# Iterative Valid Polynomial Inequality Generation in Polynomial Optimization 

NSERC CRSNG

Joint work with B. Ghaddar (Waterloo) and J. Vera (Tilburg)

Workshop on Optimization, Fields Institute - 27 September 2011

## Polynomial Optimization

Polynomial optimization problems (POPs) consist of optimizing a multivariate polynomial objective subject to multivariate polynomial constraints:

## Polynomial Optimization Problem (POP)

$$
z=\begin{array}{ll}
\sup ^{\text {s.t. }} & f(x) \\
\text { gi }(x) \geq 0 \quad i=1, \ldots, m .
\end{array}
$$

Numerous classes of problems can be modelled as POPs, including:

- Linear Problems
- Mixed-Binary Problems

$$
x_{i} \in\{0,1\} \quad \Leftrightarrow \quad x_{i}\left(1-x_{i}\right)=0
$$

- Quadratic Problems (Convex / Non-convex)

Thus, solving POPs is in general NP-hard.

## Relaxations of POPs

## Polynomial Optimization Problem (POP)

$$
z=\begin{array}{ll}
\sup & f(x) \\
\text { s.t. } & g_{i}(x) \geq 0 \quad i=1, \ldots, m .
\end{array}
$$

- Many tractable relaxations of POPs have been proposed using linear, second-order cone, and semidefinite techniques.


## Relaxations of POPs

## Polynomial Optimization Problem (POP)

$$
z=\begin{array}{ll}
\sup & f(x) \\
\text { s.t. } & g_{i}(x) \geq 0 \quad i=1, \ldots, m
\end{array}
$$

- Many tractable relaxations of POPs have been proposed using linear, second-order cone, and semidefinite techniques.
- In particular, sum-of-squares (SOS) decompositions which lead to semidefinite programming (SDP) relaxations
- are theoretically very strong:
$\star$ Sequences of relaxations converging to the optimal value in the limit
* Exact (exponential-sized) relaxations for pure binary POPs


## Relaxations of POPs

## Polynomial Optimization Problem (POP)

$$
z=\begin{array}{ll}
\sup & f(x) \\
\text { s.t. } & g_{i}(x) \geq 0 \quad i=1, \ldots, m
\end{array}
$$

- Many tractable relaxations of POPs have been proposed using linear, second-order cone, and semidefinite techniques.
- In particular, sum-of-squares (SOS) decompositions which lead to semidefinite programming (SDP) relaxations
- are theoretically very strong:
* Sequences of relaxations converging to the optimal value in the limit
* Exact (exponential-sized) relaxations for pure binary POPs
- but quickly become too expensive for practical computation.


## Research objective:

Improve the SDP relaxations

- without incurring an exponential growth in their size
- by iteratively generating valid polynomial inequalities.


## General POP Perspective

Given a general POP problem:

$$
\begin{aligned}
(\mathrm{POP}) & z= \\
\sup & f(x) \\
\text { s.t. } & g_{i}(x) \geq 0 \quad i=1, \ldots, m
\end{aligned}
$$

If $\lambda$ is the optimal value of POP, then POP is equivalent to inf $\lambda$

$$
\text { s.t. } \quad \lambda-f(x) \geq 0 \quad \forall x \in S:=\left\{x: g_{i}(x) \geq 0, i=1, \ldots, m\right\}
$$

which we rewrite as

$$
\begin{array}{ll}
\inf & \lambda \\
\text { s.t. } & \lambda-f(x) \in \mathcal{P}_{d}(S)
\end{array}
$$

where

$$
\mathcal{P}_{d}(S)=\left\{p(x) \in \mathbf{R}_{d}[x]: p(s) \geq 0 \text { for all } s \in S\right\}
$$

is the cone of polynomials of degree at most $d$ that are non-negative over $S$.

## Understanding $\mathcal{P}_{d}(S)$

The set

$$
\mathcal{P}_{d}(S)=\left\{p(x) \in \mathbb{R}_{d}[x]: p(x) \geq 0 \text { for all } x \in S\right\}
$$

is in general a very complex object.

- It is always a convex cone
- In most cases the decision problem for $\mathcal{P}_{d}(S)$ is NP-hard:


## Decision problem for $\mathcal{P}_{d}(S)$

Given $p(x)$, decide if $p(x) \in \mathcal{P}_{d}(S)$
(i.e. if $p(x) \geq 0$ for all $x \in S$ )

- Idea: use algebraic geometry results to approximate (or represent) $\mathcal{P}_{d}(S)$ in tractable ways, i.e., using only linear, second-order, and semidefinite cones.


## A General Recipe for Relaxations of POP

We relax $\lambda-f(x) \in \mathcal{P}_{d}(S)$ to

$$
\lambda-f(x) \in \mathcal{K} \text { for a suitable } \mathcal{K} \subseteq \mathcal{P}_{d}(S)
$$

Then

$$
\begin{array}{ll}
\inf & \lambda \\
\text { s.t. } & \lambda-f(x) \in \mathcal{K}
\end{array}
$$

provides an upper bound for the original problem.

- The choice of $\mathcal{K}$ is a key factor in obtaining good bounds on the problem.
- We are restricted by the need for the optimization over $\mathcal{K}$ to be tractable.


## SOS Approach - Lasserre (2001), Parrilo (2000)

For each $r>0$, define the approximation $\mathcal{K}_{r} \subseteq \mathcal{P}_{d}(S)$ as

$$
\mathcal{K}_{r}:=\left(\Psi_{r}+\sum_{i=1}^{m} g_{i}(x) \Psi_{r-\operatorname{deg}\left(g_{i}\right)}\right) \cap \mathbf{R}_{d}[x]
$$

where $\Psi_{d}$ denotes the cone of real polynomials of degree at most $d$ that are SOSs of polynomials, and $\mathbf{R}_{d}[x]$ denotes the set of polynomials in the variables $x$ of degree at most $d$.

The corresponding relaxation can be written as

$$
\left(\mathrm{L}_{r}\right) \quad z_{r}=\inf _{\lambda, \sigma_{i}} \lambda
$$

$$
\text { s.t. } \quad \lambda-f(x)=\sigma_{0}(x)+\sum_{i=1}^{m} \sigma_{i}(x) g_{i}(x)
$$

$$
\sigma_{0}(x) \text { is SOS of degree } \leq r
$$

$$
\sigma_{i}(x) \text { is SOS of degree } \leq r-\operatorname{deg}\left(g_{i}(x)\right), i=1, \ldots, m \text {. }
$$

## Solving the SOS Relaxation

For each $r$, the relaxation $\left(\mathrm{L}_{r}\right)$ can be cast as an SDP problem, since $\sigma(x)$ is a SOS of degree $2 k$ if and only if

$$
\sigma(x)=\left(\begin{array}{c}
1 \\
\vdots \\
x_{i} \\
\vdots \\
x_{i} x_{j} \\
\vdots \\
\prod_{|k|} x
\end{array}\right)^{T} M\left(\begin{array}{c}
1 \\
\vdots \\
x_{i} \\
\vdots \\
x_{i} x_{j} \\
\vdots \\
\prod_{|k|} x
\end{array}\right) \quad \text { with } \quad M \succeq 0
$$

Note that $\Psi_{d}=\Psi_{d-1}$ for every odd degree $d$.

## Convergence of the SOS Approach

Under mild conditions $z_{r} \rightarrow z$ :
Lemma
Suppose that

$$
\mathcal{K}_{G}^{d} \subseteq \mathcal{K}_{G}^{d+1} \subseteq \cdots \subseteq \mathcal{K}_{G}^{r} \subseteq \mathcal{P}_{d}(S)
$$

where $G$ is a compact semialgebraic set (not necessarily convex) and there exists a real-valued polynomial $u(x)$ with $u(x) \in \sum_{i=0}^{m} g_{i}(x) \Psi$ such that $\{u(x) \geq 0\}$ is compact. Then

$$
\mathcal{K}_{G}^{r} \uparrow \mathcal{P}_{d}(S) \text { as } r \rightarrow \infty
$$

and therefore

$$
z_{r} \uparrow z \text { as } r \rightarrow \infty
$$

## Size of the SOS Relaxation

Good news: $\left(L_{r}\right)$ can be solved using SDP techniques, and under mild conditions, $z_{r} \rightarrow z$.
Bad news: For a problem with $n$ variables and $m$ inequality constraints, the size of the relaxation is:

- One psd matrix of dimension $\binom{n+r}{r}$;
- $m$ psd matrices, each of dimension $\binom{n+r-\operatorname{deg}\left(g_{i}\right)}{r-\operatorname{deg}\left(g_{i}\right)}$
- $\binom{n+r}{r}$ linear constraints.


## Size of the SOS Relaxation

Good news: $\left(L_{r}\right)$ can be solved using SDP techniques, and under mild conditions, $z_{r} \rightarrow z$.
Bad news: For a problem with $n$ variables and $m$ inequality constraints, the size of the relaxation is:

- One psd matrix of dimension $\binom{n+r}{r}$;
- $m$ psd matrices, each of dimension $\binom{n+r-\operatorname{deg}\left(g_{i}\right)}{r-\operatorname{deg}\left(g_{i}\right)}$
- $\binom{n+r}{r}$ linear constraints.

One way around this difficulty is to exploit any available structure (sparsity, symmetry) to solve smaller SDP problems.
Much progress has been made in this direction.

## Size of the SOS Relaxation

Good news: $\left(L_{r}\right)$ can be solved using SDP techniques, and under mild conditions, $z_{r} \rightarrow z$.
Bad news: For a problem with $n$ variables and $m$ inequality constraints, the size of the relaxation is:

- One psd matrix of dimension $\binom{n+r}{r}$;
- $m$ psd matrices, each of dimension $\binom{n+r-\operatorname{deg}\left(g_{i}\right)}{r-\operatorname{deg}\left(g_{i}\right)}$
- ( $\left.\begin{array}{c}n+r \\ r\end{array}\right)$ linear constraints.

One way around this difficulty is to exploit any available structure (sparsity, symmetry) to solve smaller SDP problems.
Much progress has been made in this direction.
Our objective
Avoid the blow-up by keeping $r$ constant (and small).

## A Small Example

$$
\begin{array}{rr}
\inf _{x, y} & (x-1)^{2}+(y-1)^{2} \\
\text { s.t. } & x^{2}-4 x y-1
\end{array} \quad \geq 0
$$

## A Small Example

$$
\begin{array}{rr}
\inf _{x, y} & (x-1)^{2}+(y-1)^{2} \\
\text { s.t. } & x^{2}-4 x y-1
\end{array} \quad \geq 0
$$

## $L_{2}$ relaxation

$$
\begin{array}{cl}
\sup _{\lambda, \sigma_{i}(\cdot)}^{\text {s.t. }} & \lambda \\
& (x-1)^{2}+(y-1)^{2}-\lambda=\sigma_{0}(x, y)+\sum_{i=1}^{4} \sigma_{i}(x, y) g_{i}(x, y) \\
& \sigma_{0}(x, y) \text { is SOS of degree } 2 \\
& \sigma_{i}(x, y) \text { is SOS of degree } 0
\end{array}
$$

## A Small Example

$L_{2}$ relaxation

$$
\begin{array}{cl}
\sup _{\lambda, \sigma_{i}(\cdot)} & \lambda \\
\text { s.t. } & (x-1)^{2}+(y-1)^{2}-\lambda=\sigma_{0}(x, y)+\sum_{i=1}^{4} \sigma_{i}(x, y) g_{i}(x, y) \\
& (6 \times 14 \text { lin. system }) \\
& \sigma_{0}(x, y) \text { is SOS of degree } 2(3 \times 3 \text { matrix) } \\
& \sigma_{i}(x, y) \text { is SOS of degree } 0 \text { (4 non-negative constants) }
\end{array}
$$



Figure: Structure of the linear system for $\mathrm{L}_{2}$

## A Small Example

$\mathrm{L}_{2}$ relaxation (Optimal value: 9.4083)

```
sup \lambda
\lambda,\sigmai(\cdot)
    s.t. }\quad(x-1\mp@subsup{)}{}{2}+(y-1\mp@subsup{)}{}{2}-\lambda=\mp@subsup{\sigma}{0}{}(x,y)+\mp@subsup{\sum}{i=1}{4}\mp@subsup{\sigma}{i}{}(x,y)\mp@subsup{g}{i}{}(x,y
(6 < 14 lin. system )
\sigma
\sigma}(x,y)\mathrm{ is SOS of degree 0 (4 non-negative constants)
```



Figure: Structure of the linear system for $L_{2}$

## Example (ctd)

## $\mathrm{L}_{4}$ relaxation (Optimal value: 36.0654 )

$$
\begin{aligned}
\sup _{\left.\lambda, \sigma_{i} \cdot \cdot\right)} & \lambda \\
\text { s.t. } & (x-1)^{2}+(y-1)^{2}-\lambda=\sigma_{0}(x, y)+\sum_{i=1}^{4} \sigma_{i}(x, y) g_{i}(x, y) \\
& (15 \times 73 \text { lin. system }) \\
& \sigma_{0}(x, y) \text { is SOS of degree } 4(6 \times 6 \text { matrix }) \\
& \sigma_{i}(x, y) \text { is SOS of degree } 2(3 \times 3 \text { SDP matrices })
\end{aligned}
$$



Figure: Structure of the linear system for $L_{4}$

## Example (ctd)

## $\mathrm{L}_{6}$ relaxation (Optimal value: 51.7386)

$$
\begin{aligned}
\sup _{\lambda, \sigma_{i}(\cdot)} & \lambda \\
\text { s.t. } & (x-1)^{2}+(y-1)^{2}-\lambda=\sigma_{0}(x, y)+\sum_{i=1}^{4} \sigma_{i}(x, y) g_{i}(x, y) \\
& (28 \times 245 \text { lin. system }) \\
& \sigma_{0}(x, y) \text { is SOS of degree } 6(10 \times 10 \text { matrix }) \\
& \sigma_{i}(x, y) \text { is SOS of degree } 4(6 \times 6 \text { SDP matrices })
\end{aligned}
$$



Figure: Structure of the linear system for $\mathrm{L}_{6}$

## Lasserre's Hierarchy for our Example

To solve

$$
\begin{array}{cl}
\inf _{x, y} & (x-1)^{2}+(y-1)^{2} \\
\text { s.t. } & x^{2}-4 x y-1 \geq 0 \\
& y x-3 \geq 0 \\
& y^{2}-4 \geq 0 \\
12^{2}-(x-2)^{2}-4(y-1)^{2} \geq 0
\end{array}
$$

| $r$ | 2 | 4 | 6 |
| :--- | ---: | ---: | ---: |
| \# vars | 14 | 73 | 245 |
| \# constraints | 6 | 15 | 28 |
| Bound | 9.40 | 36.06 | 51.73 |

## Lasserre's Hierarchy for our Example

To solve

$$
\begin{array}{cl}
\inf _{x, y} & (x-1)^{2}+(y-1)^{2} \\
\text { s.t. } & x^{2}-4 x y-1 \geq 0 \\
& y x-3 \geq 0 \\
& y^{2}-4 \geq 0 \\
12^{2}-(x-2)^{2}-4(y-1)^{2} \geq 0
\end{array}
$$

| $r$ | 2 | 4 | 6 |
| :--- | ---: | ---: | ---: |
| \# vars | 14 | 73 | 245 |
| \# constraints | 6 | 15 | 28 |
| Bound | 9.40 | 36.06 | 51.73 |

There is no need to run relaxations for $r>6$, because an optimal solution (and optimality certificate) can be extracted from solution to $L_{6}$.

## Improving the approximation without growing $r$

Recall
$(\mathrm{POP}) \quad z=\sup f(x)$
s.t. $x \in S:=\left\{x: g_{i}(x) \geq 0, i=1, \ldots, m\right\}$
$\left(\mathrm{L}_{r}(G)\right) \quad z_{r}(G)=\inf _{\lambda, \sigma_{i}} \lambda$
s.t. $\quad \lambda-f(x)=\sigma_{0}(x)+\sum_{i=1}^{m} \sigma_{i}(x) g_{i}(x)$
$\sigma_{0}(x)$ is SOS of degree $\leq r$
$\sigma_{i}(x)$ is SOS of degree $\leq r-\operatorname{deg}\left(g_{i}(x)\right)$, $i=1, \ldots, m$.

Observe that

- $\left(\mathrm{L}_{r}\right)$ is defined in terms of the functions used to describe $S$
- Call this set $G=\left\{g_{i}(x): i=1, \ldots, m\right\}$


## Goal

Improve our description of $S$ by growing $G$ in such a way that the bound obtained from $L_{r}$ improves, for fixed $r$.

## Back to our Example

## We start with

$$
G=\left\{x^{2}-4 x y-1, y x-3, y^{2}-4,12^{2}-(x-2)^{2}-4(y-1)^{2}\right\}
$$

## Back to our Example

## We start with

$$
G=\left\{x^{2}-4 x y-1, y x-3, y^{2}-4,12^{2}-(x-2)^{2}-4(y-1)^{2}\right\}
$$

- For all $(x, y) \in S$,

$$
p_{1}(x, y)=0.079 x^{2}+0.072 x y+0.325 x-0.850 y^{2}-0.339 y-0.213 \geq 0
$$

- We say that $p_{1}(x, y)$ is a valid (polynomial) inequality for $S$.


## Back to our Example

## We start with

$$
G=\left\{x^{2}-4 x y-1, y x-3, y^{2}-4,12^{2}-(x-2)^{2}-4(y-1)^{2}\right\}
$$

- For all $(x, y) \in S$,

$$
p_{1}(x, y)=0.079 x^{2}+0.072 x y+0.325 x-0.850 y^{2}-0.339 y-0.213 \geq 0
$$

- We say that $p_{1}(x, y)$ is a valid (polynomial) inequality for $S$.


## Let $G_{1}=G \cup\left\{p_{1}(x, y)\right\}$

Then

$$
z_{2}\left(G_{1}\right)=22.8393>9.4083=z_{2}(G)
$$

## Why Stop at $p_{1}$ ?

Add valid inequalities iteratively

- Start with $G_{0}=G$.
- Given $G_{i}$, generate $p_{i}$ valid (inequality) for $S$. Let $G_{i+1}=G_{i} \cup\left\{p_{i}\right\}$.


## Why Stop at $p_{1}$ ?

## Add valid inequalities iteratively

- Start with $G_{0}=G$.
- Given $G_{i}$, generate $p_{i}$ valid (inequality) for $S$. Let $G_{i+1}=G_{i} \cup\left\{p_{i}\right\}$.

$$
p_{1}(x, y)=0.079 x^{2}+0.072 x y+0.325 x-0.850 y^{2}-0.339 y-0.213
$$

| $i$ | 0 | 1 |
| :--- | ---: | ---: |
|  | 9.4083 | 22.8393 |

## Why Stop at $p_{1}$ ?

## Add valid inequalities iteratively

- Start with $G_{0}=G$.
- Given $G_{i}$, generate $p_{i}$ valid (inequality) for $S$. Let $G_{i+1}=G_{i} \cup\left\{p_{i}\right\}$.

$$
p_{2}(x, y)=0.053 x^{2}+0.082 x y+0.205 x-0.764 y^{2}-0.533 y-0.282
$$

| $i$ | 0 | 1 | 2 |
| ---: | ---: | ---: | ---: |
|  | 9.4083 | 22.8393 | 30.1062 |

## Why Stop at $p_{1}$ ?

## Add valid inequalities iteratively

- Start with $G_{0}=G$.
- Given $G_{i}$, generate $p_{i}$ valid (inequality) for $S$. Let $G_{i+1}=G_{i} \cup\left\{p_{i}\right\}$.

$$
p_{3}(x, y)=0.069 x^{2}+0.002 x y-0.239 x-0.770 y^{2}+0.551 y-0.200
$$

| $i$ | 0 | 1 | 2 | 3 |
| :--- | ---: | ---: | ---: | ---: |
|  | 9.4083 | 22.8393 | 30.1062 | 32.2653 |

## Why Stop at $p_{1}$ ?

## Add valid inequalities iteratively

- Start with $G_{0}=G$.
- Given $G_{i}$, generate $p_{i}$ valid (inequality) for $S$. Let $G_{i+1}=G_{i} \cup\left\{p_{i}\right\}$.

$$
p_{4}(x, y)=-0.019 x^{2}+0.338 x y+0.097 x-0.691 y^{2}-0.577 y-0.254
$$

| $i$ | 0 | 1 | 2 | 3 | 4 |
| ---: | ---: | ---: | ---: | ---: | ---: |
|  | 9.4083 | 22.8393 | 30.1062 | 32.2653 | 40.1754 |

## Why Stop at $p_{1}$ ?

## Add valid inequalities iteratively

- Start with $G_{0}=G$.
- Given $G_{i}$, generate $p_{i}$ valid (inequality) for $S$. Let $G_{i+1}=G_{i} \cup\left\{p_{i}\right\}$.

$$
p_{5}(x, y)=0.070 x^{2}+0.071 x y-0.158 x-0.858 y^{2}-0.425 y-0.214
$$

| $i$ | 0 | 1 | 2 | 3 | 4 |
| ---: | ---: | ---: | ---: | ---: | ---: |
|  | 9.4083 | 22.8393 | 30.1062 | 32.2653 | 40.1754 |


| $i$ | 5 |
| ---: | ---: |
|  | 43.1587 |

## Why Stop at $p_{1}$ ?

## Add valid inequalities iteratively

- Start with $G_{0}=G$.
- Given $G_{i}$, generate $p_{i}$ valid (inequality) for $S$. Let $G_{i+1}=G_{i} \cup\left\{p_{i}\right\}$.

$$
p_{6}(x, y)=0.052 x^{2}+0.047 x y+0.012 x-0.935 y^{2}-0.130 y-0.321
$$

| $i$ | 0 | 1 | 2 | 3 | 4 |
| ---: | ---: | ---: | ---: | ---: | ---: |
|  | 9.4083 | 22.8393 | 30.1062 | 32.2653 | 40.1754 |


| $i$ | 5 | 6 |
| :--- | ---: | ---: |
|  | 43.1587 | 49.3414 |

## Why Stop at $p_{1}$ ?

## Add valid inequalities iteratively

- Start with $G_{0}=G$.
- Given $G_{i}$, generate $p_{i}$ valid (inequality) for $S$. Let $G_{i+1}=G_{i} \cup\left\{p_{i}\right\}$.

$$
p_{7}(x, y)=0.046 x^{2}+0.006 x y-0.182 x-0.707 y^{2}+0.652 y-0.195
$$

| $i$ | 0 | 1 | 2 | 3 | 4 |
| :--- | ---: | ---: | ---: | ---: | ---: |
|  | 9.4083 | 22.8393 | 30.1062 | 32.2653 | 40.1754 |


| $i$ | 5 | 6 | 7 |
| ---: | ---: | ---: | ---: |
|  | 43.1587 | 49.3414 | 51.5485 |

## Why Stop at $p_{1}$ ?

## Add valid inequalities iteratively

- Start with $G_{0}=G$.
- Given $G_{i}$, generate $p_{i}$ valid (inequality) for $S$. Let $G_{i+1}=G_{i} \cup\left\{p_{i}\right\}$.

$$
p_{8}(x, y)=0.023 x^{2}+0.093 x y+0.116 x-0.566 y^{2}-0.621 y-0.519
$$

| $i$ | 0 | 1 | 2 | 3 | 4 |
| ---: | ---: | ---: | ---: | ---: | ---: |
|  | 9.4083 | 22.8393 | 30.1062 | 32.2653 | 40.1754 |


| $i$ | 5 | 6 | 7 | 8 |
| :--- | ---: | ---: | ---: | ---: |
|  | 43.1587 | 49.3414 | 51.5485 | 51.7135 |

## Why Stop at $p_{1}$ ?

## Add valid inequalities iteratively

- Start with $G_{0}=G$.
- Given $G_{i}$, generate $p_{i}$ valid (inequality) for $S$. Let $G_{i+1}=G_{i} \cup\left\{p_{i}\right\}$.

\[

\]

## Generating Valid Inequalities for POPs

## Recall

$$
\begin{array}{lll}
z=\inf & \lambda & \\
& \text { s.t. } & \lambda-f(x) \in \mathcal{P}_{d}(S) \\
z_{r}(G)= & \text { inf } & \lambda \\
& \text { s.t. } & \lambda-f(x) \in \mathcal{K}_{r}(G)
\end{array}
$$

## Lemma

Let $G$ be a description for $S$, and let $p(x)$ be a valid inequality for $S$. Then

$$
z_{r}(G \cup\{p(x)\}) \geq z_{r}(G)
$$

## Generating Valid Inequalities for POPs

## Recall

$$
\begin{array}{lll}
z=\inf & \lambda & \\
& \text { s.t. } & \lambda-f(x) \in \mathcal{P}_{d}(S) \\
z_{r}(G)= & \text { inf } & \lambda \\
& \text { s.t. } & \lambda-f(x) \in \mathcal{K}_{r}(G)
\end{array}
$$

## Lemma

Let $G$ be a description for $S$, and let $p(x)$ be a valid inequality for $S$.
Then

$$
z_{r}(G \cup\{p(x)\}) \geq z_{r}(G)
$$

How to generate a valid improving inequality?
Given a description $G$ of $S$, find $p(x)$ valid for $S$ such that

$$
z_{r}(G \cup\{p(x)\})>z_{r}(G)
$$

## Valid Inequality Generation for POPs

## Goal

Given a description $G$ of $S$, find $p(x) \in \mathcal{P}_{d}(S) \backslash \mathcal{K}_{r}(G)$
Issues to address:
(1) Generate $p(x) \in \mathcal{P}_{d}(S)$.
(2) Ensure that $p(x) \subsetneq \mathcal{K}_{r}(G)$

## Valid Inequality Generation for POPs

## Goal

Given a description $G$ of $S$, find $p(x) \in \mathcal{P}_{d}(S) \backslash \mathcal{K}_{r}(G)$
Issues to address:
(1) Generate $p(x) \in \mathcal{P}_{d}(S)$.
(2) Ensure that $p(x) \subsetneq \mathcal{K}_{r}(G)$

Issue 1: Generate $p(x) \in \mathcal{P}_{d}(S)$
There is no tractable representation for $\mathcal{P}_{d}(S)$

## Valid Inequality Generation for POPs

## Goal

Given a description $G$ of $S$, find $p(x) \in \mathcal{P}_{d}(S) \backslash \mathcal{K}_{r}(G)$
Issues to address:
(1) Generate $p(x) \in \mathcal{P}_{d}(S)$.
(2) Ensure that $p(x) \subsetneq \mathcal{K}_{r}(G)$

Issue 1: Generate $p(x) \in \mathcal{P}_{d}(S)$
There is no tractable representation for $\mathcal{P}_{d}(S)$

- Sol: Generate $p(x) \in \mathcal{K}_{r+2}(G) \cap \mathbf{R}_{r}[x] \subset \mathcal{P}_{d}(S)$.


## Valid Inequality Generation for POPs

## Goal

Given $G$ describing $S$, find $p(x) \in \mathcal{P}_{d}(S) \backslash \mathcal{K}_{r}(G)$
Issues to address:
(1) Generate $p(x) \in \mathcal{P}_{d}(S)$.
(2) Ensure that $p(x) \notin \mathcal{K}_{r}(G)$

Issue 2: Ensure $p(x) \notin \mathcal{K}_{r}(G)$

## Valid Inequality Generation for POPs

## Goal

Given $G$ describing $S$, find $p(x) \in \mathcal{P}_{d}(S) \backslash \mathcal{K}_{r}(G)$
Issues to address:
(1) Generate $p(x) \in \mathcal{P}_{d}(S)$.
(2) Ensure that $p(x) \notin \mathcal{K}_{r}(G)$

Issue 2: Ensure $p(x) \notin \mathcal{K}_{r}(G)$

- Let $Y$ be the dual optimal solution of $\mathrm{L}_{r}(G)$
- Then $Y \in \mathcal{K}_{r}(G)^{*}$
- and therefore $p \in \mathcal{K}_{r}(G) \Rightarrow\langle p, Y\rangle \geq 0$.
$\Rightarrow$ Look for $p(x)$ such that $\langle p, Y\rangle<0$.


## Inequality Generating Subproblem

## Given $G$ and $Y$

$$
\begin{array}{ll}
\min & \langle p, Y\rangle \\
\text { s.t. } & p(x) \in \mathcal{K}_{r+2}(G) \\
& \|p\|=1
\end{array}
$$

## Inequality Generating Subproblem

## Given $G$ and $Y$

$$
\begin{array}{ll}
\min & \langle p, Y\rangle \\
\text { s.t. } & p(x) \in \mathcal{K}_{r+2}(G) \\
& \|p\|=1
\end{array}
$$

The normalization is necessary, otherwise the problem is unbounded

- For any $c>0, p(x) \geq 0 \Leftrightarrow c p(x) \geq 0$.


## Another Small Example

Optimal value $=0$

$$
\begin{aligned}
\min & x_{1}-x_{1} x_{3}-x_{1} x_{4}+x_{2} x_{4}+x_{5}-x_{5} x_{7}-x_{5} x_{8}+x_{6} x_{8} \\
\text { s.t. } & x_{3}+x_{4} \leq 1 \\
& x_{7}+x_{8} \leq 1 \\
& 0 \leq x_{i} \leq 1 \quad \forall i \in\{1, \cdots, 8\} .
\end{aligned}
$$

## Another Small Example

Optimal value $=0$

$$
\begin{aligned}
\min & x_{1}-x_{1} x_{3}-x_{1} x_{4}+x_{2} x_{4}+x_{5}-x_{5} x_{7}-x_{5} x_{8}+x_{6} x_{8} \\
\text { s.t. } & x_{3}+x_{4} \leq 1 \\
& x_{7}+x_{8} \leq 1 \\
& 0 \leq x_{i} \leq 1 \quad \forall i \in\{1, \cdots, 8\} .
\end{aligned}
$$

| $r$ | 2 | 4 | 6 | 8 |
| :--- | :---: | :---: | :---: | :---: |
| Objective val. | unb. | -0.03550 | -0.00192 | - |
| Time (s) | 1.02 | 2.81 | 726.50 | $>18000$ |

Table: Lasserre's Hierarchy

## Another Small Example

Optimal value $=0$

$$
\begin{aligned}
\min & x_{1}-x_{1} x_{3}-x_{1} x_{4}+x_{2} x_{4}+x_{5}-x_{5} x_{7}-x_{5} x_{8}+x_{6} x_{8} \\
\text { s.t. } & x_{3}+x_{4} \leq 1 \\
& x_{7}+x_{8} \leq 1 \\
& 0 \leq x_{i} \leq 1 \quad \forall i \in\{1, \cdots, 8\} .
\end{aligned}
$$

| $r$ | 2 | 4 | 6 | 8 |
| :--- | :---: | :---: | :---: | :---: |
| Objective val. | unb. | -0.03550 | -0.00192 | - |
| Time (s) | 1.02 | 2.81 | 726.50 | $>18000$ |

Table: Lasserre’s Hierarchy

| Iter. | 0 | 1 | 2 | 3 | 4 | 5 | 10 | 50 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Objective val. | unb. | -0.109 | -0.073 | -0.069 | -0.068 | -0.066 | -0.057 | -0.014 |
| Time (s) |  |  |  |  |  |  |  |  |
| Subproblem | - | 1.5 | 1.8 | 2.1 | 1.9 | 2.0 | 2.5 |  |
| Master problem | 0.2 | 0.3 | 0.3 | 0.4 | 0.5 | 0.5 | 0.6 |  |
| Cumulative | 0.2 | 2.0 | 4.2 | 6.7 | 9.2 | 11.8 | 26.1 | 200.1 |
|  |  | Table: Inequality Generation |  |  |  |  |  |  |

## Another Small Example

Optimal value $=0$

$$
\begin{aligned}
\min & x_{1}-x_{1} x_{3}-x_{1} x_{4}+x_{2} x_{4}+x_{5}-x_{5} x_{7}-x_{5} x_{8}+x_{6} x_{8} \\
\text { s.t. } & x_{3}+x_{4} \leq 1 \\
& x_{7}+x_{8} \leq 1 \\
& 0 \leq x_{i} \leq 1 \quad \forall i \in\{1, \cdots, 8\} .
\end{aligned}
$$



## The Motzkin Polynomial

Optimal value $=0$

$$
\min _{x, y \in \mathbb{R}} x^{2} y^{2}\left(x^{2}+y^{2}-3 z^{2}\right)+z^{6}
$$

## The Motzkin Polynomial

Optimal value $=0$

$$
\min _{x, y, z \in \mathbb{R}} x^{2} y^{2}\left(x^{2}+y^{2}-3 z^{2}\right)+z^{6}
$$

The Lasserre relaxations are unbounded for all values of $r$ (since the Motzkin polynomial is not a SOS).

## The Motzkin Polynomial

Optimal value $=0$

$$
\min _{x, y, z \in \mathbb{R}} x^{2} y^{2}\left(x^{2}+y^{2}-3 z^{2}\right)+z^{6}
$$

The Lasserre relaxations are unbounded for all values of $r$ (since the Motzkin polynomial is not a SOS).

| Iter. | 0 | 1 | 2 | 3 | 4 | 5 | 10 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Objective val. | unb. | -8591.8 | -5687.1 | -663.8 | -643.8 | -640.7 | -613.5 |
| Time (s) |  |  |  |  |  |  |  |
| Subproblem | - | 0.4 | 0.3 | 0.3 | 0.4 | 0.4 | 0.5 |
| Master problem | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
| Cumulative | 0.3 | 1.0 | 1.6 | 2.2 | 2.9 | 3.6 | 7.5 |
|  | Table: Inequality Generation |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

## Special Case: Binary Quadratic POPs

Consider the general binary quadratic POP:

$$
\begin{array}{ll}
\max & f(x) \\
\text { s.t. } & g_{i}(x) \geq 0 \quad \forall i \in I=\{1, \ldots, m\} \\
& x \in\{-1,1\}^{n} .
\end{array}
$$

where $f(x)$ and $g_{i}(x)$ are polynomials of degree at most 2.

We write the following equivalent formulation:

$$
\begin{array}{ll}
\min & \lambda \\
\text { s.t. } & \lambda-f(x) \in \mathcal{P}_{2}\left(S \cap\{-1,1\}^{n}\right)
\end{array}
$$

where $S=\left\{x: g_{i}(x) \geq 0\right\}$.

Valid Inequality Generation for Binary Quadratic POPs We make use of the following theorem:
Theorem (Peña-Vera-Zuluaga (2006))
Let $S$ be a compact set. For any degree $d$,

$$
p(x) \in \mathcal{P}_{d}\left(x \in S: x_{j} \in\{-1,1\}\right)
$$

$$
p(x)=\left(1+x_{j}\right) r_{+}(x)+\left(1-x_{j}\right) r_{-}(x)+\left(1-x_{j}^{2}\right) c(x)
$$

where $r_{+}(x), r_{-}(x) \in \mathcal{P}_{d}(S)$ and $c(x) \in \mathbf{R}_{d-1}[x]$.

## Valid Inequality Generation for Binary Quadratic POPs

 We make use of the following theorem:Theorem (Peña-Vera-Zuluaga (2006))
Let $S$ be a compact set. For any degree $d$,

$$
\begin{aligned}
& p(x) \in \mathcal{P}_{d}\left(x \in S: x_{j} \in\{-1,1\}\right) \\
& \quad \Leftrightarrow \\
& p(x)=\left(1+x_{j}\right) r_{+}(x)+\left(1-x_{j}\right) r_{-}(x)+\left(1-x_{j}^{2}\right) c(x),
\end{aligned}
$$

where $r_{+}(x), r_{-}(x) \in \mathcal{P}_{d}(S)$ and $c(x) \in \mathbf{R}_{d-1}[x]$.
We can approximate $\mathcal{P}_{2}\left(S \cap\{-1,1\}^{n}\right)$ by

$$
\begin{gathered}
\mathcal{Q}_{2}^{j}(G)=\left\{\left(1+x_{j}\right) r_{+}(x)+\left(1-x_{j}\right) r_{-}(x)+\left(1-x_{j}^{2}\right) c(x):\right. \\
\left.r^{+}(x), r^{-}(x) \in \mathcal{K}_{2}(G), \quad c(x) \in \mathbf{R}_{1}[x]\right\}
\end{gathered}
$$

and we have that

$$
\mathcal{K}_{2}(G) \subset \mathcal{Q}_{2}^{j}(G) \subset \mathcal{P}_{2}\left(S \cap\{-1,1\}^{n}\right)
$$

## Valid Inequality Generation for Binary Quadratic POPs

## Goal

Given $G$ describing $S$, find $p(x) \in \mathcal{P}_{2}\left(S \cap\{-1,1\}^{n}\right) \backslash \mathcal{K}_{2}(G)$

## Given $G$ and $Y$

$$
\begin{array}{ll}
\min & \langle p, Y\rangle \\
\text { s.t. } & p(x) \in \mathcal{Q}_{2}^{j}(G) \\
& \|p\|=1
\end{array}
$$

## Valid Inequality Generation for Binary Quadratic POPs

## Goal

Given $G$ describing $S$, find $p(x) \in \mathcal{P}_{2}\left(S \cap\{-1,1\}^{n}\right) \backslash \mathcal{K}_{2}(G)$

## Given $G$ and $Y$

$$
\begin{array}{ll}
\min & \langle p, Y\rangle \\
\text { s.t. } & p(x) \in \mathcal{Q}_{2}^{j}(G) \\
& \|p\|=1
\end{array}
$$

Note that there is exactly one subproblem per binary variable $j$. Moreover,

- the size of $\mathcal{Q}_{2}^{j}(G)$ is only twice size of $\mathcal{K}_{2}(G)$
- while the size of $\mathcal{K}_{4}(G)$ is $\sim n^{2}$ times size of $\mathcal{K}_{2}(G)$


## Convergence Result

## Theorem

When the polynomial inequality generation scheme is applied to a binary quadratic optimization problem with linear constraints $A x=b$, and the initial set is

$$
G_{0}=\left\{n-\|x\|^{2}, \sum_{i}\left(A_{i}^{T} x-b_{i}\right)^{2},-\sum_{i}\left(A_{i}^{T} x-b_{i}\right)^{2}\right\}
$$

then if all the subproblems have an optimal value 0 , then the algorithm has converged to a global optimal solution.

## Computational Results

## Quadratic Knapsack Problem

$$
\max x^{\top} P x
$$

s.t. $w^{\top} x \leq c$

$$
x \in\{-1,1\}^{n}
$$

|  |  | Lasserre $r=4$ |  | Lasserre $r=2$ |  |  | Poly. Ineq. Gen. |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $n$ | Optimal | Obj. | Time (s) | Obj. | Time (s) | Iter. 0 | Iter. 1 | Iter. 5 | Iter. 10 |
| 10 | 1653 | 1707.3 | 28.1 | 1857.7 | 0.8 | 1857.7 | 1821.9 | 1797.4 | 1784.8 |
| 20 | 8510 | 8639.7 | 17269.1 | 9060.3 | 2.9 | 9060.3 | 9015.3 | 8925.9 | 8850.3 |
| 30 | 18229 | - | - | 19035.9 | 4.3 | 19035.9 | 18920.2 | 18791.7 | 18727.2 |
| 40 | 2679 | - | - | 4735.9 | 6.8 | 4735.9 | 4590.7 | 4248.2 | 4126.7 |
| 50 | 16192 | - | - | 21777.9 | 19.2 | 21777.9 | 21390.3 | 20162.1 | 19407.1 |
| 60 | 58451 | - | - | 62324.4 | 126.6 | 62324.4 | 62019.1 | 60906.0 | 60585.5 |
| 70 | 16982 | - | - | 23884.9 | 231.4 | 23884.9 | 23484.0 | 22852.8 | 1796.6 |
| 80 | - | - | - | 80482.7 | 365.4 | 80482.7 | 79738.9 | - | 15581.1 |

(5-hour time limit)

## Computational Results

## Quadratic Assignment Problem

$$
\begin{array}{ll}
\min \sum_{i \neq k, j \neq l} f_{i k} d_{j l} x_{i j} x_{k l} & \\
\text { s.t. } \sum_{i} x_{i j}=1 & 1 \leq j \leq n \\
\sum_{j} x_{i j}=1 & 1 \leq i \leq n \\
\quad x \in\{0,1\}^{n \times n} . &
\end{array}
$$

|  |  | Lasserre $r=4$ |  | Lasserre $r=2$ |  |  |  |  |  | Poly. Ineq. Gen. |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: | :---: |
| $n$ | Optimal | Obj. | Time (s) | Obj. | Time (s) | Iter. 0 | Iter. 1 | Iter. 5 | Iter. 10 | Time (s) |  |  |  |
| 3 | 46 |  |  | $\mathbf{4 6 . 0}$ | 0.3 | $\mathbf{4 6 . 0}$ |  |  |  | 0.3 |  |  |  |
| 4 | 52 | $\mathbf{5 2 . 0}$ | 1154.8 | 50.8 | 1.0 | 50.8 | 51.8 | 52.0 |  | 6.3 |  |  |  |
| 5 | 110 | - | - | 104.3 | 3.4 | 104.3 | 105.1 | 106.3 | 106.8 | 68.5 |  |  |  |
| 6 | 272 | - | - | 268.9 | 9.3 | 268.9 | 269.4 | 269.8 | 270.2 | 404.4 |  |  |  |
| 7 | 356 | - | - | 344.2 | 18.1 | 344.2 | 344.9 | 345.6 | 346.0 | 3331.3 |  |  |  |
| 8 | 100 | - | - | 77.2 | 73.2 | 77.2 | 77.8 | 78.9 | - | 11413.9 |  |  |  |
| 9 | 280 | - | - | 247.5 | 281.7 | 247.5 | 248.6 | - | - | 13171.5 |  |  |  |

(5-hour time limit)

## Computational Results

## Degree Three Binary POPs

$$
\begin{array}{ll}
\max & \sum_{|\alpha| \leq 3} c_{\alpha} x^{\alpha} \\
\text { s.t. } & a^{T} x \leq b \\
& x \in\{-1,1\}^{n}
\end{array}
$$

| $n$ | Optimal | Lasserre $r=6$ |  | Lasserre $r=4$ |  | Poly. Ineq. Gen. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Obj. | Time (s) | Obj. | Time (s) | Iter. 0 | Iter. 1 | Iter. 5 | Iter. 10 | Time (s) |
| 5 | 58 | 58.00 | 9.6 | 59.37 | 2.1 | 67.16 | 58.45 | 58.00 |  | 5.2 |
| 10 | 139 | 139.00 | 4866.0 | 148.97 | 35.9 | 154.59 | 148.85 | 143.41 | 139.12 | 75.3 |
| 15 | 1371 | - | - | 1524.71 | 1436.2 | 1582.04 | 1575.49 | 1519.88 | 1494.01 | 1319.9 |
| 20 | 1654 | - | - | 1707.95 | 18106.6 | 1718.53 | 1716.00 | 1708.66 | 1705.15 | 15763.9 |
| 25 | - | - | - | - | - | 3967.12 | 3960.78 | - | - | 14287.3 |

(5-hour time limit)

## Plenty of Future Research!

- Theoretical issues:
- Prove convergence for (some scheme of) the general case


## Plenty of Future Research!

- Theoretical issues:
- Prove convergence for (some scheme of) the general case
- Specialize the methodology to other interesting problem classes, such as:
« complementarity problems
* quadratic constrained quadratic problems


## Plenty of Future Research!

- Theoretical issues:
- Prove convergence for (some scheme of) the general case
- Specialize the methodology to other interesting problem classes, such as:
« complementarity problems
* quadratic constrained quadratic problems
- Algorithmic issues:
- Choice of index for $j$ for inequality generation in the binary case


## Plenty of Future Research!

- Theoretical issues:
- Prove convergence for (some scheme of) the general case
- Specialize the methodology to other interesting problem classes, such as:
« complementarity problems
* quadratic constrained quadratic problems
- Algorithmic issues:
- Choice of index for $j$ for inequality generation in the binary case
- Add multiple inequalities at each iteration


## Plenty of Future Research!

- Theoretical issues:
- Prove convergence for (some scheme of) the general case
- Specialize the methodology to other interesting problem classes, such as:
« complementarity problems
* quadratic constrained quadratic problems
- Algorithmic issues:
- Choice of index for $j$ for inequality generation in the binary case
- Add multiple inequalities at each iteration
- Find ways to reduce size of SDP subproblems


## Plenty of Future Research!

- Theoretical issues:
- Prove convergence for (some scheme of) the general case
- Specialize the methodology to other interesting problem classes, such as:
* complementarity problems
* quadratic constrained quadratic problems
- Algorithmic issues:
- Choice of index for $j$ for inequality generation in the binary case
- Add multiple inequalities at each iteration
- Find ways to reduce size of SDP subproblems
- Avoid SDP altogether: second-order cone optimization?

