Matroid base polytope decomposition

J.L. Ramírez Alfonsín
(join work with V. Chatelain)
I3M, Université Montpellier 2

Definitions

A matroid $M=(E, \mathcal{I})$ is a finite ground set $E=\{1, \ldots, n\}$ together with a collection $\mathcal{I} \subseteq 2^{E}$, known as independent sets satysfying

- if $I \in \mathcal{I}$ and $J \subseteq I$ then $J \in \mathcal{I}$
- if $I, J \in \mathcal{I}$ and $|J|>|I|$, then there exist an element $z \in J \backslash I$ such that $I \cup\{z\} \in \mathcal{I}$.
A base is any maximal independent set. The collection of bases \mathcal{B} satisfy the base exchange axiom
if $B_{1}, B_{2} \in \mathcal{B}$ and $e \in B_{1} \backslash B_{2}$ then there exist $f \in B_{2} \backslash B_{1}$ such that $\left(B_{1}-e\right)+f \in \mathcal{B}$.
Remark: All bases have the same cardinality, say r. We say that matroid $M=(E, \mathcal{B})$ has rank $r=r(M)$.

Definitions

A matroid $M=(E, \mathcal{I})$ is a finite ground set $E=\{1, \ldots, n\}$ together with a collection $\mathcal{I} \subseteq 2^{E}$, known as independent sets satysfying

- if $I \in \mathcal{I}$ and $J \subseteq I$ then $J \in \mathcal{I}$
- if $I, J \in \mathcal{I}$ and $|J|>|I|$, then there exist an element $z \in J \backslash I$ such that $I \cup\{z\} \in \mathcal{I}$.
A base is any maximal independent set. The collection of bases \mathcal{B} satisfy the base exchange axiom
if $B_{1}, B_{2} \in \mathcal{B}$ and $e \in B_{1} \backslash B_{2}$ then there exist $f \in B_{2} \backslash B_{1}$ such that $\left(B_{1}-e\right)+f \in \mathcal{B}$.
Remark: All bases have the same cardinality, say r. We say that
matroid $M=(E, \mathcal{B})$ has rank $r=r(M)$.

Definitions

A matroid $M=(E, \mathcal{I})$ is a finite ground set $E=\{1, \ldots, n\}$ together with a collection $\mathcal{I} \subseteq 2^{E}$, known as independent sets satysfying

- if $I \in \mathcal{I}$ and $J \subseteq I$ then $J \in \mathcal{I}$
- if $I, J \in \mathcal{I}$ and $|J|>|I|$, then there exist an element $z \in J \backslash I$ such that $I \cup\{z\} \in \mathcal{I}$.
A base is any maximal independent set. The collection of bases \mathcal{B} satisfy the base exchange axiom
if $B_{1}, B_{2} \in \mathcal{B}$ and $e \in B_{1} \backslash B_{2}$ then there exist $f \in B_{2} \backslash B_{1}$ such that $\left(B_{1}-e\right)+f \in \mathcal{B}$.
Remark: All bases have the same cardinality, say r. We say that matroid $M=(E, \mathcal{B})$ has rank $r=r(M)$.

Examples

- Uniform matroids $U_{n, r}$ given by $E=\{1, \ldots, n\}$ and $\mathcal{I}=\{I \subseteq E:|I| \leq r\}$.
- Linear matroids Let \mathbb{F} be a field, $A \in \mathbb{F}^{m \times n}$ an $(m \times n)$-matrix over \mathbb{F}. Let $E=\{1, \ldots, n\}$ be the index set of the columns of A. $I \subseteq E$ is independent if the columns indexed by I are linearly independent.

A matroid is said to be representable over \mathbb{F} if it can be expressed as linear matroid with matrix A and linear independence taken over H

- Graphic matroid Let $G=(V, E)$ be an undirected graph. Matroid $M=(E, \mathcal{I})$ where $\mathcal{I}=\{F \subseteq E: F$ is acyclic $\}$

Examples

- Uniform matroids $U_{n, r}$ given by $E=\{1, \ldots, n\}$ and $\mathcal{I}=\{I \subseteq E:|I| \leq r\}$.
- Linear matroids Let \mathbb{F} be a field, $A \in \mathbb{F}^{m \times n}$ an $(m \times n)$-matrix over \mathbb{F}. Let $E=\{1, \ldots, n\}$ be the index set of the columns of A. $I \subseteq E$ is independent if the columns indexed by I are linearly independent.
A matroid is said to be representable over \mathbb{F} if it can be expressed
as linear matroid with matrix A and linear independence taken over
IF
- Graphic matroid Let $G=(V, E)$ be an undirected graph. Matroid $M=(E, \mathcal{I})$ where $\mathcal{I}=\{F \subseteq E: F$ is acyclic $\}$

Examples

- Uniform matroids $U_{n, r}$ given by $E=\{1, \ldots, n\}$ and $\mathcal{I}=\{I \subseteq E:|I| \leq r\}$.
- Linear matroids Let \mathbb{F} be a field, $A \in \mathbb{F}^{m \times n}$ an $(m \times n)$-matrix over \mathbb{F}. Let $E=\{1, \ldots, n\}$ be the index set of the columns of A. $I \subseteq E$ is independent if the columns indexed by I are linearly independent.
A matroid is said to be representable over \mathbb{F} if it can be expressed as linear matroid with matrix A and linear independence taken over \mathbb{F}.
- Graphic matroid Let $G=(V, E)$ be an undirected graph. Matroid $M=(E, \mathcal{I})$ where $\mathcal{I}=\{F \subseteq E: F$ is acyclic $\}$

Examples

- Uniform matroids $U_{n, r}$ given by $E=\{1, \ldots, n\}$ and $\mathcal{I}=\{I \subseteq E:|I| \leq r\}$.
- Linear matroids Let \mathbb{F} be a field, $A \in \mathbb{F}^{m \times n}$ an $(m \times n)$-matrix over \mathbb{F}. Let $E=\{1, \ldots, n\}$ be the index set of the columns of A. $I \subseteq E$ is independent if the columns indexed by I are linearly independent.
A matroid is said to be representable over \mathbb{F} if it can be expressed as linear matroid with matrix A and linear independence taken over \mathbb{F}.
- Graphic matroid Let $G=(V, E)$ be an undirected graph. Matroid $M=(E, \mathcal{I})$ where $\mathcal{I}=\{F \subseteq E: F$ is acyclic $\}$.

Applications

- Graph theory
- Combinatorial optimisation (via greedy characterization)
- Knot theory (Jone's polynomial)
- Hyperplane arrangements (via oriented matroids)
- Polytopes (tilings, convexity, Ehrhart polynomial)
- Rigidity
- Cryptography (secrete sharing)

Applications

- Graph theory
- Combinatorial optimisation (via greedy characterization)
- Knot theory (Jone's polynomial)
- Hyperplane arrangements (via oriented matroids)
- Polytopes (tilings, convexity, Ehrhart polynomial)
- Rigidity
- Cryptography (secrete sharing)

Let $P(M)$ the base polytope of M defined as the convex hull of the incidence vectors of bases of M, that is,

$$
P(M):=\operatorname{conv}\left\{\sum_{i \in B} e_{i}: B \in \mathcal{B}(M)\right\}
$$

where e_{i} denote the standard unit vector of \mathbb{R}^{n}
(these polytopes were first studied by J. Edmonds in the seventies).
Remark
(a) $P(M)$ is a polytope of dimension at most $n-1$
(b) $P(M)$ is a face of the indepent polytope of M defined as the
convex hull of the incidence vectors of the independent sets of M.

Let $P(M)$ the base polytope of M defined as the convex hull of the incidence vectors of bases of M, that is,

$$
P(M):=\operatorname{conv}\left\{\sum_{i \in B} e_{i}: B \in \mathcal{B}(M)\right\}
$$

where e_{i} denote the standard unit vector of \mathbb{R}^{n}
(these polytopes were first studied by J. Edmonds in the seventies).

Remark

(a) $P(M)$ is a polytope of dimension at most $n-1$.
(b) $P(M)$ is a face of the indepent polytope of M defined as the convex hull of the incidence vectors of the independent sets of M.

Exemple : $P\left(U_{4,2}\right)$

A decomposition of $P(M)$ is a decomposition

$$
P(M)=\bigcup_{i=1}^{t} P\left(M_{i}\right)
$$

where each $P\left(M_{i}\right)$ is also a base matroid polytope for some M_{i}, and for each $1 \leq i \neq j \leq t$, the intersection $P\left(M_{i}\right) \cap P\left(M_{j}\right)$ is a face of both $P\left(M_{i}\right)$ and $P\left(M_{j}\right)$.
$P(M)$ is said decomposable if it has a matroid base polytope decomposition with $t \geq 2$, and indecomposable otherwise. Δ decomposition is called hypernlane split if $t=2$

A decomposition of $P(M)$ is a decomposition

$$
P(M)=\bigcup_{i=1}^{t} P\left(M_{i}\right)
$$

where each $P\left(M_{i}\right)$ is also a base matroid polytope for some M_{i}, and for each $1 \leq i \neq j \leq t$, the intersection $P\left(M_{i}\right) \cap P\left(M_{j}\right)$ is a face of both $P\left(M_{i}\right)$ and $P\left(M_{j}\right)$.
$P(M)$ is said decomposable if it has a matroid base polytope decomposition with $t \geq 2$, and indecomposable otherwise.

A decomposition is called hyperplane split if $t=2$.

Applications

(L. Lafforgue - Fields medal 2002) General method of compactification of the fine Schubert cell of the Grassmannian. It is proved that such compactification exists if the $P(M)$ is indecomposable.
Remark: Lafforgue's work implies that for a matroid M represented by vectors in \mathbb{F}^{r}, if $P(M)$ is indecomposable, then M will be rigid, that is, M will have only finitely many realizations, up to scaling and the action of $G L(r, \mathbb{F})$.
(Hacking, Keel and Tevelev) Compactification of the moduli space
of hyperplane arrangements
(Speyer) Tropical linear spaces
(Ardila, Fink and Rincon) There exist matroid functions behave like
valuations on the associated matroid base polytope decomposition

Applications

(L. Lafforgue - Fields medal 2002) General method of compactification of the fine Schubert cell of the Grassmannian. It is proved that such compactification exists if the $P(M)$ is indecomposable.
Remark: Lafforgue's work implies that for a matroid M represented by vectors in \mathbb{F}^{r}, if $P(M)$ is indecomposable, then M will be rigid, that is, M will have only finitely many realizations, up to scaling and the action of $G L(r, \mathbb{F})$.
(Hacking, Keel and Tevelev) Compactification of the moduli space of hyperplane arrangements
(Speyer) Tropical linear spaces
(Ardila, Fink and Rincon) There exist matroid functions behave like valuations on the associated matroid base polytope decomposition.

Known results

Theorem (Kapranov 1993) Any decomposition of a rank 2 matroid can be achieved by a sequence of hyperplane splits.

Theorem (Billera, Jia and Reiner 2009)

- Found five rank 3 matroids on 6 elements for which the corresponding polytopes are indecomposable.
- Gave a rank 3 matroid on 6 elements having a 3-decomposition but cannot be obtained via hyperplane splits.

Known results

Theorem (Kapranov 1993) Any decomposition of a rank 2 matroid can be achieved by a sequence of hyperplane splits.

Theorem (Billera, Jia and Reiner 2009)

- Found five rank 3 matroids on 6 elements for which the corresponding polytopes are indecomposable.
- Gave a rank 3 matroid on 6 elements having a 3-decomposition but cannot be obtained via hyperplane splits.

Combinatorial decomposition

A base decomposition of a matroid M is a decomposition

$$
\mathcal{B}(M)=\bigcup_{i=1}^{t} \mathcal{B}\left(M_{i}\right)
$$

where $\mathcal{B}\left(M_{k}\right), 1 \leq k \leq t$ and $\mathcal{B}\left(M_{i}\right) \cap \mathcal{B}\left(M_{j}\right), 1 \leq i \neq j \leq t$ are collections of bases of matroide.
M is called combinatorial decomposable if it has a base
decomposition.
A decomposition is nontrivial if $B\left(M_{i}\right) \neq B(M)$ for all i.

Combinatorial decomposition

A base decomposition of a matroid M is a decomposition

$$
\mathcal{B}(M)=\bigcup_{i=1}^{t} \mathcal{B}\left(M_{i}\right)
$$

where $\mathcal{B}\left(M_{k}\right), 1 \leq k \leq t$ and $\mathcal{B}\left(M_{i}\right) \cap \mathcal{B}\left(M_{j}\right), 1 \leq i \neq j \leq t$ are collections of bases of matroide.
M is called combinatorial decomposable if it has a base decomposition.
A decomposition is nontrivial if $\mathcal{B}\left(M_{i}\right) \neq \mathcal{B}(M)$ for all i.

- If $P(M)$ is decomposable then M is clearly combinatorial decomposable.

- If $P(M)$ is decomposable then M is clearly combinatorial decomposable.
- A combinatorial decomposition of M could not yield to a decomposition of $P(M)$.
Example
$\mathcal{B}(M)=\{\{1,2\},\{1,3\},\{2,3\},\{2,4\},\{3,4\}\}$ has the following combinatorial decomposition
$\mathcal{B}\left(M_{1}\right)=\{\{1,2\},\{2,3\},\{2,4\}\}$ and $\mathcal{B}\left(M_{2}\right)=\{\{1,3\},\{2,3\},\{3,4\}\}$

We verify that $\mathcal{B}\left(M_{1}\right), \mathcal{B}\left(M_{2}\right)$ and $\mathcal{B}\left(M_{1}\right) \cap \mathcal{B}\left(M_{2}\right)=\{2,3\}$ are collections of bases of matroids.

However, $P\left(M_{1}\right)$ and $P\left(M_{2}\right)$ do not decompose $P(M)$.

Proposition Let P be d-polytope with set of vertices X. Let H be a hyperplane such that $F=H \cap P \neq \emptyset$ and non-supporting P. So, H partition X into X_{1} and X_{2} with $X_{1} \cap X_{2}=W$. Then, for each edge $[u, v]$ of P we have that $\{u, v\} \subset X_{i}$ for either $i=1$ or 2 if and only if $F=\operatorname{conv}(W)$.

Corollary Suppose that H divides P in two polytopes P_{1} and P_{2}.

Proposition Let P be d-polytope with set of vertices X. Let H be a hyperplane such that $F=H \cap P \neq \emptyset$ and non-supporting P. So, H partition X into X_{1} and X_{2} with $X_{1} \cap X_{2}=W$. Then, for each edge $[u, v]$ of P we have that $\{u, v\} \subset X_{i}$ for either $i=1$ or 2 if and only if $F=\operatorname{conv}(W)$.

Corollary Suppose that H divides P in two polytopes P_{1} and P_{2}. Then, $F=\operatorname{conv}(W)$ if and only if $P_{i}=\operatorname{conv}\left(X_{i}\right), i=1,2$.

Let $\left(E_{1}, E_{2}\right)$ be a partition of E and et $r_{i}>1, i=1,2$ be the rank of $\left.M\right|_{E_{i}}$. We say that $\left(E_{1}, E_{2}\right)$ is a good partition if there exist integers $0<a_{1}<r_{1}$ et $0<a_{2}<r_{2}$ such that:
(P1) $r_{1}+r_{2}=r+a_{1}+a_{2}$ and
(P2) for any $X \in \mathcal{I}\left(\left.M\right|_{E_{1}}\right)$ with $|X| \leq r_{1}-a_{1}$ and for any $Y \in \mathcal{I}\left(\left.M\right|_{E_{2}}\right)$ with $|Y| \leq r_{2}-a_{2}$ we have that $X \cup Y \in \mathcal{I}(M)$.

Lemma Let $\left(E_{1}, E_{2}\right)$ be a good partition of E. Let

where r_{i} is the rank $\left.M\right|_{E_{i}}, i=1,2$ and a_{1}, a_{2} verify (P1) and (P2).
Then, $\mathcal{B}\left(M_{1}\right)$ and $\mathcal{B}\left(M_{2}\right)$ are collections of bases of matroids, say M_{1} et M_{2}

Let $\left(E_{1}, E_{2}\right)$ be a partition of E and et $r_{i}>1, i=1,2$ be the rank of $\left.M\right|_{E_{i}}$. We say that $\left(E_{1}, E_{2}\right)$ is a good partition if there exist integers $0<a_{1}<r_{1}$ et $0<a_{2}<r_{2}$ such that:
(P1) $r_{1}+r_{2}=r+a_{1}+a_{2}$ and
(P2) for any $X \in \mathcal{I}\left(\left.M\right|_{E_{1}}\right)$ with $|X| \leq r_{1}-a_{1}$ and for any $Y \in \mathcal{I}\left(\left.M\right|_{E_{2}}\right)$ with $|Y| \leq r_{2}-a_{2}$ we have that $X \cup Y \in \mathcal{I}(M)$.

Lemma Let $\left(E_{1}, E_{2}\right)$ be a good partition of E. Let
$\mathcal{B}\left(M_{1}\right)=\left\{B \in \mathcal{B}(M):\left|B \cap E_{1}\right| \leq r_{1}-a_{1}\right\}$
$\mathcal{B}\left(M_{2}\right)=\left\{B \in \mathcal{B}(M):\left|B \cap E_{2}\right| \leq r_{2}-a_{2}\right\}$
where r_{i} is the rank $\left.M\right|_{E_{i}}, i=1,2$ and a_{1}, a_{2} verify (P1) and (P2).
Then, $\mathcal{B}\left(M_{1}\right)$ and $\mathcal{B}\left(M_{2}\right)$ are collections of bases of matroids, say M_{1} et M_{2}.

Theorem (Chatelain and R.A. 2011) Let $M=(E, \mathcal{B})$ be a matroid and let $\left(E_{1}, E_{2}\right)$ a good partition of E. Then, $P(M)=P\left(M_{1}\right) \cup P\left(M_{2}\right)$ is a nontrivial hyperplane split where M_{1} et M_{2} are the matroids of lemma above.

Theorem (Chatelain and R.A. 2011) Let $M=(E, \mathcal{B})$ be a matroid and let $\left(E_{1}, E_{2}\right)$ a good partition of E. Then, $P(M)=P\left(M_{1}\right) \cup P\left(M_{2}\right)$ is a nontrivial hyperplane split where M_{1} et M_{2} are the matroids of lemma above.

We say that two hyperplane splits $P\left(M_{1}\right) \cup P\left(M_{2}\right)$ and $P\left(M_{1}^{\prime}\right) \cup P\left(M_{2}^{\prime}\right)$ of $P(M)$ are equivalent if $P\left(M_{i}\right)$ is combinatorially equivalent to $P\left(M_{i}^{\prime}\right), i=1,2$. They are different otherwise.

Corollary (Chatelain and R.A. 2011) Let $n \geq r+2 \geq 4$ be integers and let $h\left(U_{n, r}\right)$ be the number of different hyperplane splits of

Theorem (Chatelain and R.A. 2011) Let $M=(E, \mathcal{B})$ be a matroid and let $\left(E_{1}, E_{2}\right)$ a good partition of E. Then, $P(M)=P\left(M_{1}\right) \cup P\left(M_{2}\right)$ is a nontrivial hyperplane split where M_{1} et M_{2} are the matroids of lemma above.

We say that two hyperplane splits $P\left(M_{1}\right) \cup P\left(M_{2}\right)$ and $P\left(M_{1}^{\prime}\right) \cup P\left(M_{2}^{\prime}\right)$ of $P(M)$ are equivalent if $P\left(M_{i}\right)$ is combinatorially equivalent to $P\left(M_{i}^{\prime}\right), i=1,2$. They are different otherwise.

Corollary (Chatelain and R.A. 2011) Let $n \geq r+2 \geq 4$ be integers and let $h\left(U_{n, r}\right)$ be the number of different hyperplane splits of $P\left(U_{n, r}\right)$. Then,

$$
h\left(U_{n, r}\right) \geq\left\lfloor\frac{n}{2}\right\rfloor-1 .
$$

Example Let us consider $U_{4,2}$. Then, $E_{1}=\{1,2\}$ and $E_{2}=\{3,4\}$ is a good partition (and thus $r_{1}=r_{2}=2$) with $a_{1}=a_{2}=1$.
We have $\mathcal{B}\left(M_{1}\right)=\{\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}$, $\mathcal{B}\left(M_{2}\right)=\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\}\}$ and $\mathcal{B}\left(M_{1}\right) \cap \mathcal{B}\left(M_{2}\right)=\{\{1,3\},\{1,4\},\{2,3\},\{2,4\}\}$.

Example Let us consider $U_{4,2}$. Then, $E_{1}=\{1,2\}$ and $E_{2}=\{3,4\}$ is a good partition (and thus $r_{1}=r_{2}=2$) with $a_{1}=a_{2}=1$.
We have $\mathcal{B}\left(M_{1}\right)=\{\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}$, $\mathcal{B}\left(M_{2}\right)=\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\}\}$ and $\mathcal{B}\left(M_{1}\right) \cap \mathcal{B}\left(M_{2}\right)=\{\{1,3\},\{1,4\},\{2,3\},\{2,4\}\}$.

Lattice path matroids

Let $m=3$ and $r=4$ and let $M[Q, P]$ be the transversal matroid on $\{1, \ldots, 7\}$ with presentation $\left(N_{i}: i \in\{1, \ldots, 4\}\right)$ where $N_{1}=[1,2,3,4], N_{2}=[3,4,5], N_{3}=[5,6]$ and $N_{4}=[7]$.

Lattice path matroids

Let $m=3$ and $r=4$ and let $M[Q, P]$ be the transversal matroid on $\{1, \ldots, 7\}$ with presentation $\left(N_{i}: i \in\{1, \ldots, 4\}\right)$ where $N_{1}=[1,2,3,4], N_{2}=[3,4,5], N_{3}=[5,6]$ and $N_{4}=[7]$.

Example Transversal matroids (a) M_{1}, (b) M_{2} et (c) $M_{1} \cap M_{2}$.

(a)

(b)

(c)

Theorem (Chatelain and R.A. 2011) Let $M_{1}=\left(E_{1}, \mathcal{B}\right)$ and $M_{2}=\left(E_{2}, \mathcal{B}\right)$ be two matroids of ranks r_{1} and r_{2} respectively where $E_{1} \cap E_{2}=\emptyset$. Then, $P\left(M_{1} \oplus M_{2}\right)$ has a nontrivial hyperplane split if and only if either $P\left(M_{1}\right)$ or $P\left(M_{2}\right)$ has a nontrivial hyperplane split.

Remark The class of lattice path matroids are closed under direct
sum.

Theorem (Chatelain and R.A. 2011) Let $M_{1}=\left(E_{1}, \mathcal{B}\right)$ and $M_{2}=\left(E_{2}, \mathcal{B}\right)$ be two matroids of ranks r_{1} and r_{2} respectively where $E_{1} \cap E_{2}=\emptyset$. Then, $P\left(M_{1} \oplus M_{2}\right)$ has a nontrivial hyperplane split if and only if either $P\left(M_{1}\right)$ or $P\left(M_{2}\right)$ has a nontrivial hyperplane split.

Remark The class of lattice path matroids are closed under direct sum.

Theorem (Chatelain and R.A. 2011) Let $M_{1}=\left(E_{1}, \mathcal{B}\right)$ and $M_{2}=\left(E_{2}, \mathcal{B}\right)$ be two matroids of ranks r_{1} and r_{2} respectively where $E_{1} \cap E_{2}=\emptyset$. Then, $P\left(M_{1} \oplus M_{2}\right)$ has a nontrivial hyperplane split if and only if either $P\left(M_{1}\right)$ or $P\left(M_{2}\right)$ has a nontrivial hyperplane split.

Remark The class of lattice path matroids are closed under direct sum.

Binary matroids

A matroid is called binary if it is representable over \mathbb{F}_{2}. Let $G(M)$ be the base graph of a matroid $M(G(M)$ is the 1-squeleton of $P(M)$).
Theorem (Maurer 1976) If x, y are two vertices at distance two then the neighbours of x and y form either a square or a pyramid or an octahedron.

Binary matroids

A matroid is called binary if it is representable over \mathbb{F}_{2}. Let $G(M)$ be the base graph of a matroid $M(G(M)$ is the 1-squeleton of $P(M)$).
Theorem (Maurer 1976) If x, y are two vertices at distance two then the neighbours of x and y form either a square or a pyramid or an octahedron.

Lemma Let $M=(E, \mathcal{B})$ a binary matroid and let $\mathcal{B}_{1} \subset \mathcal{B}$ such that \mathcal{B}_{1} is the collection of bases of a matroid, says M_{1}. If $X \in \mathcal{B}_{1}$ and all the neighbours of X are elements of \mathcal{B}_{1} then $\mathcal{B}_{1}=\mathcal{B}$.

Theorem (Chatelain and R.A. 2011) Let M be a binary matroid.
Then, $P(M)$ do not have a nontrivial hyperplane split.

Lemma Let $M=(E, \mathcal{B})$ a binary matroid and let $\mathcal{B}_{1} \subset \mathcal{B}$ such that \mathcal{B}_{1} is the collection of bases of a matroid, says M_{1}. If $X \in \mathcal{B}_{1}$ and all the neighbours of X are elements of \mathcal{B}_{1} then $\mathcal{B}_{1}=\mathcal{B}$.

Theorem (Chatelain and R.A. 2011) Let M be a binary matroid. Then, $P(M)$ do not have a nontrivial hyperplane split.

Corollary Let M be a binary matroid. If $G(M)$ contains a vertex X having exactly d neighbours where $d=\operatorname{dim}(P(M))$ then $P(M)$ is indecomposable.

Remark The d-dimensional hypercube is the base graph of a binary matroid.

Corollary (Chatelain and R.A. 2011) Let $P(M)$ be the base matroid polytope of a matroid M having as 1 -skeleton the hypercube. Then, $P(M)$ is indecomposable.

Corollary Let M be a binary matroid. If $G(M)$ contains a vertex X having exactly d neighbours where $d=\operatorname{dim}(P(M))$ then $P(M)$ is indecomposable.

Remark The d-dimensional hypercube is the base graph of a binary matroid.

Corollary (Chatelain and R.A. 2011) Let $P(M)$ be the base matroid polytope of a matroid M having as 1 -skeleton the hypercube. Then, $P(M)$ is indecomposable

Corollary Let M be a binary matroid. If $G(M)$ contains a vertex X having exactly d neighbours where $d=\operatorname{dim}(P(M))$ then $P(M)$ is indecomposable.

Remark The d-dimensional hypercube is the base graph of a binary matroid.

Corollary (Chatelain and R.A. 2011) Let $P(M)$ be the base matroid polytope of a matroid M having as 1 -skeleton the hypercube. Then, $P(M)$ is indecomposable.

