a bit left from Sanghai), and the West Lake 

„Above is Heaven, here is Hangzhou”3/35



My numbers:

Erdıs-number=2 Dosa – Zs. Tuza – P. Erdos

Bezdek-number=3 Dosa – Tuza –

- T.I.Zamfirescu – K. Bezdek 

Deza-number=4 Dosa - He - Frank K. Hwang –

- Samuel Onn – Antoine Deza

Lorea-number=4 Dosa – He - G. Woeginger –

J. Urrutia – Jesus A. De Lorea

Mitchell-number=3 Dosa- He – G. Woeginger –

- Joseph S.B. Mitchell

Ye-number=4 Dosa- He – En Yu Yao – Jie Sun

– Yinyu Ye4/35



some words about scheduling
the father: Ronald Graham

with balls 
with his wife and Erdıs 
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The beginning: Graham’s algorithms LS 

(and it’s ordered version, LPT), 1966

C

OPT

C (=maximum completion time = makespan)→ min
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a 40 years old problem of Graham and Erdıs: k 

equal squares should be packed into the smallest 
(big) square

k=5

k=272, they fit 

into 17X17
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Or: there is one square with size k, 
for 1 ≤ k ≤ 24 (for example)

This is 71 x 71,
(by M. Hujter)

is there smaller 

big square?
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So: scheduling 

(or packing) can be 

seen as a special 

kind of „discrete 

geometry”

(in visualization)computer aided packing 

plan, A. Mészáros

a three dimensional packing 

problem: 
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LS (or other algorithm) again: 
How bad can be Alg/OPT? 

C

OPT
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How big (bad) can be ALG/OPT=?

(approx. or competitive ratio)
• LS with decreasing sizes:  ≈ 4/3

(LPT/OPT is not worse, not bigger than ≈

4/3)

• LS generally:  not worse than 2-1/m     ≈ 2
offline: we know everything about the input

online: we know nothing in advance (but we must 

make decisions without knowledge of the future) 

semi online: we know some things, but not 

everything (between offline and online)

(decreasing sizes helps to make ALG/OPT smaller)!
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offline scheduling (of parallel 

machines)
• getting optimal solution needs  

exponential many time (NP-hardness)

• solution within (1+ε) x OPT can be got in 

pol. (but still much) time, (approx. scheme)

• there are fast heuristics
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online scheduling: lower bounds 

(by adversaries) and optimality

Thus C/OPT can not be better (always) than 3/2
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online scheduling (of parallel 

machines)

• Graham’s algorithm is optimal for two 

machines,  (C/OPT is at most 3/2)

• LS is also optimal for m=3, (Faigle, Kern, 

Turán, 1989)  

• Four machines (m=4) ? 

• We do not know optimal algorithm for m=4!

but there exists better than LS   

(for ex. Woeginger, Galambos, 1993)
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semi online scheduling 
The first paper:

• Kellerer, Kotov, Speranza and Tuza (97), 
three models (m=2, makespan is minimized, 
plus):

• We know the total size of jobs (also by  G. Zhang)

• or we can use a buffer of size K

• or we can make two schedule, and finally chose the 
better one

• For all of them: opt. Comp ratio 3/2→4/3

• Further models: Decreasing sizes, we know the 
value of OPT, etc., for example:  

REASSIGNMENT (a bit later)
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Reassignment in „real life”

• Seasons (winter, spring,…)

• Working places, living places (Toronto is very 
nice!)

• in politics: in every 4 years

• in economics: „big fish eats small fish”

• in personal habits: young man likes icecream, 

older man likes beer, stew, (more beer)…
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in online models:

- our decisions must be made just in time. 

(just when something happens we must make 
our decision)
- we cannot change our decisions later

reassignment: (some kind of semi 
online): 

- We have some time to think, (we are 
allowed to delay decisions = reordering 
buffer), or

- we can change (a bit) later our decisions
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rearrangement in bin-packing:
G. Galambos and G. J. Woeginger, Repacking helps in 

bounded space on-line bin-packing, Computing, Volume 
49, Number 4, 

• on-line bounded-space bin-packing problem where:

• repacking the items within the active bins is 
allowed. 

• the 1.69103 lower bound of Lee and Lee for the worst case 
ratios of bounded-space approximation algorithms still applies. 

• A polynomial time approximation algorithm is presented, that 
reaches the best possible worst case ratio matching the Lee 

and Lee lower bound while using only three active bins. 

• (and other papers)
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rearrangement in scheduling:
• the first model considering reassignment is 

among the first semi online models: 

having a (reordering) buffer of size K
• Kellerer, Kotov, Speranza, Tuza: Semi online algorithms for the 

partition problem, Op.Res Letters 21 (1997), 235-242.

Results:   -three semi online versions of        P2 II C_max,  

- three optimal algorithms with comp. ratio C=4/3,

(   the pure online comp. ratio is        C=3/2 (LS)  )

the buffer model is also treated in:

• G.C. Zhang, A simple semi-online algorithm for P2||C_max with 

a buffer. Information Processing Letters, 61 (1997), 145-148.
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there are also some (new?) models:

• bounded migration by 
N. Sivadasan, P. Sanders, M. Skutella, Online scheduling with 

bounded migration, Math. Oper.Res. 34 (2) (2009) 481-498.

(for any job there are two parameters, the size and a  
rearrangement parameter, and also given a global 

rearrangement factor β,…a different type of rearr.

so we do not deal with this model now, 

on the other hand it is in fact interesting)

• REAR(K), (rearr. at any time) defined by
G. Dosa, Y. Wang, X. Han, H. Guo, Online scheduling with 

rearrangement on two related machines, Theoretical 
Computer Science, 412(8-10): 642-653 (2011)
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• K jobs can be rearranged at the end of the 
sequence (after the sequence ended)

l The last job of any machine can be moved 
to the other machine (after the sequence 
ended)

l The last K jobs of the sequence can be 
moved (after the sequence ended)

• and three further models of
Z. Tan, S. Yu, Online scheduling with reassignment, 

Oper.Res.Lett. 36(2) 2008, 250-254., as :
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now we consider only three models,

only in case of 2 uniform machines

(i.e., the second machine is faster)

• BUFF(K), the buffer problem
G. Dosa, L. Epstein, Online scheduling with a buffer on related 
machines, J.Comb.Optim. 20(2) 2010, 161-179.

• REAR(K), at any time (many times)
G. Dosa, Y. Wang, X. Han, H. Guo, Online scheduling with 
rearrangement on two related machines, Theoretical Computer 
Science, 412(8-10): 642-653 (2011)

• REND(K), rearrangement only at the end
A. Benko, X. Chen, G. Dosa, X. Han, Online scheduling with 
bounded rearrangement at the end, TCS, 2011.

(the model is defined originally by Tan, 2008)
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without reassignment and buffer 

(pure online case, i.e. K=0)

In this case, the tight competitive ratio is

(2s+1)/(s+1) if   1 < s < 1.618 = (sqrt(5)+1)/2

and 

(s+1)/s  if    1.618 < s 

(L. Epstein, J. Noga, S. S. Seiden, J. Sgall, and G. J.Woeginger, 

Randomized Online Scheduling on Two Uniform Machines, 

Journal of Scheduling, 4(2):71–92, 2001.)
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comparison between the models

• (we know that at least formally) 

REAR(K) is more flexible than BUFF(K)

(=allows at least as good comp. ratio)

BUT

• Is REND(K)  more flexible than BUFF(K)  ? 

• Is REND(K) more flexible than REAR(K)  ?

since !!!!! in REND(K)

- we are allowed to make rearrangement only once

- but we know before the rearrangement that the sequence is    
over (We will see that any of the three models allows 

better comp. ratio than the pure only model)
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Results 1. if s≥2:

• everything is quite simple

• K=1 is enough 
(K=1 is better than K=0, but K>1 do not give much than K=1)

• The tight ratio is C=(s+2)/(s+1)

uniformly, for all three models!

(for K=0 the tight ratio is (s+1)/s )
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Results 2. if 1≤s≤2, and K=2

• this case is not very hard (but not simple)

• K=2 is enough 
(K=2 is better than K=0, but K>2 does not give better than K=2)

• The tight ratio is 

C=(s+1)2/(s2+s+1)  if s≤1.61 = (sqrt(5)+1)/2

C =  s2   / (s2 - s+1)  if s≥1.61 

uniformly, for all three models!
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so,  the tight ratios:

(sqrt(5)+1)/2

(s+1)2/(s2+s+1)
s2/ (s2 - s+1)

(s+2)/(s+1), 

tight for 

K≥1,

from s=2

tight for K=2 (or bigger)

pure online (K=0)
(2s+1)/(s+1)

(s+1)/s

for all three 
models!
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Results 3. the hard case: 

1≤s≤2, and K=1

• we actually do have results (in all three 
models), but it seems hard to get the tight 
ratios for the whole interval (in any of the 
three models)

• here the models differ from each other 
(regarding competitive ratio)

• we still have the best results so far (for all 
three models)
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what we could prove, BUFF(1):

2(s+1)/(s+2)
(s+2)/(s+1), tight

s   

(s+1)2/(s2+s+1)  is still valid, 
since it holds for any K sqrt(2)
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what we could prove, REAR(1):

(s+1)2/(s2+s+1),

here tight,      here not

(s+2)/(s+1), tight

sqrt(3)

(s+1)/2

(s+sqrt(5s2+8s+4))/2(s+1)

recall that REAR(K) gives (formally) more than BUFF(K)!!

Now we really have slightly smaller competitive ratios somewhere
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The third model: Two simple algorithms for 

REND(1), for both:

l We use the (classical online) lower bound LB: 

max{total size/(s+1), biggest job/s}

l We also use the allowed competitive ratio 

C(s)
l A schedule is feasible, if the desired 

competitive ratio is not violated, where the 
(increased) makespan is compared to the lower 
bound LB

(the makespan is not bigger than C-times LB)
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ALG1 for REND(1)

l Assign the incoming job to M1 if so the 
(temporary) schedule is feasible, 
otherwise to M2.

l REASSIGNMENT: If the final schedule is 
not feasible, move a job from M2 to M1 so 
that the makespan decreases as much as 
possible

l It is (s+2)/(s+1)-comp. for any s ≥ 1 

l so for s ≥ 2 it is optimal.
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ALG2 for REND(1)

l Assign the incoming job to M1 if so the (temporary) 

schedule is not feasible, but moving the biggest job 

from M1 to M2 the schedule becomes feasible, 

otherwise to M2.

l REASSIGNMENT: If the final schedule is not 

feasible, move the biggest job from M1 to M2 if so 

the makespan decreases

l It is (s+2)/(s+1)-competitive only if 1≤s≤2, but
l We know in advance what job will be moved

l And it is also 2(s+1)/(s+2)-competitive 
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what we could prove, REND(1):

what 

is the 

case 

here?

(only preliminary results so far, but these are the best results)

(s+1)2/(s2+s+1)

(s+2)/(s+1)

By ALG1 

and ALG2

2(s+1)/(s+2) by ALG2

good lower bounds? really challanging task,    
previous constructions do not work!

the same upper bounds as in BUFF(1) !

but now we nowhere know whether they are tight or not 34/35



Algorithms (some statistics)

• buffer model BUFF(K):

4 algorithms on 9 pages

• rearrangement at any time REAR(K)

1 algorithm, the analysis is on 5 pages through   
5 Lemmas, 8 Observations and 3 Claims

• rearrangement at the end REND(K)

3 algorithms, the proofs are on ≈20 pages 
through 11 Lemmas, 11 Observations, many 
Cases 

YANK THOU!
THANK YOU!
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