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The dodecahedral theorem

Let x̄i , i = 1, . . . ,m be points in <3, with ‖x̄i‖ ≥ 1 for each i , and
‖x̄i − x̄j‖ ≥ 1 for all i 6= j . Then the points 2x̄i can be taken to be the
centers of m non-overlapping spheres of radius one which also do not
overlap a sphere of radius one centered at x0 = 0.

The Voronoi cell associated with x0 = 0 induced by the points 2x̄i ,
i = 1, . . . ,m is

V (x̄1, . . . , x̄m) = {x | ‖x‖ ≤ ‖2x̄i − x‖, i = 1, . . . ,m}
= {x | x̄T

i x ≤ ‖x̄i‖2, i = 1, . . . ,m}.
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The dodecahedral theorem

Theorem (Dodecahedral conjecture; L. Fejes Tóth, 1943)

In any packing of unit spheres in <3, the Voronoi cell associated with
each sphere has volume at least that of the regular dodecahedron with
in-radius one.

Proof: T. Hales and S. McLaughlin (1998, 2010).
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The dodecahedral theorem

Theorem (Kepler conjecture, 1611)

The highest density of any packing of <3 with unit spheres is achieved
by the Face-Centered Cubic (FCC) packing.

Proof: T. Hales (1998, 2005); T. Hales and S. Ferguson (2006)
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The dodecahedral theorem

Figure: Regular and rhombic dodecahedra
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Fejes Tóth’s proof scheme

Let D denote a regular dodecahedron with inradius one,
RD =

√
3 tan 36◦ ≈ 1.2584 be the radius of a sphere that

circumscribes D and BD = {x ∈ <3 | ‖x‖ ≤ RD}.

Fejes Tóth’s 1943 paper contains a proof of the dodecahedral
conjecture under the assumption that there are at most twelve i such
that x̄i ∈ BD.

In his 1964 book Regular Figures, Fejes Tóth restates the
dodecahedral conjecture and describes a scheme that would lead to a
complete proof if a key inequality were established.
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Fejes Tóth’s proof scheme

Let D denote a regular dodecahedron with inradius one,
RD =

√
3 tan 36◦ ≈ 1.2584 be the radius of a sphere that

circumscribes D and BD = {x ∈ <3 | ‖x‖ ≤ RD}.
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Fejes Tóth’s proof scheme

The first important component of Fejes Tóth’s proof scheme is a
strengthened version of the result from his 1943 paper.

Theorem (Fejes Tóth, 1964)

Let x̂i , i = 1, . . . ,m be points in <3 with ‖x̂i‖ ≥ 1 for each i. If m ≤ 12,
then Vol(V (x̂1, . . . , x̂m) ∩ BD) ≥ Vol(D).

Note that in the above theorem it is not assumed that the points satisfy
‖x̂i − x̂j‖ ≥ 1, i 6= j . Also, the assumption that ‖x̂i‖ < RD for each i
could be added, since if ‖x̂i‖ ≥ RD the constraint x̂T

i x ≤ ‖x̂i‖2 does not
eliminate any points in BD.
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Fejes Tóth’s proof scheme

The first important component of Fejes Tóth’s proof scheme is a
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Fejes Tóth’s proof scheme

The second important component of Fejes Tóth’s scheme is a “point
adjustment procedure” that facilitates the use of the above theorem
when m > 12.

For the Voronoi cell V (x̂1, . . . , x̂m), let Fi(x̂1, . . . , x̂m) be the face of
V (x̂1, . . . , x̂m) ∩ BD corresponding to the points with x̂T

i x = ‖x̂i‖2 (it is
possible that Fi(x̂1, . . . , x̂m) = ∅).

Kurt M. Anstreicher (University of Iowa) An Approach to the Dodecahedral Theorem Workshop on Optimization 11 / 33
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Fejes Tóth’s proof scheme

Point Adjustment Procedure

Step 0. Input x̄i , 1 ≤ ‖x̄i‖ ≤ RD, i = 1, . . . ,m with m > 12 and
‖x̄i − x̄j‖ ≥ 1, i 6= j . Let x̂i = x̄i , i = 1, . . . ,m.

Step 1. If |{i |1 < ‖x̂i‖ < RD}| < 2 then go to Step 3. Otherwise
choose j 6= k such that 1 < ‖x̂j‖ < RD, 1 < ‖x̂k‖ < RD,
and the surface area of Fj(x̂1, . . . , x̂m) is less than or
equal to that of Fk (x̂1, . . . , x̂m).

Step 2. Let δ = min{RD − ‖x̂j‖, ‖x̂k‖ − 1}, and

x̂j ← (‖x̂j‖+ δ)
x̂j

‖x̂j‖
, x̂k ← (‖x̂k‖ − δ)

x̂k

‖x̂k‖
.

Go to Step 1.
Step 3. Output x̂i , i = 1, . . . ,m.

Kurt M. Anstreicher (University of Iowa) An Approach to the Dodecahedral Theorem Workshop on Optimization 12 / 33
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Fejes Tóth’s proof scheme

Obvious that the adjustment in Step 2 leaves
∑m

i=1 ‖x̂i‖ unchanged,
and can be shown that Vol(V (x̂1, . . . , x̂m) ∩ BD) is nonincreasing. Note
that adjustment in Step 2 is executed at most m − 1 times, since each
adjustment decreases | {i |1 < ‖x̂i‖ < RD}| by at least 1. At
termination have at most one i with 1 < ‖x̂i‖ < RD.

The previous theorem could then be applied to bound

Vol(V (x̄1, . . . , x̄m)) ≥ Vol(V (x̄1, . . . , x̄m)∩BD) ≥ Vol(V (x̂1, . . . , x̂m)∩BD)

if the x̂i output by the procedure have at most twelve i with ‖x̂i‖ < RD.
Note that the output points x̂i may not satisfy ‖x̂i − x̂j‖ ≥ 1, i 6= j , but
this assumption is not required in the theorem.
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Fejes Tóth’s proof scheme

This would be the case if the input points x̄i satisfy the key inequality

m∑
i=1

‖x̄i‖ ≥ 12 + (m − 12)RD.

Recall that have at most one i with 1 < ‖x̂i‖ < RD. Then if ‖x̂i‖ = 1,
i = 1, . . . ,12, key inequality and the fact that x̂i ≤ RD for each i
together imply

(m − 12)RD ≥
m∑

i=13

‖x̂i‖ ≥ 12 + (m − 12)RD − 12 = (m − 12)RD,

so ‖x̂i‖ = RD for i = 13, . . . ,m.
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Fejes Tóth’s proof scheme

This would be the case if the input points x̄i satisfy the key inequality

m∑
i=1

‖x̄i‖ ≥ 12 + (m − 12)RD.

Recall that have at most one i with 1 < ‖x̂i‖ < RD. Then if ‖x̂i‖ = 1,
i = 1, . . . ,12, key inequality and the fact that x̂i ≤ RD for each i
together imply

(m − 12)RD ≥
m∑

i=13

‖x̂i‖ ≥ 12 + (m − 12)RD − 12 = (m − 12)RD,

so ‖x̂i‖ = RD for i = 13, . . . ,m.

Kurt M. Anstreicher (University of Iowa) An Approach to the Dodecahedral Theorem Workshop on Optimization 14 / 33



Fejes Tóth’s proof scheme

A complete proof of the dodecahedral conjecture thus requires only a
proof that the key inequality holds for any x̄i , i = 1, . . . ,m with
1 ≤ ‖x̄i‖ ≤ RD for each i , and ‖xi − xj‖ ≥ 1 for all i 6= j .

Unfortunately Fejes Tóth was unable to prove the key inequality, even
though all evidence suggests that it actually holds with RD replaced by
the larger constant 7/

√
27 ≈ 1.347.

Note key inequality for m = 13 would give immediate proof of “Thirteen
Spheres Problem.”

Theorem (13 spheres problem; Kissing number in dimension 3)

In a packing of unit spheres in <3, at most 12 spheres can
simultaneously touch (“kiss”) another sphere.
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Fejes Tóth’s proof scheme

To prove key inequality, need solution (or very good lower bound) for
m-point norm minimization problem

min
m∑

i=1

‖xi‖

s.t. ‖x̄i − x̄j‖ ≥ 1, i 6= j
1 ≤ ‖x̄i‖ ≤ RD, i = 1, . . . ,m.

How to solve (or obtain good lower bound for) this problem?

Global optimization?
Polynomial optimization?

Expect that these approaches may have difficulty due to number of
variables (40-60), very high degree of symmetry, and need for a
relatively tight bound. We will consider another possibility based on the
theory of spherical codes.

Kurt M. Anstreicher (University of Iowa) An Approach to the Dodecahedral Theorem Workshop on Optimization 16 / 33
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Relationship to spherical codes

A set C = {xi}mi=1 ⊂ <
3 is called a spherical z-code if ‖xi‖ = 1 for each

i , and xT
i xj ≤ z for all i 6= j . A packing of unit spheres that all touch a

unit sphere centered at the origin generates a spherical 1/2-code.

To begin we establish that for R sufficiently small, if {x̄i}mi=1 are points
with 1 ≤ ‖x̄i‖ ≤ R for each i and ‖x̄i − x̄j‖ ≥ 1 for all i 6= j , then the
normalized points xi = x̄/‖x̄i‖ form a z-code for a suitable z.

Lemma (Normalized points form spherical z-code)

Suppose that 1 ≤ ‖x̄i‖ ≤ R, i = 1, . . . ,m, where R ≤ 1+
√

5
2 ≈ 1.618

and ‖x̄i − x̄j‖ ≥ 1 for all i 6= j . Let xi = x̄i/‖x̄i‖, i = 1, . . . ,m. Then
xT

i xj ≤ 1− 1
2R2 for all i 6= j .
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Relationship to spherical codes

Next, for xi 6= xj with ‖xi‖ = ‖xj‖ = 1, xT
i xj ≤ 1− 1

2R2 , R ≤ 1+
√

5
2 ,

consider the 2-point norm minimization problem

min λi + λj

s.t. ‖λixi − λjxj‖ ≥ 1
1 ≤ λi ≤ R, 1 ≤ λj ≤ R.

Theorem (Solution of 2-point norm minimization problem)

Let 1 ≤ R ≤ 1+
√

5
2 , ‖xi‖ = ‖xj‖ = 1 and .5 ≤ s = xT

i xj ≤ 1− 1
2R2 . Then

problem solution has λ∗i + λ∗j = f (s,R), where

f (s,R) =

{
1 + 2s 1

2 ≤ s ≤ R
2 ,

R(1 + s) +
√

1− R2(1− s2) R
2 ≤ s ≤ 1− 1

2R2 .
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Relationship to spherical codes
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Figure: Solution value in 2-point norm minimization problem for R = RD
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Relationship to spherical codes

Now assume that m > 12, 1 ≤ ‖x̄i‖ ≤ RD, i = 1, . . .m, and
‖x̄i − x̄j‖ ≥ 1 for all i 6= j . Let λi = ‖x̄i‖ and xi = (1/λi)x̄i . Goal is to
prove the key inequality, which can be written

m∑
i=1

(λi − 1) ≥ 12 + (m − 12)RD −m = (m − 12)(RD − 1).

Define Ni = | {j 6= i | xT
i xj ≥ .5}| to be the number of “close neighbors”

of xi , and N = {(i , j), i 6= j | xT
i xj ≥ .5}. Then |N | =

∑m
i=1 Ni , and

∑
(i,j)∈N

(λi + λj − 2) =
∑

(i,j)∈N

(λi − 1) + (λj − 1) = 2
m∑

i=1

Ni(λi − 1).
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Relationship to spherical codes

Applying the solution of the 2-point norm minimization problem, get

2
m∑

i=1

Ni(λi − 1) ≥
∑

(i,j)∈N

[f (xT
i xj ,RD)− 2]

m∑
i=1

(λi − 1) ≥ 1
2Nmax

∑
(i,j)∈N

[f (xT
i xj ,RD)− 2],

where Nmax := max{Ni}mi=1.

To prove key inequality, suffices to show

1
2Nmax

∑
(i,j)∈N

[f (xT
i xj ,RD)− 2] ≥ (m − 12)(RD − 1).
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Relationship to spherical codes

Using results from spherical trigonometry, can prove

Lemma (Maximum number of close neighbors)
Nmax ≤ 6. Moreover, for m = 13, if Nmax = 6 then key inequality holds.

To get lower bound for

1
2Nmax

∑
(i,j)∈N

[f (xT
i xj ,RD)− 2]

can apply Delsarte bound for spherical codes. Recall C = {xi}mi=1 is a
spherical z-code in <3, with z = 1− 1/(2R2

D) ≈ .6843.
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Relationship to spherical codes

For α ∈ [−1,1], define the distance distribution of the code to be

α(s) =
|{(i , j) | xT

i xj = s}|
m

.

Then α(·) ≥ 0, and
∑
−1≤s≤z α(s) = m − 1.

Let Φk (·), k = 0,1, . . . denote the Gegenbauer, or ultraspherical,
polynomials Φk (t) = P(0,0)

k (t) where P(0,0)
k is a normalized Jacobi

polynomial. It can be shown that

1 +
∑

−1≤s≤z

α(s)Φk (s) ≥ 0, k = 1,2, . . . .
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Relationship to spherical codes

Then
∑

(i,j)∈N [f (xT
i xj ,RD)− 2] ≥ v∗(m), where v∗(m) is solution value

in the semi-infinite LP problem

LP(m) : min m
∑

.5≤s≤z

[f (s,RD)− 2]α(s)

s.t.
∑

−1≤s≤z

α(s)Φk (s) ≥ −1, k = 1, . . . ,d

∑
−1≤s≤z

α(s) = m − 1

α(s) ≥ 0, −1 ≤ s ≤ z.

Constraints of LP(m) are feasible up to m = 21. To establish key
inequality, need

v∗(m)/(2Nmax) ≥ (m − 12)(RD − 1), m = 13, . . . ,21.
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Relationship to spherical codes
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Relationship to spherical codes

Result: Bound from LP(m) sufficient to prove key inequality for
m ≥ 17. Remains to prove inequality for m = 13, . . . ,16.

Note v∗(13) = 0. In fact knew this would be the case ahead of time,
since Delsarte bound for kissing number in dimension 3 is 13, not 12.
Need to strengthen Delsarte bound to have any chance of proving key
inequality for m = 13.
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Strengthened bounds for spherical codes

To prove key inequality for 13 ≤ m ≤ 16 need to strengthen Delsarte
bound. Several approaches in recent years:

A (2003)
Musin (2003)
Bachoc and Vallentin (2007)

All three are sufficient to prove that kissing number in dimension 3 is
12. Last approach is most powerful and results in SDP in place of LP.
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Strengthened bounds for spherical codes

Resulting problem SDP(m) has form:

min m
∑

.5≤s≤z

[f (s,RD)− 2]α(s)

s.t.
∑
s∈Z

α(s)Φk (s) ≥ −1, k = 1, . . . ,d∑
s∈Z

α(s) = m − 1, α(s) ≥ 0, s ∈ Z = [−1, z]

3
∑
s∈Z

α(s)Sk (s, s,1) +
∑

s,t ,u∈Z

α′(s, t ,u)Sk (s, t ,u) � −Sk (1,1,1),

k = 1, . . . ,d∑
s,t ,u∈Z

α′(s, t ,u) = (m − 1)(m − 2)

α′(s, t ,u) ≥ 0, s, t ,u ∈ Z .
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Strengthened bounds for spherical codes

In SDP(m), α′(·, ·, ·) is the 3-point distance distribution

α′(s, t ,u) =
|{(i , j , k) | xT

i xj = s, xT
i xk = t , xT

j xk = u}|
m

,

and Sk (s, t ,u) is a (d + 1− k)× (d + 1− k) symmetric matrix whose
entries are symmetric polynomials of degree k in the variables (s, t ,u)

Can also add constraints relating 2-point and 3-point distance
distributions and remove original constraints based on Φk (·).
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Strengthened bounds for spherical codes
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Strengthened bounds for spherical codes

What next?

Can add constraints on 3-point distance distribution based on
spherical Delaunay triangulation.
Can work with 3-point norm minimization problem instead of
2-point norm minimization problem.

Thank You!
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