ON A DISCRETE ISOPERIMETRIC INEQUALITY

Zsolt Lángi

Department of Geometry, Budapest University of Technology, Hungary
September 16, 2011

PreLIMINARIES

\mathbb{E}^{2} : the Euclidean plane
\mathbb{H}^{2} : the hyperbolic plane
\mathbb{S}^{2} : the sphere

PreLIMINARIES

\mathbb{E}^{2} : the Euclidean plane
\mathbb{H}^{2} : the hyperbolic plane
\mathbb{S}^{2} : the sphere

THEOREM (CLASSICAL DISCRETE ISOPERIMETRIC INEQUALITY)

Among convex polygons of a given perimeter in $\mathbb{E}^{2}, \mathbb{H}^{2}$ or in \mathbb{S}^{2}, the regular one has maximal area.

PreLIMINARIES

A more general approach (Brass, Moser, Pach: Research Problems in Discrete Geometry, 2005):

A more general approach (Brass, Moser, Pach: Research Problems in Discrete Geometry, 2005):

Any inequality relating two geometric quantities (area, perimeter, diameter, width, inradius, circumradius, etc.) of convex (or simple) n-gons is called a "discrete isoperimetric inequality".

A more general approach (Brass, Moser, Pach: Research Problems in Discrete Geometry, 2005):

Any inequality relating two geometric quantities (area, perimeter, diameter, width, inradius, circumradius, etc.) of convex (or simple) n-gons is called a "discrete isoperimetric inequality".

REMARK

For most pairs the optimal polygon is the regular n-gon.

PreLIMINARIES

A recent question:

PreLIMINARIES

A recent question:
Question (BRAss, 2005)
For $n \geq 5$ odd, what is the supremum of the perimeters of the simple n-gons contained in a unit disk of \mathbb{E}^{2} ?

PreLIMINARIES

A recent question:

Question (BRASS, 2005)

For $n \geq 5$ odd, what is the supremum of the perimeters of the simple n-gons contained in a unit disk of \mathbb{E}^{2} ?

PreLIMINARIES

PreLIMINARIES

Theorem (Audet, Hansen and Messine, 2009)
The supremum of the perimeters in the question of Brass is

$$
\frac{\left(\sqrt{1+8(n-2)^{2}}-1\right)^{\frac{1}{2}}\left(\sqrt{1+8(n-2)^{2}}+3\right)^{\frac{3}{2}}}{4(n-2)}
$$

PreLIMINARIES

Theorem (Audet, Hansen and Messine, 2009)
The supremum of the perimeters in the question of Brass is

$$
\frac{\left(\sqrt{1+8(n-2)^{2}}-1\right)^{\frac{1}{2}}\left(\sqrt{1+8(n-2)^{2}}+3\right)^{\frac{3}{2}}}{4(n-2)}
$$

FIRST RESULTS

THEOREM (L., 2011)
Let \mathbb{M} be \mathbb{E}^{2} or \mathbb{H}^{2}, and let $n \geq 3$ be an odd integer.

THEOREM (L., 2011)

Let \mathbb{M} be \mathbb{E}^{2} or \mathbb{H}^{2}, and let $n \geq 3$ be an odd integer. If $C \subset \mathbb{M}$ is a disk and P is a simple n-gon contained in C,

THEOREM (L., 2011)

Let \mathbb{M} be \mathbb{E}^{2} or \mathbb{H}^{2}, and let $n \geq 3$ be an odd integer. If $C \subset \mathbb{M}$ is a disk and P is a simple n-gon contained in C, then there is an isosceles triangle,

THEOREM (L., 2011)

Let \mathbb{M} be \mathbb{E}^{2} or \mathbb{H}^{2}, and let $n \geq 3$ be an odd integer. If $C \subset \mathbb{M}$ is a disk and P is a simple n-gon contained in C, then there is an isosceles triangle, inscribed in C and with side-lengths $\alpha \geq \beta$,

THEOREM (L., 2011)

Let \mathbb{M} be \mathbb{E}^{2} or \mathbb{H}^{2}, and let $n \geq 3$ be an odd integer. If $C \subset \mathbb{M}$ is a disk and P is a simple n-gon contained in C, then there is an isosceles triangle, inscribed in C and with side-lengths $\alpha \geq \beta$, such that perim $P \leq(n-2) \alpha+2 \beta$.

THEOREM (L., 2011)

Let \mathbb{M} be \mathbb{E}^{2} or \mathbb{H}^{2}, and let $n \geq 3$ be an odd integer. If $C \subset \mathbb{M}$ is a disk and P is a simple n-gon contained in C, then there is an isosceles triangle, inscribed in C and with side-lengths $\alpha \geq \beta$, such that perim $P \leq(n-2) \alpha+2 \beta$.

REMARK (L., 2011)

There is a real number $\varepsilon>0$

THEOREM (L., 2011)

Let \mathbb{M} be \mathbb{E}^{2} or \mathbb{H}^{2}, and let $n \geq 3$ be an odd integer. If $C \subset \mathbb{M}$ is a disk and P is a simple n-gon contained in C, then there is an isosceles triangle, inscribed in C and with side-lengths $\alpha \geq \beta$, such that perim $P \leq(n-2) \alpha+2 \beta$.

REMARK (L., 2011)

There is a real number $\varepsilon>0$ such that for every odd integer $n \geq 3$ and $0<\rho<\varepsilon$ the following holds.

THEOREM (L., 2011)

Let \mathbb{M} be \mathbb{E}^{2} or \mathbb{H}^{2}, and let $n \geq 3$ be an odd integer. If $C \subset \mathbb{M}$ is a disk and P is a simple n-gon contained in C, then there is an isosceles triangle, inscribed in C and with side-lengths $\alpha \geq \beta$, such that perim $P \leq(n-2) \alpha+2 \beta$.

REMARK (L., 2011)

There is a real number $\varepsilon>0$ such that for every odd integer $n \geq 3$ and $0<\rho<\varepsilon$ the following holds. If $C \subset \mathbb{S}^{2}$ is a disk of radius ρ, and P is a simple n-gon contained in C,

THEOREM (L., 2011)

Let \mathbb{M} be \mathbb{E}^{2} or \mathbb{H}^{2}, and let $n \geq 3$ be an odd integer. If $C \subset \mathbb{M}$ is a disk and P is a simple n-gon contained in C, then there is an isosceles triangle, inscribed in C and with side-lengths $\alpha \geq \beta$, such that perim $P \leq(n-2) \alpha+2 \beta$.

REMARK (L., 2011)

There is a real number $\varepsilon>0$ such that for every odd integer $n \geq 3$ and $0<\rho<\varepsilon$ the following holds. If $C \subset \mathbb{S}^{2}$ is a disk of radius ρ, and P is a simple n-gon contained in C, then there is an isosceles triangle, inscribed in C and with side-lengths $\alpha \geq \beta$, such that perim $P \leq(n-2) \alpha+2 \beta$.

A REMARK AND OUR NOTATIONS

REMARK

Using simple calculus, one can compute the maximum of the quantity $(n-2) \alpha+2 \beta$ for $\mathbb{M}=\mathbb{H}^{2}$ and $\mathbb{M}=\mathbb{S}^{2}$, but these expressions are too long to be included here.

A REMARK AND OUR NOTATIONS

REMARK

Using simple calculus, one can compute the maximum of the quantity $(n-2) \alpha+2 \beta$ for $\mathbb{M}=\mathbb{H}^{2}$ and $\mathbb{M}=\mathbb{S}^{2}$, but these expressions are too long to be included here.

Notations:

- - If it is not stated otherwise, \mathbb{M} is any of the planes $\mathbb{E}^{2}, \mathbb{H}^{2}$ and \mathbb{S}^{2}.

A REMARK AND OUR NOTATIONS

REMARK

Using simple calculus, one can compute the maximum of the quantity $(n-2) \alpha+2 \beta$ for $\mathbb{M}=\mathbb{H}^{2}$ and $\mathbb{M}=\mathbb{S}^{2}$, but these expressions are too long to be included here.

Notations:

- - If it is not stated otherwise, \mathbb{M} is any of the planes $\mathbb{E}^{2}, \mathbb{H}^{2}$ and \mathbb{S}^{2}.
- The closed/open segment with endpoints $p, q \in \mathbb{M}$ is $[p, q] /(p, q)$, respectively.

A REMARK AND OUR NOTATIONS

REMARK

Using simple calculus, one can compute the maximum of the quantity $(n-2) \alpha+2 \beta$ for $\mathbb{M}=\mathbb{H}^{2}$ and $\mathbb{M}=\mathbb{S}^{2}$, but these expressions are too long to be included here.

Notations:

- - If it is not stated otherwise, \mathbb{M} is any of the planes $\mathbb{E}^{2}, \mathbb{H}^{2}$ and \mathbb{S}^{2}.
- The closed/open segment with endpoints $p, q \in \mathbb{M}$ is $[p, q] /(p, q)$, respectively.
- The distance of p, q is denoted by $\operatorname{dist}_{M}(p, q)$, or, if $\mathbb{M}=\mathbb{E}^{2}$, by $|p-q|$.

A REMARK AND OUR NOTATIONS

REMARK

Using simple calculus, one can compute the maximum of the quantity $(n-2) \alpha+2 \beta$ for $\mathbb{M}=\mathbb{H}^{2}$ and $\mathbb{M}=\mathbb{S}^{2}$, but these expressions are too long to be included here.

Notations:

- - If it is not stated otherwise, \mathbb{M} is any of the planes $\mathbb{E}^{2}, \mathbb{H}^{2}$ and \mathbb{S}^{2}.
- The closed/open segment with endpoints $p, q \in \mathbb{M}$ is $[p, q] /(p, q)$, respectively.
- The distance of p, q is denoted by $\operatorname{dist}_{M}(p, q)$, or, if $\mathbb{M}=\mathbb{E}^{2}$, by $|p-q|$.

THE PROOF FOR $\mathbb{M}=\mathbb{E}^{2}$

THE PROOF FOR $\mathbb{M}=\mathbb{E}^{2}$

Let P be a simple n-gon contained in the Euclidean disk C.

THE PROOF FOR $\mathbb{M}=\mathbb{E}^{2}$

Let P be a simple n-gon contained in the Euclidean disk C.

REMARK

It is sufficient to find a triangle contained in C, with side-lengths α, β and γ, that satisfies perim $P \leq(n-2) \alpha+\beta+\gamma$.

THE PROOF FOR $\mathbb{M}=\mathbb{E}^{2}$

Let P be a simple n-gon contained in the Euclidean disk C.

REMARK

It is sufficient to find a triangle contained in C, with side-lengths α, β and γ, that satisfies perim $P \leq(n-2) \alpha+\beta+\gamma$.

THE PROOF FOR $\mathbb{M}=\mathbb{E}^{2}$

Notations:

- The vertices of P are $p_{1}, p_{2}, \ldots, p_{n}=p_{0}$ in this counterclockwise order.

THE PROOF FOR $\mathbb{M}=\mathbb{E}^{2}$

Notations:

- The vertices of P are $p_{1}, p_{2}, \ldots, p_{n}=p_{0}$ in this counterclockwise order.
- In a given Descartes coordinate system, the coordinates of a point q are denoted by $q=\left(\omega_{q}, \theta_{q}\right)$.

The proof for $\mathbb{M}=\mathbb{E}^{2}$

Notations:

- The vertices of P are $p_{1}, p_{2}, \ldots, p_{n}=p_{0}$ in this counterclockwise order.
- In a given Descartes coordinate system, the coordinates of a point q are denoted by $q=\left(\omega_{q}, \theta_{q}\right)$.
- The coordinates of p_{i} are denoted by $p_{i}=\left(\omega_{i}, \theta_{i}\right)$.

The proof for $\mathbb{M}=\mathbb{E}^{2}$

Notations:

- The vertices of P are $p_{1}, p_{2}, \ldots, p_{n}=p_{0}$ in this counterclockwise order.
- In a given Descartes coordinate system, the coordinates of a point q are denoted by $q=\left(\omega_{q}, \theta_{q}\right)$.
- The coordinates of p_{i} are denoted by $p_{i}=\left(\omega_{i}, \theta_{i}\right)$.

DEFINITION

Let $p, q, a, b, c \in \mathbb{M}$.

The proof for $\mathbb{M}=\mathbb{E}^{2}$

Notations:

- The vertices of P are $p_{1}, p_{2}, \ldots, p_{n}=p_{0}$ in this counterclockwise order.
- In a given Descartes coordinate system, the coordinates of a point q are denoted by $q=\left(\omega_{q}, \theta_{q}\right)$.
- The coordinates of p_{i} are denoted by $p_{i}=\left(\omega_{i}, \theta_{i}\right)$.

DEFINITION

Let $p, q, a, b, c \in \mathbb{M}$. We say that the segment $[p, q]$ and the polygonal curve $[a, b] \cup[b, c]$ do not cross,

The proof for $\mathbb{M}=\mathbb{E}^{2}$

Notations:

- The vertices of P are $p_{1}, p_{2}, \ldots, p_{n}=p_{0}$ in this counterclockwise order.
- In a given Descartes coordinate system, the coordinates of a point q are denoted by $q=\left(\omega_{q}, \theta_{q}\right)$.
- The coordinates of p_{i} are denoted by $p_{i}=\left(\omega_{i}, \theta_{i}\right)$.

DEFINITION

Let $p, q, a, b, c \in \mathbb{M}$. We say that the segment $[p, q]$ and the polygonal curve $[a, b] \cup[b, c]$ do not cross, if the set $(p, q) \cap((a, b] \cup[b, c))$ is either empty or a segment.

The proof for $\mathbb{M}=\mathbb{E}^{2}$

LEMMA
Let $[p, q] \in C$ be a vertical segment and set $\delta=|p-q|$.

THE PROOF FOR $\mathbb{M}=\mathbb{E}^{2}$

LEMMA

Let $[p, q] \in C$ be a vertical segment and set $\delta=|p-q|$. Let $a, b, c \in C$ be points such that $\theta_{a} \leq \theta_{b} \leq \theta_{c}$,

THE PROOF FOR $\mathbb{M}=\mathbb{E}^{2}$

LEMMA

Let $[p, q] \in C$ be a vertical segment and set $\delta=|p-q|$. Let $a, b, c \in C$ be points such that $\theta_{a} \leq \theta_{b} \leq \theta_{c}$, and the polygonal curve $[a, b] \cup[b, c]$ and $[p, q]$ do not cross.

THE PROOF FOR $\mathbb{M}=\mathbb{E}^{2}$

LEMMA

Let $[p, q] \in C$ be a vertical segment and set $\delta=|p-q|$. Let $a, b, c \in C$ be points such that $\theta_{a} \leq \theta_{b} \leq \theta_{c}$, and the polygonal curve $[a, b] \cup[b, c]$ and $[p, q]$ do not cross. If $|b-a|,|c-b| \leq \delta$,

The proof for $\mathbb{M}=\mathbb{E}^{2}$

LEMMA

Let $[p, q] \in C$ be a vertical segment and set $\delta=|p-q|$. Let $a, b, c \in C$ be points such that $\theta_{a} \leq \theta_{b} \leq \theta_{c}$, and the polygonal curve $[a, b] \cup[b, c]$ and $[p, q]$ do not cross. If $|b-a|,|c-b| \leq \delta$, then there are points $a^{\prime}, b^{\prime}, c^{\prime} \in C$ such that $|b-a|+|c-b| \leq\left|b^{\prime}-a^{\prime}\right|+\left|c^{\prime}-b^{\prime}\right|$,

The proof for $\mathbb{M}=\mathbb{E}^{2}$

LEMMA

Let $[p, q] \in C$ be a vertical segment and set $\delta=|p-q|$. Let $a, b, c \in C$ be points such that $\theta_{a} \leq \theta_{b} \leq \theta_{c}$, and the polygonal curve $[a, b] \cup[b, c]$ and $[p, q]$ do not cross. If $|b-a|,|c-b| \leq \delta$, then there are points $a^{\prime}, b^{\prime}, c^{\prime} \in C$ such that $|b-a|+|c-b| \leq\left|b^{\prime}-a^{\prime}\right|+\left|c^{\prime}-b^{\prime}\right|$, and $\delta \leq\left|c^{\prime}-b^{\prime}\right|$.

The proof for $\mathbb{M}=\mathbb{E}^{2}$

LEMMA

Let $[p, q] \in C$ be a vertical segment and set $\delta=|p-q|$. Let $a, b, c \in C$ be points such that $\theta_{a} \leq \theta_{b} \leq \theta_{c}$, and the polygonal curve $[a, b] \cup[b, c]$ and $[p, q]$ do not cross. If $|b-a|,|c-b| \leq \delta$, then there are points $a^{\prime}, b^{\prime}, c^{\prime} \in C$ such that $|b-a|+|c-b| \leq\left|b^{\prime}-a^{\prime}\right|+\left|c^{\prime}-b^{\prime}\right|$, and $\delta \leq\left|c^{\prime}-b^{\prime}\right|$.

THE PROOF FOR $\mathbb{M}=\mathbb{E}^{2}$

LEMMA

Let $[p, q] \in C$ be a vertical segment and set $\delta=|p-q|$. Let $a, b, c \in C$ be points such that $\theta_{a} \leq \theta_{b} \leq \theta_{c}$, and the polygonal curve $[a, b] \cup[b, c]$ and $[p, q]$ do not cross. If $|b-a|,|c-b| \leq \delta$, then there are points $a^{\prime}, b^{\prime}, c^{\prime} \in C$ such that $|b-a|+|c-b| \leq\left|b^{\prime}-a^{\prime}\right|+\left|c^{\prime}-b^{\prime}\right|$, and $\delta \leq\left|c^{\prime}-b^{\prime}\right|$.

THE PROOF OF THE THEOREM FROM THE LEMMA

We may assume that

THE PROOF OF THE THEOREM FROM THE LEMMA

We may assume that
$-\left[p_{0}, p_{1}\right]$ is a longest side of P,

THE PROOF OF THE THEOREM FROM THE LEMMA

We may assume that

- $\left[p_{0}, p_{1}\right]$ is a longest side of P,
$-\left[p_{0}, p_{1}\right]$ is a vertical segment $\left(\omega_{0}=\omega_{1}\right)$.

THE PROOF OF THE THEOREM FROM THE LEMMA

We may assume that

- $\left[p_{0}, p_{1}\right]$ is a longest side of P,
$-\left[p_{0}, p_{1}\right]$ is a vertical segment $\left(\omega_{0}=\omega_{1}\right)$.
Consider the $(n+1)$-element sequence $\mu_{1}, \mu_{2}, \ldots \mu_{n+1}$ defined as follows.

THE PROOF OF THE THEOREM FROM THE LEMMA

We may assume that

- $\left[p_{0}, p_{1}\right]$ is a longest side of P,
$-\left[p_{0}, p_{1}\right]$ is a vertical segment $\left(\omega_{0}=\omega_{1}\right)$.
Consider the $(n+1)$-element sequence $\mu_{1}, \mu_{2}, \ldots \mu_{n+1}$ defined as follows.
For $i=1,2, \ldots, n+1$,

$$
\mu_{i}= \begin{cases}1, & \text { if } \theta_{i}<\theta_{i+1} \\ -1, & \text { if } \theta_{i}>\theta_{i+1} \\ 0, & \text { if } \theta_{i}=\theta_{i+1}\end{cases}
$$

Observe that $\mu_{0}=\mu_{n} \neq 0$.

THE PROOF OF THE THEOREM FROM THE LEMMA

Since $n+1$ is even, there are two consecutive elements of the sequence that are both nonnegative or both nonpositive.

Since $n+1$ is even, there are two consecutive elements of the sequence that are both nonnegative or both nonpositive.Thus, we may apply Lemma.

TWO REMARKS

THE PROOF OF THE LEMMA

Notations:
$-L(p, q)$: the line containing $[p, q]$;

- R_{p} : the connected component of $L(p, q) \backslash(p, q)$, containing p;
$-R_{q}$: the connected component of $L(p, q) \backslash(p, q)$, containing q.

THE PROOF OF THE LEMMA

Notations:
$-L(p, q)$: the line containing $[p, q]$;

- R_{p} : the connected component of $L(p, q) \backslash(p, q)$, containing p;
$-R_{q}$: the connected component of $L(p, q) \backslash(p, q)$, containing q.
Assumptions: $\theta_{p}<\theta_{q}$ and the centre of C is the origin.

THE PROOF OF THE LEMMA

Notations:
$-L(p, q)$: the line containing $[p, q]$;

- R_{p} : the connected component of $L(p, q) \backslash(p, q)$, containing p;
$-R_{q}$: the connected component of $L(p, q) \backslash(p, q)$, containing q.
Assumptions: $\theta_{p}<\theta_{q}$ and the centre of C is the origin.

Case 1, if $[a, b]$ intersects R_{q}.

THE PROOF OF THE LEMMA

Notations:
$-L(p, q)$: the line containing $[p, q]$;

- R_{p} : the connected component of $L(p, q) \backslash(p, q)$, containing p;
$-R_{q}$: the connected component of $L(p, q) \backslash(p, q)$, containing q.
Assumptions: $\theta_{p}<\theta_{q}$ and the centre of C is the origin.

Case 1, if $[a, b]$ intersects R_{q}.

$$
|b-a| \leq \delta \leq|b-p|
$$

THE PROOF OF THE LEMMA

Notations:
$-L(p, q)$: the line containing $[p, q]$;

- R_{p} : the connected component of $L(p, q) \backslash(p, q)$, containing p;
$-R_{q}$: the connected component of $L(p, q) \backslash(p, q)$, containing q.
Assumptions: $\theta_{p}<\theta_{q}$ and the centre of C is the origin.

Case 1, if $[a, b]$ intersects R_{q}.

$$
\begin{aligned}
& |b-a| \leq \delta \leq|b-p| \\
& \delta \leq|c-p| .
\end{aligned}
$$

THE PROOF OF THE LEMMA

Notations:
$-L(p, q)$: the line containing $[p, q]$;

- R_{p} : the connected component of $L(p, q) \backslash(p, q)$, containing p;
$-R_{q}$: the connected component of $L(p, q) \backslash(p, q)$, containing q.
Assumptions: $\theta_{p}<\theta_{q}$ and the centre of C is the origin.

Case 1, if $[a, b]$ intersects R_{q}.

$$
\begin{aligned}
& |b-a| \leq \delta \leq|b-p| \\
& \delta \leq|c-p| .
\end{aligned}
$$

We may choose a^{\prime}, b^{\prime} and c^{\prime} as p, b and c, respectively.

THE PROOF OF THE LEMMA

Notations:
$-L(p, q)$: the line containing $[p, q]$;

- R_{p} : the connected component of $L(p, q) \backslash(p, q)$, containing p;
$-R_{q}$: the connected component of $L(p, q) \backslash(p, q)$, containing q.
Assumptions: $\theta_{p}<\theta_{q}$ and the centre of C is the origin.

Case 1, if $[a, b]$ intersects R_{q}.

$$
\begin{aligned}
& |b-a| \leq \delta \leq|b-p| \\
& \delta \leq|c-p| .
\end{aligned}
$$

We may choose a^{\prime}, b^{\prime} and c^{\prime} as p, b and c, respectively.

If $[b, c]$ intersects R_{p}, we may apply a similar argument.

THE PROOF OF THE LEMMA

Case 2, if $[a, b]$ intersects R_{p}.

THE PROOF OF THE LEMMA

Case 2, if $[a, b]$ intersects R_{p}. If $[b, c]$ intersects R_{q}, then $\delta \leq$
 $|c-a|$, and we are done.

THE PROOF OF THE LEMMA

Case 2, if $[a, b]$ intersects R_{p}. If $[b, c]$ intersects R_{q}, then $\delta \leq$
 $|c-a|$, and we are done. Let b, c be in the closed half plane \bar{H} bounded by $L(p, q)$.

THE PROOF OF THE LEMMA

Case 2, if $[a, b]$ intersects R_{p}. If $[b, c]$ intersects R_{q}, then $\delta \leq$
 $|c-a|$, and we are done. Let b, c be in the closed half plane \bar{H} bounded by $L(p, q)$.
\bar{C} : the set of points $u \in \bar{H} \cap C$ that satisfy $\theta_{u} \geq \theta_{b}$.

THE PROOF OF THE LEMMA

Case 2, if $[a, b]$ intersects R_{p}. If $[b, c]$ intersects R_{q}, then $\delta \leq$ $|c-a|$, and we are done. Let b, c be in the closed half plane \bar{H} bounded by $L(p, q)$.
\bar{C} : the set of points $u \in \bar{H} \cap C$ that satisfy $\theta_{u} \geq \theta_{b}$.
z : the intersection point of R_{q} and bd C.

Case 2, if $[a, b]$ intersects R_{p}. If $[b, c]$ intersects R_{q}, then $\delta \leq$ $|c-a|$, and we are done. Let b, c be in the closed half plane \bar{H} bounded by $L(p, q)$.
\bar{C} : the set of points $u \in \bar{H} \cap C$ that satisfy $\theta_{u} \geq \theta_{b}$.
z : the intersection point of R_{q} and bd C.
x : the point of $\bar{H} \cap \mathrm{bd} C$ with $\theta_{x}=\theta_{b}$

Case 2, if $[a, b]$ intersects R_{p}. If $[b, c]$ intersects R_{q}, then $\delta \leq$ $|c-a|$, and we are done. Let b, c be in the closed half plane \bar{H} bounded by $L(p, q)$.
\bar{C} : the set of points $u \in \bar{H} \cap C$ that satisfy $\theta_{u} \geq \theta_{b}$.
z : the intersection point of R_{q} and bd C.
x : the point of $\bar{H} \cap \mathrm{bd} C$ with $\theta_{x}=\theta_{b}$
w : the intersection point of bd C and the ray through o that starts at b, and $w=z$ otherwise.

THE PROOF OF THE LEMMA

If $w \in \bar{C}$, then $|c-b| \leq|w-b|$, and we may choose a, b and w as a^{\prime}, b^{\prime} and c^{\prime}, respectively.

THE PROOF OF THE LEMMA

If $w \in \bar{C}$, then $|c-b| \leq|w-b|$, and we may choose a, b and w as a^{\prime}, b^{\prime} and c^{\prime}, respectively. Assume that $w \notin \bar{C}$. Then $|c-b| \leq \max \{|x-b|,|z-b|\}$. If $|x-b| \leq|z-b|$, then we may choose a, b and z as a^{\prime}, b^{\prime} and c^{\prime}, respectively.
In the opposite case, we may choose a, x and z, respectively.

A similar argument proves the assertion in the case that $[b, c]$ intersects R_{q}.

THE PROOF OF THE LEMMA

Case 3, a, b and c are in the same closed half plane H^{+} bounded by $L(p, q)$.

THE PROOF OF THE LEMMA

Case 3, a, b and c are in the same closed half plane H^{+} bounded by $L(p, q)$.
We may assume that $o \in H^{+}$, and that $p, q \in \operatorname{bd} C$.

THE PROOF OF THE LEMMA

Case $3, a, b$ and c are in the same closed half plane H^{+} bounded by $L(p, q)$.
We may assume that $o \in H^{+}$, and that $p, q \in \operatorname{bd} C$. Now we drop the conditions that $|b-a|,|c-b| \leq \delta$, and maximize $|b-a|+|c-b|$ under the conditions that $a, b, c \in C \cap H^{+}=C^{+}$and $\theta_{a} \leq \theta_{b} \leq \theta_{c}$.

Case $3, a, b$ and c are in the same closed half plane H^{+} bounded by $L(p, q)$.
We may assume that $o \in H^{+}$, and that $p, q \in \operatorname{bd} C$. Now we drop the conditions that $|b-a|,|c-b| \leq \delta$, and maximize $|b-a|+|c-b|$ under the conditions that $a, b, c \in C \cap H^{+}=C^{+}$and $\theta_{a} \leq \theta_{b} \leq \theta_{c}$.

THE PROOF OF THE LEMMA

THE PROOF OF THE LEMMA

r : the reflected image of a about the y-axis

THE PROOF OF THE LEMMA

r : the reflected image of a about the y-axis
Observation: $\omega_{c} \leq \omega_{-r}=\omega_{a}$

THE PROOF OF THE LEMMA

r : the reflected image of a about the y-axis
Observation: $\omega_{c} \leq \omega_{-r}=\omega_{a}$ T : the reflection about the line bisecting $[a, b]$

THE PROOF OF THE LEMMA

r : the reflected image of a about the y-axis
Observation: $\omega_{c} \leq \omega_{-r}=\omega_{a}$ T : the reflection about the line bisecting $[a, b]$
Then: $T(a)=b, T(b)=a$ and $T(c) \in C^{+}$

THE PROOF OF THE LEMMA

r : the reflected image of a about the y-axis
Observation: $\omega_{c} \leq \omega_{-r}=\omega_{a}$ T : the reflection about the line bisecting $[a, b]$
Then: $T(a)=b, T(b)=a$ and
$T(c) \in C^{+}$
$|b-a| \leq|p-a|$,

r : the reflected image of a about the y-axis
Observation: $\omega_{c} \leq \omega_{-r}=\omega_{a}$
T : the reflection about the line bisecting $[a, b]$
Then: $T(a)=b, T(b)=a$ and $T(c) \in C^{+}$
$|b-a| \leq|p-a|$,
$|c-b|=|T(c)-a| \leq|q-a|$,

The PROOF FOR $\mathbb{M}=\mathbb{H}^{2}$ AND $\mathbb{M}=\mathbb{S}^{2}$

What is the coordinate system?

THE PROOF FOR $\mathbb{M}=\mathbb{H}^{2}$ AND $\mathbb{M}=\mathbb{S}^{2}$

What is the coordinate system?

The PROOF FOR $\mathbb{M}=\mathbb{H}^{2}$ AND $\mathbb{M}=\mathbb{S}^{2}$

What is the coordinate system?

An additional assumption for \mathbb{S}^{2} : the radius ρ of the circle is $\rho \leq \frac{\pi}{4}$.

$\ln \mathbb{H}^{2} \phi<\frac{\pi}{2}$, in $\mathbb{S}^{2} \phi>\frac{\pi}{2}$.

REMARK ABOUT \mathbb{S}^{2}

Lemma does not hold for some spherical disks with radius $\frac{\pi}{4}<\rho<\frac{\pi}{2}$.

EXAMPLE

Let $\varepsilon>0$ and let $p, q \in \mathbb{S}^{2}$ be two points with $\operatorname{dist}_{S}(p, q)=\pi-\varepsilon$.

REMARK ABOUT \mathbb{S}^{2}

Lemma does not hold for some spherical disks with radius $\frac{\pi}{4}<\rho<\frac{\pi}{2}$.

EXAMPLE

Let $\varepsilon>0$ and let $p, q \in \mathbb{S}^{2}$ be two points with $\operatorname{dist}_{S}(p, q)=\pi-\varepsilon$. Let $k,-k$ be the centres of the two open hemispheres bounded by $L(p, q)$.

REMARK ABOUT \mathbb{S}^{2}

Lemma does not hold for some spherical disks with radius $\frac{\pi}{4}<\rho<\frac{\pi}{2}$.

EXAMPLE

Let $\varepsilon>0$ and let $p, q \in \mathbb{S}^{2}$ be two points with $\operatorname{dist}_{S}(p, q)=\pi-\varepsilon$. Let $k,-k$ be the centres of the two open hemispheres bounded by $L(p, q)$. Let $[a, b]$ be a segment of length $\pi-\varepsilon$, perpendicular to $[p, q]$, such that q is the midpoint of $[a, b]$.

REMARK ABOUT \mathbb{S}^{2}

Lemma does not hold for some spherical disks with radius $\frac{\pi}{4}<\rho<\frac{\pi}{2}$.

EXAMPLE

Let $\varepsilon>0$ and let $p, q \in \mathbb{S}^{2}$ be two points with $\operatorname{dist}_{s}(p, q)=\pi-\varepsilon$. Let $k,-k$ be the centres of the two open hemispheres bounded by $L(p, q)$. Let $[a, b]$ be a segment of length $\pi-\varepsilon$, perpendicular to $[p, q]$, such that q is the midpoint of $[a, b]$. Note that $k,-k \in L(a, b) \backslash[a, b]$.

Remark about \mathbb{S}^{2}

Lemma does not hold for some spherical disks with radius $\frac{\pi}{4}<\rho<\frac{\pi}{2}$.

EXAMPLE

Let $\varepsilon>0$ and let $p, q \in \mathbb{S}^{2}$ be two points with $\operatorname{dist}_{s}(p, q)=\pi-\varepsilon$. Let $k,-k$ be the centres of the two open hemispheres bounded by $L(p, q)$. Let $[a, b]$ be a segment of length $\pi-\varepsilon$, perpendicular to $[p, q]$, such that q is the midpoint of $[a, b]$. Note that $k,-k \in L(a, b) \backslash[a, b]$. Thus, there is a disk C of radius $\rho<\frac{\pi}{2}$ that contains $[p, q]$ and $[a, b]$.

Remark about \mathbb{S}^{2}

Lemma does not hold for some spherical disks with radius $\frac{\pi}{4}<\rho<\frac{\pi}{2}$.

EXAMPLE

Let $\varepsilon>0$ and let $p, q \in \mathbb{S}^{2}$ be two points with $\operatorname{dist}_{S}(p, q)=\pi-\varepsilon$. Let $k,-k$ be the centres of the two open hemispheres bounded by $L(p, q)$. Let $[a, b]$ be a segment of length $\pi-\varepsilon$, perpendicular to $[p, q]$, such that q is the midpoint of $[a, b]$. Note that $k,-k \in L(a, b) \backslash[a, b]$. Thus, there is a disk C of radius $\rho<\frac{\pi}{2}$ that contains $[p, q]$ and $[a, b]$. Set $c=a$.

Remark about \mathbb{S}^{2}

Lemma does not hold for some spherical disks with radius $\frac{\pi}{4}<\rho<\frac{\pi}{2}$.

EXAMPLE

Let $\varepsilon>0$ and let $p, q \in \mathbb{S}^{2}$ be two points with $\operatorname{dist}_{S}(p, q)=\pi-\varepsilon$. Let $k,-k$ be the centres of the two open hemispheres bounded by $L(p, q)$. Let $[a, b]$ be a segment of length $\pi-\varepsilon$, perpendicular to $[p, q]$, such that q is the midpoint of $[a, b]$. Note that $k,-k \in L(a, b) \backslash[a, b]$. Thus, there is a disk C of radius $\rho<\frac{\pi}{2}$ that contains $[p, q]$ and $[a, b]$. Set $c=a$. If ε is sufficiently small, then $3 \pi-3 \varepsilon$ is greater than the perimeter of any triangle inscribed in C.

Questions

QUESTION

Let $n \geq 5$ be odd, $0<\rho<\frac{\pi}{2}$, and $C \subset \mathbb{S}^{2}$ be a disk of radius ρ. What is the supremum of the perimeters of the simple n-gons contained in C?

QuESTIONS

Question

Let $n \geq 5$ be odd, $0<\rho<\frac{\pi}{2}$, and $C \subset \mathbb{S}^{2}$ be a disk of radius ρ. What is the supremum of the perimeters of the simple n-gons contained in C?

Question

Let $n \geq 5$ be odd, and let $C \subset \mathbb{E}^{2}$ be a plane convex body. Prove or disprove that if P is a simple n-gon contained in C, then there is a triangle, inscribed in C and with side-lengths α, β and γ, such that perim $P \leq(n-2) \alpha+\beta+\gamma$. Is it true for plane convex bodies in the hyperbolic plane or on the sphere?

Questions

QuESTION

Let $n \geq 5$ be odd, and let \mathbb{M} be a Minkowski plane with the unit disk C. What is the supremum of the perimeters of the simple n-gons contained in C? In particular, can Theorem be generalized for Minkowski planes? Can it be generalized for an arbitrary plane convex body of \mathbb{M} instead of the unit disk of \mathbb{M} ?

Questions

QUESTION

Let $n \geq 5$ be odd, and let \mathbb{M} be a Minkowski plane with the unit disk C. What is the supremum of the perimeters of the simple n-gons contained in C? In particular, can Theorem be generalized for Minkowski planes? Can it be generalized for an arbitrary plane convex body of \mathbb{M} instead of the unit disk of \mathbb{M} ?

In the last two questions the optimal triangle inscribed in C is not necessarily isosceles.

A RESULT ABOUT PLANE CONVEX BODIES

THEOREM

Let $n \geq 3$ be an odd integer, and let C be a plane convex body in \mathbb{E}^{2} or in \mathbb{H}^{2}. For every simple n-gon P contained in C there is a triangle, inscribed in C and with side-lengths $\alpha \geq \beta \geq \gamma$, such that perim $P \leq(n-2) \alpha+\beta+\gamma$.

A RESULT ABOUT PLANE CONVEX BODIES

THEOREM

Let $n \geq 3$ be an odd integer, and let C be a plane convex body in \mathbb{E}^{2} or in \mathbb{H}^{2}. For every simple n-gon P contained in C there is a triangle, inscribed in C and with side-lengths $\alpha \geq \beta \geq \gamma$, such that perim $P \leq(n-2) \alpha+\beta+\gamma$.

THE PROOF FOR \mathbb{E}^{2}

THE PROOF FOR \mathbb{E}^{2}

Our lemma fails:

$$
\begin{aligned}
& p=(0,0), \quad q=(0,1), \\
& a=(0.31,0.095), \quad b=(0,0.095), \\
& c=(0.208,1.05), \\
& C=\operatorname{conv}\{p, q, a, b, c\}, \\
& |b-a|=0.3100 \ldots, \\
& \| c-b \mid=0.9773 \ldots, \\
& |c-a|=0.9604 \ldots, \\
& \\
& |b-a|+|c-b|=1.2873 \ldots, \\
& |c-p|+|q-c|=1.2843 \ldots, \\
& |a-p|+|q-a|=1.2808 \ldots, \\
& |a-p|+|c-a|=1.2846 \ldots
\end{aligned}
$$

The proof for \mathbb{E}^{2}

The idea of the proof

Step 1: To examine under what conditions does the assertion of the lemma fail
Step 2: To prove the theorem in this case using a different method.

The proof for \mathbb{E}^{2}

The idea of the proof

Step 1: To examine under what conditions does the assertion of the lemma fail
Step 2: To prove the theorem in this case using a different method.

DEFINITION

If $a^{\prime}, b^{\prime}, c^{\prime}$ satisfy $|p-q| \leq\left|c^{\prime}-a^{\prime}\right|$ and $|b-a|+|c-b| \leq\left|b^{\prime}-a^{\prime}\right|+\left|c^{\prime}-b^{\prime}\right|$, we say that a^{\prime}, b^{\prime} and c^{\prime} satisfy Property (*).

THE PROOF FOR \mathbb{E}^{2}

Assumptions:
(1) $p=(0,0)$ and $q=(0,1)$.

THE PROOF FOR \mathbb{E}^{2}

Assumptions:

(1) $p=(0,0)$ and $q=(0,1)$.
(2) $\theta_{a} \leq \theta_{b} \leq \theta_{c}$,

THE PROOF FOR \mathbb{E}^{2}

Assumptions:

(1) $p=(0,0)$ and $q=(0,1)$.
(2) $\theta_{a} \leq \theta_{b} \leq \theta_{c}$,

- a is not farther from the bisector of $[p, q]$ than c (or in other words, $\theta_{a}+\theta_{c} \geq 1$),

THE PROOF FOR \mathbb{E}^{2}

Assumptions:

(1) $p=(0,0)$ and $q=(0,1)$.
(2) $\theta_{a} \leq \theta_{b} \leq \theta_{c}$,

- a is not farther from the bisector of $[p, q]$ than c (or in other words, $\theta_{a}+\theta_{c} \geq 1$),
(0) at least one of ω_{a}, ω_{b} and ω_{c} is positive.

THE PROOF FOR \mathbb{E}^{2}

Assumptions:

(1) $p=(0,0)$ and $q=(0,1)$.
(2) $\theta_{a} \leq \theta_{b} \leq \theta_{c}$,

- a is not farther from the bisector of $[p, q]$ than c (or in other words, $\theta_{a}+\theta_{c} \geq 1$),
(0) at least one of ω_{a}, ω_{b} and ω_{c} is positive.

Notation: $p_{a}=\left(0, \theta_{a}\right), p_{b}=\left(0, \theta_{b}\right), p_{c}=\left(0, \theta_{c}\right)$.

THE PROOF FOR \mathbb{E}^{2}

Assumptions:

(1) $p=(0,0)$ and $q=(0,1)$.
(2) $\theta_{a} \leq \theta_{b} \leq \theta_{c}$,

- a is not farther from the bisector of $[p, q]$ than c (or in other words, $\theta_{a}+\theta_{c} \geq 1$),
(0) at least one of ω_{a}, ω_{b} and ω_{c} is positive.

Notation: $p_{a}=\left(0, \theta_{a}\right), p_{b}=\left(0, \theta_{b}\right), p_{c}=\left(0, \theta_{c}\right)$.

THE PROOF FOR \mathbb{E}^{2}

LEMMA

If there are no points $a^{\prime}, b^{\prime}, c^{\prime} \in \operatorname{conv}\{p, q, a, b, c\}$ satisfying Property (*), then the following hold.

THE PROOF FOR \mathbb{E}^{2}

LEMMA

If there are no points $a^{\prime}, b^{\prime}, c^{\prime} \in \operatorname{conv}\{p, q, a, b, c\}$ satisfying Property (*), then the following hold.
(A) $|c-a|<1$.

THE PROOF FOR \mathbb{E}^{2}

LEMMA

If there are no points $a^{\prime}, b^{\prime}, c^{\prime} \in \operatorname{conv}\{p, q, a, b, c\}$ satisfying Property (*), then the following hold.
(A) $|c-a|<1$.
(в) a, b and c are in the same closed half-plane bounded by $L(p, q)$.

THE PROOF FOR \mathbb{E}^{2}

LEMMA

If there are no points $a^{\prime}, b^{\prime}, c^{\prime} \in \operatorname{conv}\{p, q, a, b, c\}$ satisfying Property (*), then the following hold.
(A) $|c-a|<1$.
(В) a, b and c are in the same closed half-plane bounded by $L(p, q)$.
(в) $\theta_{c}>1$ and $0<\theta_{a}<\frac{1}{2}$.

THE PROOF FOR \mathbb{E}^{2}

LEMMA

If there are no points $a^{\prime}, b^{\prime}, c^{\prime} \in \operatorname{conv}\{p, q, a, b, c\}$ satisfying Property (*), then the following hold.
(A) $|c-a|<1$.
(в) a, b and c are in the same closed half-plane bounded by $L(p, q)$.
(B) $\theta_{c}>1$ and $0<\theta_{a}<\frac{1}{2}$.
(D) $b \in \operatorname{conv}\left\{p_{a}, p_{c}, a, c\right\}$.

THE PROOF FOR \mathbb{E}^{2}

LEMMA

If there are no points $a^{\prime}, b^{\prime}, c^{\prime} \in \operatorname{conv}\{p, q, a, b, c\}$ satisfying Property (*), then the following hold.
(A) $|c-a|<1$.
(в) a, b and c are in the same closed half-plane bounded by $L(p, q)$.
(B) $\theta_{c}>1$ and $0<\theta_{a}<\frac{1}{2}$.
(D) $b \in \operatorname{conv}\left\{p_{a}, p_{c}, a, c\right\}$.
(E) $|b-a|+|c-b| \leq\left|p_{a}-a\right|+\left|c-p_{a}\right|$.

THE PROOF FOR \mathbb{E}^{2}

THE PROOF FOR \mathbb{E}^{2}

We may assume that a, b, c, p, q does not satisfy Property (*).

THE PROOF FOR \mathbb{E}^{2}

We may assume that a, b, c, p, q does not satisfy Property (*).
Observation: $\theta_{c}-\theta_{a}>\frac{\theta_{c}}{2}$.

THE PROOF FOR \mathbb{E}^{2}

We may assume that a, b, c, p, q does not satisfy Property (*).

Observation: $\theta_{c}-\theta_{a}>\frac{\theta_{c}}{2}$.
Case 1, $n=5$.

THE PROOF FOR \mathbb{E}^{2}

We may assume that a, b, c, p, q does not satisfy Property (*).
Observation: $\theta_{c}-\theta_{a}>\frac{\theta_{c}}{2}$.
Case 1, $n=5$.
Then the remaining two edges of P are $[p, a]$ and $[c, q]$,

THE PROOF FOR \mathbb{E}^{2}

We may assume that a, b, c, p, q does not satisfy Property (${ }^{*}$).
Observation: $\theta_{c}-\theta_{a}>\frac{\theta_{c}}{2}$.
Case 1, $n=5$.
Then the remaining two edges of P are $[p, a]$ and $[c, q]$, and perim $P \leq 3|p-c|+|p-q|+$ $|q-c|$.

THE PROOF FOR \mathbb{E}^{2}

THE PROOF FOR \mathbb{E}^{2}

THE PROOF FOR \mathbb{E}^{2}

Case 2, $n \geq$ 7.If $|c-a| \geq$ $\left|c-p_{a}\right|$, then p, a, c satisfies Property (*). Thus, we assume that $\omega_{c} \geq \frac{\omega_{a}}{2}$.

THE PROOF FOR \mathbb{E}^{2}

Case 2, $n \geq$ 7.If $|c-a| \geq$ $\left|c-p_{a}\right|$, then p, a, c satisfies Property (*). Thus, we assume that $\omega_{c} \geq \frac{\omega_{a}}{2}$.

Since $|q-p|=1$, it is sufficient to prove that
$5+\left|p_{a}-a\right|+\left|c-p_{a}\right| \leq 5 \mid c-$ $p|+|a-p|+|c-a|$.

THE PROOF FOR \mathbb{E}^{2}

THE PROOF FOR \mathbb{E}^{2}

THE PROOF FOR \mathbb{E}^{2}

Notations:
$M(c)=5+\left|p_{a}-a\right|+\left|c-p_{a}\right|$, $N(c)=5|c-p|+|a-p|+|c-a|$, $v=(1,0), w=\left(\frac{\omega_{a}}{2}, \theta_{c}\right)$.
Observation: $M(w) \leq N(w)$ We need to show that $v(M) \leq$ $v(N)$.

THE PROOF FOR \mathbb{E}^{2}

Notations:
$M(c)=5+\left|p_{a}-a\right|+\left|c-p_{a}\right|$, $N(c)=5|c-p|+|a-p|+|c-a|$, $v=(1,0), w=\left(\frac{\omega_{a}}{2}, \theta_{c}\right)$.
Observation: $M(w) \leq N(w)$ We need to show that $v(M) \leq$ $v(N)$.
Observations: $0<\phi \leq \pi-\psi<$ π
$\cos \phi \geq-\cos \psi$.

THE PROOF FOR \mathbb{E}^{2}

$$
\begin{aligned}
& M(c)=5+\left|p_{a}-a\right|+\left|c-p_{a}\right|, \\
& N(c)=5|c-p|+|a-p|+|c-a|, \\
& v(M)=\cos \phi, \\
& v(N)=5 \cos \chi+\cos \psi \geq \\
& 5 \cos \chi-\cos \phi . \\
& \text { We set: } \\
& I=5 \cos \chi-2 \cos \phi \leq v(N)- \\
& v(M), \text { and need to show that } \\
& I \geq 0 .
\end{aligned}
$$

THE PROOF FOR \mathbb{E}^{2}

$$
\begin{aligned}
& I=\frac{5 \omega_{c}}{\sqrt{\omega_{c}^{2}+\theta_{c}^{2}}}-\frac{2 \omega_{c}}{\sqrt{\omega_{c}^{2}+\left(\theta_{c}-\theta_{a}\right)^{2}}} \geq \frac{5 \omega_{c}}{\sqrt{\omega_{c}^{2}+\theta_{c}^{2}}}-\frac{2 \omega_{c}}{\sqrt{\omega_{c}^{2}+\left(\theta_{c} / 2\right)^{2}}}= \\
& =\frac{\omega_{c}\left(21 \omega_{c}^{2}+\frac{9}{4} \theta_{c}^{2}\right)}{\sqrt{\omega_{c}^{2}+\theta_{c}^{2}} \sqrt{\omega_{c}^{2}+\left(\theta_{c} / 2\right)^{2}}\left(5 \sqrt{\omega_{c}^{2}+\left(\theta_{c} / 2\right)^{2}}+2 \sqrt{\omega_{c}^{2}+\theta_{c}^{2}}\right)} \geq 0 .
\end{aligned}
$$

The proof for \mathbb{E}^{2}

$$
\begin{aligned}
& I=\frac{5 \omega_{c}}{\sqrt{\omega_{c}^{2}+\theta_{c}^{2}}}-\frac{2 \omega_{c}}{\sqrt{\omega_{c}^{2}+\left(\theta_{c}-\theta_{a}\right)^{2}}} \geq \frac{5 \omega_{c}}{\sqrt{\omega_{c}^{2}+\theta_{c}^{2}}}-\frac{2 \omega_{c}}{\sqrt{\omega_{c}^{2}+\left(\theta_{c} / 2\right)^{2}}}= \\
& =\frac{\omega_{c}\left(21 \omega_{c}^{2}+\frac{9}{4} \theta_{c}^{2}\right)}{\sqrt{\omega_{c}^{2}+\theta_{c}^{2}} \sqrt{\omega_{c}^{2}+\left(\theta_{c} / 2\right)^{2}}\left(5 \sqrt{\omega_{c}^{2}+\left(\theta_{c} / 2\right)^{2}}+2 \sqrt{\omega_{c}^{2}+\theta_{c}^{2}}\right)} \geq 0 .
\end{aligned}
$$

For \mathbb{H}^{2} a similar proof works.

AND FINALLY . . .

AND FINALLY . . .

The End

