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PRELIMINARIES

E2: the Euclidean plane
H2: the hyperbolic plane
S2: the sphere

THEOREM (CLASSICAL DISCRETE ISOPERIMETRIC INEQUALITY)

Among convex polygons of a given perimeter in E2, H2 or in S2,
the regular one has maximal area.
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PRELIMINARIES

A more general approach (Brass, Moser, Pach: Research
Problems in Discrete Geometry, 2005):

Any inequality relating two geometric quantities (area,
perimeter, diameter, width, inradius, circumradius, etc.) of
convex (or simple) n-gons is called a “discrete isoperimetric
inequality”.

REMARK

For most pairs the optimal polygon is the regular n-gon.
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A recent question:

QUESTION (BRASS, 2005)
For n ≥ 5 odd, what is the supremum of the perimeters of the
simple n-gons contained in a unit disk of E2?
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PRELIMINARIES

THEOREM (AUDET, HANSEN AND MESSINE, 2009)
The supremum of the perimeters in the question of Brass is(√
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FIRST RESULTS

THEOREM (L., 2011)

Let M be E2 or H2, and let n ≥ 3 be an odd integer.

If C ⊂M is
a disk and P is a simple n-gon contained in C, then there is an
isosceles triangle, inscribed in C and with side-lengths α ≥ β,
such that perim P ≤ (n − 2)α + 2β.

REMARK (L., 2011)
There is a real number ε > 0 such that for every odd integer
n ≥ 3 and 0 < ρ < ε the following holds. If C ⊂ S2 is a disk of
radius ρ, and P is a simple n-gon contained in C, then there is
an isosceles triangle, inscribed in C and with side-lengths
α ≥ β, such that perim P ≤ (n − 2)α + 2β.
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A REMARK AND OUR NOTATIONS

REMARK

Using simple calculus, one can compute the maximum of the
quantity (n − 2)α + 2β for M = H2 and M = S2, but these
expressions are too long to be included here.

Notations:
– If it is not stated otherwise, M is any of the planes E2, H2

and S2.
– The closed/open segment with endpoints p,q ∈M is

[p,q]/(p,q), respectively.
– The distance of p,q is denoted by distM(p,q), or, if

M = E2, by |p − q|.
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THE PROOF FOR M = E2

Let P be a simple n-gon contained in the Euclidean disk C.

REMARK

It is sufficient to find a triangle contained in C, with side-lengths
α, β and γ, that satisfies perim P ≤ (n − 2)α + β + γ.
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THE PROOF FOR M = E2

Notations:
– The vertices of P are p1,p2, . . . ,pn = p0 in this

counterclockwise order.

– In a given Descartes coordinate system, the coordinates of
a point q are denoted by q = (ωq, θq).

– The coordinates of pi are denoted by pi = (ωi , θi).

DEFINITION

Let p,q,a,b, c ∈M. We say that the segment [p,q] and the
polygonal curve [a,b] ∪ [b, c] do not cross, if the set
(p,q) ∩

(
(a,b] ∪ [b, c)

)
is either empty or a segment.
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THE PROOF FOR M = E2

LEMMA

Let [p,q] ∈ C be a vertical segment and set δ = |p − q|.

Let
a,b, c ∈ C be points such that θa ≤ θb ≤ θc , and the polygonal
curve [a,b] ∪ [b, c] and [p,q] do not cross. If |b − a|, |c − b| ≤ δ,
then there are points a′,b′, c′ ∈ C such that
|b − a|+ |c − b| ≤ |b′ − a′|+ |c′ − b′|, and δ ≤ |c′ − b′|.
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THE PROOF OF THE THEOREM FROM THE LEMMA

We may assume that

– [p0,p1] is a longest side of P,
– [p0,p1] is a vertical segment (ω0 = ω1).

Consider the (n + 1)-element sequence µ1, µ2, . . . µn+1 defined
as follows.
For i = 1,2, . . . ,n + 1,

µi =


1, if θi < θi+1;
−1, if θi > θi+1;
0, if θi = θi+1.

Observe that µ0 = µn 6= 0.
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THE PROOF OF THE THEOREM FROM THE LEMMA

Since n + 1 is even, there are two consecutive elements of the
sequence that are both nonnegative or both nonpositive.

Thus,
we may apply Lemma.
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TWO REMARKS
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THE PROOF OF THE LEMMA

Notations:
– L(p,q): the line containing [p,q];
– Rp: the connected component of L(p,q) \ (p,q), containing p;
– Rq: the connected component of L(p,q) \ (p,q), containing q.

Assumptions: θp < θq and the centre of C is the origin.

Case 1, if [a,b] intersects Rq.
|b − a| ≤ δ ≤ |b − p|
δ ≤ |c − p|.
We may choose a′, b′ and c′ as
p, b and c, respectively.

If [b, c] intersects Rp, we may apply a similar argument.
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THE PROOF OF THE LEMMA

Case 2, if [a,b] intersects Rp.

If [b, c] intersects Rq, then δ ≤
|c − a|, and we are done. Let
b, c be in the closed half plane
H̄ bounded by L(p,q).
C̄: the set of points u ∈ H̄ ∩ C
that satisfy θu ≥ θb.
z: the intersection point of Rq
and bd C.
x : the point of H̄ ∩ bd C with
θx = θb
w : the intersection point of
bd C and the ray through o that
starts at b, and w = z other-
wise.
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THE PROOF OF THE LEMMA

If w ∈ C̄, then |c−b| ≤ |w−b|,
and we may choose a, b and w
as a′, b′ and c′, respectively.

Assume that w /∈ C̄. Then
|c−b| ≤ max{|x −b|, |z−b|}.
If |x−b| ≤ |z−b|, then we may
choose a, b and z as a′, b′ and
c′, respectively.
In the opposite case, we may
choose a, x and z, respec-
tively.

A similar argument proves the assertion in the case that [b, c]
intersects Rq.
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THE PROOF OF THE LEMMA

Case 3, a, b and c are in the same closed half plane H+

bounded by L(p,q).

We may assume that o ∈ H+, and that p,q ∈ bd C. Now we
drop the conditions that |b − a|, |c − b| ≤ δ, and maximize
|b − a|+ |c − b| under the conditions that
a,b, c ∈ C ∩ H+ = C+ and θa ≤ θb ≤ θc .
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THE PROOF OF THE LEMMA

r : the reflected image of a
about the y -axis
Observation: ωc ≤ ω−r = ωa
T : the reflection about the line
bisecting [a,b]
Then: T (a) = b, T (b) = a and
T (c) ∈ C+

|b − a| ≤ |p − a|,
|c − b| = |T (c)− a| ≤ |q − a|,
we can choose p,a,q as
a′,b′, c′.
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THE PROOF FOR M = H2 AND M = S2

What is the coordinate system?

An additional assumption for S2:
the radius ρ of the circle is ρ ≤ π

4 .
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REMARK ABOUT S2

Lemma does not hold for some spherical disks with radius
π
4 < ρ < π

2 .

EXAMPLE

Let ε > 0 and let p,q ∈ S2 be two points with
distS(p,q) = π − ε.

Let k ,−k be the centres of the two open
hemispheres bounded by L(p,q). Let [a,b] be a segment of
length π − ε, perpendicular to [p,q], such that q is the midpoint
of [a,b]. Note that k ,−k ∈ L(a,b) \ [a,b]. Thus, there is a disk
C of radius ρ < π

2 that contains [p,q] and [a,b]. Set c = a. If ε
is sufficiently small, then 3π − 3ε is greater than the perimeter
of any triangle inscribed in C.
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QUESTIONS

QUESTION

Let n ≥ 5 be odd, 0 < ρ < π
2 , and C ⊂ S2 be a disk of radius ρ.

What is the supremum of the perimeters of the simple n-gons
contained in C?

QUESTION

Let n ≥ 5 be odd, and let C ⊂ E2 be a plane convex body.
Prove or disprove that if P is a simple n-gon contained in C,
then there is a triangle, inscribed in C and with side-lengths
α, β and γ, such that perim P ≤ (n − 2)α + β + γ. Is it true for
plane convex bodies in the hyperbolic plane or on the sphere?
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QUESTIONS

QUESTION

Let n ≥ 5 be odd, and let M be a Minkowski plane with the unit
disk C. What is the supremum of the perimeters of the simple
n-gons contained in C? In particular, can Theorem be
generalized for Minkowski planes? Can it be generalized for an
arbitrary plane convex body of M instead of the unit disk of M?

In the last two questions the optimal triangle inscribed in C is
not necessarily isosceles.
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A RESULT ABOUT PLANE CONVEX BODIES

THEOREM

Let n ≥ 3 be an odd integer, and let C be a plane convex body
in E2 or in H2. For every simple n-gon P contained in C there is
a triangle, inscribed in C and with side-lengths α ≥ β ≥ γ, such
that perim P ≤ (n − 2)α + β + γ.

ZSOLT LÁNGI



A RESULT ABOUT PLANE CONVEX BODIES

THEOREM

Let n ≥ 3 be an odd integer, and let C be a plane convex body
in E2 or in H2. For every simple n-gon P contained in C there is
a triangle, inscribed in C and with side-lengths α ≥ β ≥ γ, such
that perim P ≤ (n − 2)α + β + γ.

ZSOLT LÁNGI



THE PROOF FOR E2

Our lemma fails:

p = (0,0), q = (0,1),
a = (0.31,0.095), b = (0,0.095),
c = (0.208,1.05),
C = conv{p,q,a,b, c},

|b − a| = 0.3100 . . .,
‖c − b| = 0.9773 . . .,
|c − a| = 0.9604 . . .,

|b − a|+ |c − b| = 1.2873 . . .,
|c − p|+ |q − c| = 1.2843 . . .,
|a− p|+ |q − a| = 1.2808 . . .,
|a− p|+ |c − a| = 1.2846 . . ..
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|c − p|+ |q − c| = 1.2843 . . .,
|a− p|+ |q − a| = 1.2808 . . .,
|a− p|+ |c − a| = 1.2846 . . ..
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THE PROOF FOR E2

The idea of the proof
Step 1: To examine under what conditions does the assertion
of the lemma fail
Step 2: To prove the theorem in this case using a different
method.

DEFINITION

If a′,b′, c′ satisfy |p − q| ≤ |c′ − a′| and
|b − a|+ |c − b| ≤ |b′ − a′|+ |c′ − b′|, we say that a′,b′ and c′

satisfy Property (*).
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THE PROOF FOR E2

Assumptions:
1 p = (0,0) and q = (0,1).

2 θa ≤ θb ≤ θc ,
3 a is not farther from the bisector of [p,q] than c (or in other

words, θa + θc ≥ 1),
4 at least one of ωa, ωb and ωc is positive.

Notation: pa = (0, θa), pb = (0, θb), pc = (0, θc).
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THE PROOF FOR E2

LEMMA

If there are no points a′,b′, c′ ∈ conv{p,q,a,b, c} satisfying
Property (*), then the following hold.

(A) |c − a| < 1.
(B) a,b and c are in the same closed half-plane bounded by

L(p,q).
(B) θc > 1 and 0 < θa <

1
2 .

(D) b ∈ conv{pa,pc ,a, c}.
(E) |b − a|+ |c − b| ≤ |pa − a|+ |c − pa|.
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THE PROOF FOR E2

We may assume that
a,b, c,p,q does not satisfy
Property (*).
Observation: θc − θa >

θc
2 .

Case 1, n = 5.
Then the remaining two edges
of P are [p,a] and [c,q], and
perim P ≤ 3|p − c|+ |p − q|+
|q − c|.
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THE PROOF FOR E2

Case 2, n ≥ 7.If |c − a| ≥
|c − pa|, then p,a, c satisfies
Property (*). Thus, we assume
that ωc ≥ ωa

2 .

Since |q−p| = 1, it is sufficient
to prove that
5 + |pa − a|+ |c − pa| ≤ 5|c −
p|+ |a− p|+ |c − a|.
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THE PROOF FOR E2

Notations:
M(c) = 5 + |pa − a|+ |c − pa|,
N(c) = 5|c−p|+|a−p|+|c−a|,
v = (1,0), w =

(
ωa
2 , θc

)
.

Observation: M(w) ≤ N(w)
We need to show that v(M) ≤
v(N).
Observations: 0 < φ ≤ π−ψ <
π
cosφ ≥ − cosψ.
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THE PROOF FOR E2

M(c) = 5 + |pa − a|+ |c − pa|,
N(c) = 5|c−p|+|a−p|+|c−a|,
v(M) = cosφ,
v(N) = 5 cosχ + cosψ ≥
5 cosχ− cosφ.
We set:
I = 5 cosχ− 2 cosφ ≤ v(N)−
v(M), and need to show that
I ≥ 0.
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THE PROOF FOR E2

I =
5ωc√
ω2

c + θ2
c
− 2ωc√

ω2
c + (θc − θa)2

≥ 5ωc√
ω2

c + θ2
c
− 2ωc√

ω2
c + (θc/2)2

=

=
ωc
(
21ω2

c + 9
4θ

2
c
)

√
ω2

c + θ2
c

√
ω2

c + (θc/2)2
(

5
√
ω2

c + (θc/2)2 + 2
√
ω2

c + θ2
c

) ≥ 0.

For H2 a similar proof works.
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The End
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