On the square peg problem

Benjamin Matschke

Disputationsvortrag

Plan

(1) The square peg problem
(2) Proof for Smooth curves
(3) A different class of curves
(4) What about immersed curves?
© What about rectangles on curves?
(6) Many related problems

The square peg problem

Definition

A Jordan curve γ is a continuous simple closed curve in the plane,

$$
\gamma: S^{1} \hookrightarrow \mathbb{R}^{2}
$$

DEfinition
A polygon P is inscribed in γ if all vertices of P belong to γ.

The square peg problem

Problem (Оtto Toeplitz 1911)
Does every Jordan curve inscribe a square?

- solved for "smooth enough" curves (e.g. C ${ }^{1}$),
- onen otherwise (\rightarrow why? Because no working arproximating argument is known)

The square peg problem

Problem (Оtto Toeplitz 1911)
Does every Jordan curve inscribe a square?

- solved for "smooth enough" curves (e.g. C ${ }^{1}$),
- onen otherwise (\rightarrow why? Because no working arproximating argument is known)

The square peg problem

Problem (Otto Toeplitz 1911)

Does every Jordan curve inscribe a square?

- solved for "smooth enough" curves (e.g. C^{1}),
- open otherwise (\rightarrow why? Because no working approximating argument is known)

Known PRoofs

Many proofs are known for various smoothness conditions:

- Toeplitz 1911 (convex curves)?
- Emch 1913, 1915 ("smooth enough" convex curves)
- Schnirel'man 1944 ("a bit less" than C^{2})
- Jerrard 1961 (analytic curves)
- Fenn 1970 (convex curves)
- Stromquist 1989 ("locally monotone curves")
- Pak 2008 (piecewise linear curves)
- Vrećica-Živaljević 2008 (Stromquist's curves)
- ...

The problem is either due to

- Toeplitz or
- Emch (Kemptner suggested to him the problem).

Stromquist's criterion:

Locally monotone curves:

Theorem (Stromquist 2011)
Any locally monotone Jordan curve inscribes a square.

New criterion:

Definition
A special trapezoid of size $\varepsilon \ldots$

Theorem (M 2009)
Let $\varepsilon \in(0,2 \pi)$. Any Jordan curve without (or with generically an even number of) special trapezoids of size ε inscribes a square.

New criterion

- This strictly generalizes Stromquist's theorem.
- "Having no inscribed special trapezoid of size ε " is an open condition for γ ! (w.r.t. compact-open topology; being locally monotone is not an open condition)
- The theorem holds for curves in arbitrary metric spaces.
- Proof based on obstruction theory, first used in this context by Vrećica-Živaljević.

Plan

(1) The square peg problem
(2) Proof FOR SMOOTH CURVES
(3) A DIFFERENT CLASS OF CURVES
(4) What about immersed curves?
(5) What about rectangles on curves?
(6) Many Related problems

General proof method for smooth curves

Generically, the number of inscribed squares is odd.

Schnirel'man's proof for smooth curves

Let $\gamma: S^{1} \hookrightarrow \mathbb{R}^{2}$ be smooth $\left(C^{\infty}\right)$.
Construct a test map

$$
f_{\gamma}:\left(S^{1}\right)^{4} \longrightarrow_{G} \mathbb{R}^{4} \times \mathbb{R}^{2}
$$

that measures the four edges and two diagonals of the parametrized quadrilateral. Then

$$
Q_{\gamma}:=f_{\gamma}^{-1}\left(\left\{(a, a, a, a, b, b) \in \mathbb{R}^{6}\right\}\right)
$$

is the set of inscribed squares.
Now deform the given γ to an ellipse.

Schnirel'man's Proof for smooth curves

- $[Q] \in \mathcal{N}_{0}\left(\left(S^{1}\right)^{4} / G\right)=\mathbb{Z}_{2}$,
- $[Q]=1 \Rightarrow Q \neq \emptyset$.

Schnirel'man's Proof for smooth curves

- $[Q] \in \mathcal{N}_{0}\left(\left(S^{1}\right)^{4} / G\right)=\mathbb{Z}_{2}$,
- $[Q]=1 \Rightarrow Q \neq \emptyset$.

Schnirel'man's Proof for smooth curves

- $[Q] \in \mathcal{N}_{0}\left(\left(S^{1}\right)^{4} / G\right)=\mathbb{Z}_{2}$,
- $[Q]=1 \Rightarrow Q \neq \emptyset$.

Schnirel'man's proof for smooth curves

- $[Q] \in \mathcal{N}_{0}\left(\left(S^{1}\right)^{4} / G\right)=\mathbb{Z}_{2}$,
- $[Q]=1 \Rightarrow Q \neq \emptyset$.

Plan

(1) The square peg problem
(2) Proof For Smooth Curves
(3) A different class of Curves
(4) What about immersed curves?
(5) What about rectangles on curves?
(6) Many Related problems

A DIFFERENT, OPEN CLASS OF CURVES

Theorem (M 2011)
Let $\gamma: S^{1} \rightarrow A$ represent a generator of $\pi_{1}(A)$, where

$$
A:=\left\{x \in \mathbb{R}^{2} \mid 1 \leq\|x\| \leq 1+\sqrt{2}\right\} .
$$

Then γ inscribes a square with edge length at least $\sqrt{2}$.

- γ needs to be only continuous, not even injective.
- This is the first known open class of curves $S^{1} \rightarrow \mathbb{R}^{2}$ that inscribe squares.

A different, open class of curves

Proof idea:

Let S be the set of squares with all vertices in A. Then,

$$
S=\{\text { big squares }\} \uplus\{\text { small squares }\} .
$$

Now,

- an ellipse in A inscribes one big square, and
- bordisms of squares stay in their component.

A different, open class of curves

Similar theorems for other shapes:

Question

Can this approach be made more general in order to solve the square peg problem completely?

Plan

(1) The square peg problem
(2) Proof for smooth curves
(3) A different class of curves

4 What about immersed curves?
(5) What about rectangles on curves?
(6) Many Related problems

Immersed curves

Example

Conjecture (Cantarella 2008)
Modulo 2, the number of inscribed squares of "generic" curves is the following ambient isotopy invariant of the curve: ...

Immersed curves

Counter-example:

Immersed curves

Let $\gamma: S^{1} \rightarrow \mathbb{R}^{2}$ be "generic".
Chequerboard coloring associated to γ :

Crossings are called fat if the black angles are $>90^{\circ}$. Dots mark the fat crossings.

Theorem (M 2011)
$\#\{$ inscribed squares $\}=\#\{$ fat crossings $\}+$
\#\{black components\} mod 2.

Proof

Proof

Proof

Proof

Proof

Proof

$$
000000
$$

Proof

Proof

Plan

(1) The square Peg Problem
(2) Proof for smooth curves
(3) A DIFFERENT CLASS OF CURVES
(4) What about ImMERSED Curves?
(5) What about rectangles on curves?
(6) Many Related problems

What about Rectangles

Problem

Does every smooth Jordan curve inscribe a rectangle of a given aspect ratio $r: 1$?

- This is open! $($ for $r \neq 1)$.

We have

- Partial results for $r=\sqrt{3}$.
- There is a mod-2 formula for immersed curves.

Plan

(1) The square Peg Problem
(2) Proof For Smooth curves
(3) A DIFFERENT CLASS OF CURVES
(4) What about immersed curves?
(5) What about rectangles on curves?
(6) Many Related problems

Thank you!

Discussion

