Matroid base polytope decomposition

J.L. Ramírez Alfonsín

(join work with V. Chatelain) I3M, Université Montpellier 2

Definitions

A matroid $M=(E,\mathcal{I})$ is a finite ground set $E=\{1,\ldots,n\}$ together with a collection $\mathcal{I}\subseteq 2^E$, known as independent sets satysfying

- if $I \in \mathcal{I}$ and $J \subseteq I$ then $J \in \mathcal{I}$
- if $I, J \in \mathcal{I}$ and |J| > |I|, then there exist an element $z \in J \setminus I$ such that $I \cup \{z\} \in \mathcal{I}$.

A base is any maximal independent set. The collection of bases ${\cal B}$ satisfy the base exchange axiom

if $B_1, B_2 \in \mathcal{B}$ and $e \in B_1 \setminus B_2$ then there exist $f \in B_2 \setminus B_1$ such that $(B_1 - e) + f \in \mathcal{B}$.

Remark : All bases have the same cardinality, say r. We say that matroid $M = (E, \mathcal{B})$ has rank r = r(M).

Definitions

A matroid $M=(E,\mathcal{I})$ is a finite ground set $E=\{1,\ldots,n\}$ together with a collection $\mathcal{I}\subseteq 2^E$, known as independent sets satysfying

- if $I \in \mathcal{I}$ and $J \subseteq I$ then $J \in \mathcal{I}$
- if $I, J \in \mathcal{I}$ and |J| > |I|, then there exist an element $z \in J \setminus I$ such that $I \cup \{z\} \in \mathcal{I}$.

A base is any maximal independent set. The collection of bases $\mathcal B$ satisfy the base exchange axiom if $B_1, B_2 \in \mathcal B$ and $e \in B_1 \setminus B_2$ then there exist $f \in B_2 \setminus B_1$ such that $(B_1 - e) + f \in \mathcal B$.

Remark : All bases have the same cardinality, say r. We say that matroid $M = (E, \mathcal{B})$ has rank r = r(M).

Definitions

A matroid $M=(E,\mathcal{I})$ is a finite ground set $E=\{1,\ldots,n\}$ together with a collection $\mathcal{I}\subseteq 2^E$, known as independent sets satysfying

- if $I \in \mathcal{I}$ and $J \subseteq I$ then $J \in \mathcal{I}$
- if $I, J \in \mathcal{I}$ and |J| > |I|, then there exist an element $z \in J \setminus I$ such that $I \cup \{z\} \in \mathcal{I}$.

A base is any maximal independent set. The collection of bases ${\cal B}$ satisfy the base exchange axiom

if $B_1, B_2 \in \mathcal{B}$ and $e \in B_1 \setminus B_2$ then there exist $f \in B_2 \setminus B_1$ such that $(B_1 - e) + f \in \mathcal{B}$.

Remark : All bases have the same cardinality, say r. We say that matroid M = (E, B) has rank r = r(M).

- Uniform matroids $U_{n,r}$ given by $E = \{1, ..., n\}$ and $\mathcal{I} = \{I \subseteq E : |I| \le r\}$.
- Linear matroids Let $\mathbb F$ be a field, $A \in \mathbb F^{m \times n}$ an $(m \times n)$ -matrix over $\mathbb F$. Let $E = \{1, \ldots, n\}$ be the index set of the columns of A. $I \subseteq E$ is independent if the columns indexed by I are linearly independent.

A matroid is said to be representable over \mathbb{F} if it can be expressed as linear matroid with matrix A and linear independence taken over \mathbb{F} .

• Graphic matroid Let G = (V, E) be an undirected graph. Matroid $M = (E, \mathcal{I})$ where $\mathcal{I} = \{F \subseteq E : F \text{ is acyclic}\}.$

- Uniform matroids $U_{n,r}$ given by $E = \{1, ..., n\}$ and $\mathcal{I} = \{I \subseteq E : |I| \le r\}$.
- Linear matroids Let $\mathbb F$ be a field, $A \in \mathbb F^{m \times n}$ an $(m \times n)$ -matrix over $\mathbb F$. Let $E = \{1, \ldots, n\}$ be the index set of the columns of A. $I \subseteq E$ is independent if the columns indexed by I are linearly independent.

A matroid is said to be representable over \mathbb{F} if it can be expressed as linear matroid with matrix A and linear independence taken over \mathbb{F} .

• Graphic matroid Let G = (V, E) be an undirected graph. Matroid $M = (E, \mathcal{I})$ where $\mathcal{I} = \{F \subseteq E : F \text{ is acyclic}\}.$

- Uniform matroids $U_{n,r}$ given by $E = \{1, ..., n\}$ and $\mathcal{I} = \{I \subseteq E : |I| \le r\}$.
- Linear matroids Let $\mathbb F$ be a field, $A \in \mathbb F^{m \times n}$ an $(m \times n)$ -matrix over $\mathbb F$. Let $E = \{1, \ldots, n\}$ be the index set of the columns of A. $I \subseteq E$ is independent if the columns indexed by I are linearly independent.

A matroid is said to be representable over \mathbb{F} if it can be expressed as linear matroid with matrix A and linear independence taken over \mathbb{F} .

• Graphic matroid Let G = (V, E) be an undirected graph. Matroid $M = (E, \mathcal{I})$ where $\mathcal{I} = \{F \subseteq E : F \text{ is acyclic}\}.$

- Uniform matroids $U_{n,r}$ given by $E = \{1, ..., n\}$ and $\mathcal{I} = \{I \subseteq E : |I| \le r\}$.
- Linear matroids Let $\mathbb F$ be a field, $A \in \mathbb F^{m \times n}$ an $(m \times n)$ -matrix over $\mathbb F$. Let $E = \{1, \ldots, n\}$ be the index set of the columns of A. $I \subseteq E$ is independent if the columns indexed by I are linearly independent.

A matroid is said to be representable over \mathbb{F} if it can be expressed as linear matroid with matrix A and linear independence taken over \mathbb{F} .

• Graphic matroid Let G = (V, E) be an undirected graph. Matroid $M = (E, \mathcal{I})$ where $\mathcal{I} = \{F \subseteq E : F \text{ is acyclic}\}.$

Applications

- Graph theory
- Combinatorial optimisation (via greedy characterization)
- Knot theory (Jone's polynomial)
- Hyperplane arrangements (via oriented matroids)
- Polytopes (tilings, convexity, Ehrhart polynomial)
- Rigidity
- Cryptography (secrete sharing)

Applications

- Graph theory
- Combinatorial optimisation (via greedy characterization)
- Knot theory (Jone's polynomial)
- Hyperplane arrangements (via oriented matroids)
- Polytopes (tilings, convexity, Ehrhart polynomial)
- Rigidity
- Cryptography (secrete sharing)

Let P(M) the base polytope of M defined as the convex hull of the incidence vectors of bases of M, that is,

$$P(M) := conv \left\{ \sum_{i \in B} e_i : B \in \mathcal{B}(M) \right\}$$

where e_i denote the standard unit vector of \mathbb{R}^n (these polytopes were first studied by J. Edmonds in the seventies).

Remark

- (a) P(M) is a polytope of dimension at most n-1.
- (b) P(M) is a face of the indepent polytope of M defined as the convex hull of the incidence vectors of the independent sets of M.

Let P(M) the base polytope of M defined as the convex hull of the incidence vectors of bases of M, that is,

$$P(M) := conv \left\{ \sum_{i \in B} e_i : B \in \mathcal{B}(M) \right\}$$

where e_i denote the standard unit vector of \mathbb{R}^n (these polytopes were first studied by J. Edmonds in the seventies).

Remark

- (a) P(M) is a polytope of dimension at most n-1.
- (b) P(M) is a face of the indepent polytope of M defined as the convex hull of the incidence vectors of the independent sets of M.

Exemple : $P(U_{4,2})$

A decomposition of P(M) is a decomposition

$$P(M) = \bigcup_{i=1}^t P(M_i)$$

where each $P(M_i)$ is also a base matroid polytope for some M_i , and for each $1 \le i \ne j \le t$, the intersection $P(M_i) \cap P(M_j)$ is a face of both $P(M_i)$ and $P(M_j)$.

P(M) is said decomposable if it has a matroid base polytope decomposition with $t \ge 2$, and indecomposable otherwise.

A decomposition is called hyperplane split if t = 2.

A decomposition of P(M) is a decomposition

$$P(M) = \bigcup_{i=1}^{t} P(M_i)$$

where each $P(M_i)$ is also a base matroid polytope for some M_i , and for each $1 \le i \ne j \le t$, the intersection $P(M_i) \cap P(M_j)$ is a face of both $P(M_i)$ and $P(M_j)$.

P(M) is said decomposable if it has a matroid base polytope decomposition with $t \ge 2$, and indecomposable otherwise.

A decomposition is called hyperplane split if t = 2.

Applications

(L. Lafforgue - Fields medal 2002) General method of compactification of the fine Schubert cell of the Grassmannian. It is proved that such compactification exists if the P(M) is indecomposable.

Remark: Lafforgue's work implies that for a matroid M represented by vectors in \mathbb{F}^r , if P(M) is indecomposable, then M will be rigid, that is, M will have only finitely many realizations, up to scaling and the action of $GL(r,\mathbb{F})$.

(Hacking, Keel and Tevelev) Compactification of the moduli space of hyperplane arrangements

(Speyer) Tropical linear spaces

(Ardila, Fink and Rincon) There exist matroid functions behave like *valuations* on the associated matroid base polytope decomposition.

Applications

(L. Lafforgue - Fields medal 2002) General method of compactification of the fine Schubert cell of the Grassmannian. It is proved that such compactification exists if the P(M) is indecomposable.

Remark: Lafforgue's work implies that for a matroid M represented by vectors in \mathbb{F}^r , if P(M) is indecomposable, then M will be rigid, that is, M will have only finitely many realizations, up to scaling and the action of $GL(r,\mathbb{F})$.

(Hacking, Keel and Tevelev) Compactification of the moduli space of hyperplane arrangements

(Speyer) Tropical linear spaces

(Ardila, Fink and Rincon) There exist matroid functions behave like *valuations* on the associated matroid base polytope decomposition.

Known results

Theorem (Kapranov 1993) Any decomposition of a rank 2 matroid can be achieved by a sequence of hyperplane splits.

Theorem (Billera, Jia and Reiner 2009)

- Found five rank 3 matroids on 6 elements for which the corresponding polytopes are indecomposable.
- Gave a rank 3 matroid on 6 elements having a 3-decomposition but cannot be obtained via hyperplane splits.

Known results

Theorem (Kapranov 1993) Any decomposition of a rank 2 matroid can be achieved by a sequence of hyperplane splits.

Theorem (Billera, Jia and Reiner 2009)

- Found five rank 3 matroids on 6 elements for which the corresponding polytopes are indecomposable.
- Gave a rank 3 matroid on 6 elements having a 3-decomposition but cannot be obtained via hyperplane splits.

Combinatorial decomposition

A base decomposition of a matroid M is a decomposition

$$\mathcal{B}(M) = \bigcup_{i=1}^t \mathcal{B}(M_i)$$

where $\mathcal{B}(M_k)$, $1 \le k \le t$ and $\mathcal{B}(M_i) \cap \mathcal{B}(M_j)$, $1 \le i \ne j \le t$ are collections of bases of matroide.

M is called combinatorial decomposable if it has a base decomposition.

A decomposition is *nontrivial* if $\mathcal{B}(M_i) \neq \mathcal{B}(M)$ for all *i*.

Combinatorial decomposition

A base decomposition of a matroid M is a decomposition

$$\mathcal{B}(M) = \bigcup_{i=1}^t \mathcal{B}(M_i)$$

where $\mathcal{B}(M_k)$, $1 \le k \le t$ and $\mathcal{B}(M_i) \cap \mathcal{B}(M_j)$, $1 \le i \ne j \le t$ are collections of bases of matroide.

M is called combinatorial decomposable if it has a base decomposition.

A decomposition is *nontrivial* if $\mathcal{B}(M_i) \neq \mathcal{B}(M)$ for all *i*.

- If P(M) is decomposable then M is clearly combinatorial decomposable.
- A combinatorial decomposition of M could not yield to a decomposition of P(M).

 $\mathcal{B}(M) = \{\{1,2\}, \{1,3\}, \{2,3\}, \{2,4\}, \{3,4\}\}$ has the following combinatorial decomposition

$$\mathcal{B}(M_1) = \{\{1,2\}, \{2,3\}, \{2,4\}\} \text{ and } \mathcal{B}(M_2) = \{\{1,3\}, \{2,3\}, \{3,4\}\}$$

We verify that $\mathcal{B}(M_1), \mathcal{B}(M_2)$ and $\mathcal{B}(M_1) \cap \mathcal{B}(M_2) = \{2, 3\}$ are collections of bases of matroids.

However, $P(M_1)$ and $P(M_2)$ do not decompose P(M).

- If P(M) is decomposable then M is clearly combinatorial decomposable.
- A combinatorial decomposition of M could not yield to a decomposition of P(M).

 $\mathcal{B}(M) = \{\{1,2\},\{1,3\},\{2,3\},\{2,4\},\{3,4\}\}\$ has the following combinatorial decomposition

$$\mathcal{B}(M_1) = \{\{1,2\},\{2,3\},\{2,4\}\}$$
 and $\mathcal{B}(M_2) = \{\{1,3\},\{2,3\},\{3,4\}\}$

We verify that $\mathcal{B}(M_1)$, $\mathcal{B}(M_2)$ and $\mathcal{B}(M_1) \cap \mathcal{B}(M_2) = \{2,3\}$ are collections of bases of matroids.

However, $P(M_1)$ and $P(M_2)$ do not decompose P(M).

Proposition Let P be d-polytope with set of vertices X. Let H be a hyperplane such that $F = H \cap P \neq \emptyset$ and non-supporting P. So, H partition X into X_1 and X_2 with $X_1 \cap X_2 = W$. Then, for each edge [u,v] of P we have that $\{u,v\} \subset X_i$ for either i=1 or 2 if and only if F = conv(W).

Corollary Suppose that H divides P in two polytopes P_1 and P_2 . Then, F = conv(W) if and only if $P_i = conv(X_i)$, i = 1, 2. Proposition Let P be d-polytope with set of vertices X. Let H be a hyperplane such that $F = H \cap P \neq \emptyset$ and non-supporting P. So, H partition X into X_1 and X_2 with $X_1 \cap X_2 = W$. Then, for each edge [u,v] of P we have that $\{u,v\} \subset X_i$ for either i=1 or 2 if and only if F = conv(W).

Corollary Suppose that H divides P in two polytopes P_1 and P_2 . Then, F = conv(W) if and only if $P_i = conv(X_i)$, i = 1, 2. Let (E_1, E_2) be a partition of E and et $r_i > 1$, i = 1, 2 be the rank of $M|_{E_i}$. We say that (E_1, E_2) is a good partition if there exist integers $0 < a_1 < r_1$ et $0 < a_2 < r_2$ such that :

- (P1) $r_1 + r_2 = r + a_1 + a_2$ and
- (P2) for any $X \in \mathcal{I}(M|_{E_1})$ with $|X| \leq r_1 a_1$ and for any $Y \in \mathcal{I}(M|_{E_2})$ with $|Y| \leq r_2 a_2$ we have that $X \cup Y \in \mathcal{I}(M)$.

Lemma Let (E_1, E_2) be a good partition of E. Let

$$\mathcal{B}(M_1) = \{ B \in \mathcal{B}(M) : |B \cap E_1| \le r_1 - a_1 \}$$

$$\mathcal{B}(M_2) = \{ B \in \mathcal{B}(M) : |B \cap E_2| \le r_2 - a_2 \}$$

where r_i is the rank $M|_{E_i}$, i = 1, 2 and a_1, a_2 verify (P1) and (P2).

Then, $\mathcal{B}(M_1)$ and $\mathcal{B}(M_2)$ are collections of bases of matroids, say M_1 et M_2 .

Let (E_1, E_2) be a partition of E and et $r_i > 1$, i = 1, 2 be the rank of $M|_{E_i}$. We say that (E_1, E_2) is a good partition if there exist integers $0 < a_1 < r_1$ et $0 < a_2 < r_2$ such that :

- (P1) $r_1 + r_2 = r + a_1 + a_2$ and
- (P2) for any $X \in \mathcal{I}(M|_{E_1})$ with $|X| \leq r_1 a_1$ and for any $Y \in \mathcal{I}(M|_{E_2})$ with $|Y| \leq r_2 a_2$ we have that $X \cup Y \in \mathcal{I}(M)$.

Lemma Let (E_1, E_2) be a good partition of E. Let

$$\mathcal{B}(M_1) = \{ B \in \mathcal{B}(M) : |B \cap E_1| \le r_1 - a_1 \}$$

$$\mathcal{B}(M_2) = \{ B \in \mathcal{B}(M) : |B \cap E_2| \le r_2 - a_2 \}$$

where r_i is the rank $M|_{E_i}$, i = 1, 2 and a_1, a_2 verify (P1) and (P2).

Then, $\mathcal{B}(M_1)$ and $\mathcal{B}(M_2)$ are collections of bases of matroids, say M_1 et M_2 .

Theorem (Chatelain and R.A. 2011) Let $M = (E, \mathcal{B})$ be a matroid and let (E_1, E_2) a good partition of E. Then, $P(M) = P(M_1) \cup P(M_2)$ is a nontrivial hyperplane split where M_1 et M_2 are the matroids of lemma above.

We say that two hyperplane splits $P(M_1) \cup P(M_2)$ and $P(M_1') \cup P(M_2')$ of P(M) are equivalent if $P(M_i)$ is combinatorially equivalent to $P(M_i')$, i = 1, 2. They are different otherwise.

Corollary (Chatelain and R.A. 2011) Let $n \ge r + 2 \ge 4$ be integers and let $h(U_{n,r})$ be the number of different hyperplane splits of $P(U_{n,r})$. Then,

$$h(U_{n,r}) \geq \left|\frac{n}{2}\right| - 1.$$

Theorem (Chatelain and R.A. 2011) Let $M = (E, \mathcal{B})$ be a matroid and let (E_1, E_2) a good partition of E. Then, $P(M) = P(M_1) \cup P(M_2)$ is a nontrivial hyperplane split where M_1 et M_2 are the matroids of lemma above.

We say that two hyperplane splits $P(M_1) \cup P(M_2)$ and $P(M_1') \cup P(M_2')$ of P(M) are equivalent if $P(M_i)$ is combinatorially equivalent to $P(M_i')$, i = 1, 2. They are different otherwise.

Corollary (Chatelain and R.A. 2011) Let $n \ge r + 2 \ge 4$ be integers and let $h(U_{n,r})$ be the number of different hyperplane splits of $P(U_{n,r})$. Then,

$$h(U_{n,r}) \geq \left\lfloor \frac{n}{2} \right\rfloor - 1.$$

Theorem (Chatelain and R.A. 2011) Let $M = (E, \mathcal{B})$ be a matroid and let (E_1, E_2) a good partition of E. Then, $P(M) = P(M_1) \cup P(M_2)$ is a nontrivial hyperplane split where M_1 et M_2 are the matroids of lemma above.

We say that two hyperplane splits $P(M_1) \cup P(M_2)$ and $P(M_1') \cup P(M_2')$ of P(M) are equivalent if $P(M_i)$ is combinatorially equivalent to $P(M_i')$, i = 1, 2. They are different otherwise.

Corollary (Chatelain and R.A. 2011) Let $n \ge r + 2 \ge 4$ be integers and let $h(U_{n,r})$ be the number of different hyperplane splits of $P(U_{n,r})$. Then,

$$h(U_{n,r}) \geq \left|\frac{n}{2}\right| - 1.$$

Example Let us consider $U_{4,2}$. Then, $E_1=\{1,2\}$ and $E_2=\{3,4\}$ is a good partition (and thus $r_1=r_2=2$) with $a_1=a_2=1$. We have $\mathcal{B}(M_1)=\{\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\},$ $\mathcal{B}(M_2)=\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\}\}$ and $\mathcal{B}(M_1)\cap\mathcal{B}(M_2)=\{\{1,3\},\{1,4\},\{2,3\},\{2,4\}\}.$

Example Let us consider $U_{4,2}$. Then, $E_1=\{1,2\}$ and $E_2=\{3,4\}$ is a good partition (and thus $r_1=r_2=2$) with $a_1=a_2=1$. We have $\mathcal{B}(M_1)=\{\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\},$ $\mathcal{B}(M_2)=\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\}\}$ and $\mathcal{B}(M_1)\cap\mathcal{B}(M_2)=\{\{1,3\},\{1,4\},\{2,3\},\{2,4\}\}.$

Lattice path matroids

Let m=3 and r=4 and let M[Q,P] be the transversal matroid on $\{1,\ldots,7\}$ with presentation $(N_i:i\in\{1,\ldots,4\})$ where $N_1=[1,2,3,4],\ N_2=[3,4,5],\ N_3=[5,6]$ and $N_4=[7].$

Lattice path matroids

Let m=3 and r=4 and let M[Q,P] be the transversal matroid on $\{1,\ldots,7\}$ with presentation $(N_i:i\in\{1,\ldots,4\})$ where $N_1=[1,2,3,4],\ N_2=[3,4,5],\ N_3=[5,6]$ and $N_4=[7].$

Example Transversal matroids (a) M_1 , (b) M_2 et (c) $M_1 \cap M_2$.

Theorem (Chatelain and R.A. 2011) Let $M_1 = (E_1, \mathcal{B})$ and $M_2 = (E_2, \mathcal{B})$ be two matroids of ranks r_1 and r_2 respectively where $E_1 \cap E_2 = \emptyset$. Then, $P(M_1 \oplus M_2)$ has a nontrivial hyperplane split if and only if either $P(M_1)$ or $P(M_2)$ has a nontrivial hyperplane split.

Remark The class of lattice path matroids are closed under direct sum.

Theorem (Chatelain and R.A. 2011) Let $M_1 = (E_1, \mathcal{B})$ and $M_2 = (E_2, \mathcal{B})$ be two matroids of ranks r_1 and r_2 respectively where $E_1 \cap E_2 = \emptyset$. Then, $P(M_1 \oplus M_2)$ has a nontrivial hyperplane split if and only if either $P(M_1)$ or $P(M_2)$ has a nontrivial hyperplane split.

Remark The class of lattice path matroids are closed under direct sum.

Theorem (Chatelain and R.A. 2011) Let $M_1 = (E_1, \mathcal{B})$ and $M_2 = (E_2, \mathcal{B})$ be two matroids of ranks r_1 and r_2 respectively where $E_1 \cap E_2 = \emptyset$. Then, $P(M_1 \oplus M_2)$ has a nontrivial hyperplane split if and only if either $P(M_1)$ or $P(M_2)$ has a nontrivial hyperplane split.

Remark The class of lattice path matroids are closed under direct sum.

Binary matroids

A matroid is called binary if it is representable over \mathbb{F}_2 . Let G(M) be the base graph of a matroid M (G(M) is the 1-squeleton of P(M)).

Theorem (Maurer 1976) If x, y are two vertices at distance two then the neighbours of x and y form either a square or a pyramid or an octahedron.

Binary matroids

A matroid is called binary if it is representable over \mathbb{F}_2 . Let G(M) be the base graph of a matroid M (G(M) is the 1-squeleton of P(M)).

Theorem (Maurer 1976) If x, y are two vertices at distance two then the neighbours of x and y form either a square or a pyramid or an octahedron.

Lemma Let $M=(E,\mathcal{B})$ a binary matroid and let $\mathcal{B}_1\subset\mathcal{B}$ such that \mathcal{B}_1 is the collection of bases of a matroid, says M_1 . If $X\in\mathcal{B}_1$ and all the neighbours of X are elements of \mathcal{B}_1 then $\mathcal{B}_1=\mathcal{B}$.

Theorem (Chatelain and R.A. 2011) Let M be a binary matroid. Then, P(M) do not have a nontrivial hyperplane split.

Lemma Let $M=(E,\mathcal{B})$ a binary matroid and let $\mathcal{B}_1\subset\mathcal{B}$ such that \mathcal{B}_1 is the collection of bases of a matroid, says M_1 . If $X\in\mathcal{B}_1$ and all the neighbours of X are elements of \mathcal{B}_1 then $\mathcal{B}_1=\mathcal{B}$.

Theorem (Chatelain and R.A. 2011) Let M be a binary matroid. Then, P(M) do not have a nontrivial hyperplane split.

Corollary Let M be a binary matroid. If G(M) contains a vertex X having exactly d neighbours where d = dim(P(M)) then P(M) is indecomposable.

Remark The *d*-dimensional hypercube is the base graph of a binary matroid.

Corollary (Chatelain and R.A. 2011) Let P(M) be the base matroid polytope of a matroid M having as 1-skeleton the hypercube. Then, P(M) is indecomposable.

Corollary Let M be a binary matroid. If G(M) contains a vertex X having exactly d neighbours where d = dim(P(M)) then P(M) is indecomposable.

Remark The *d*-dimensional hypercube is the base graph of a binary matroid.

Corollary (Chatelain and R.A. 2011) Let P(M) be the base matroid polytope of a matroid M having as 1-skeleton the hypercube. Then, P(M) is indecomposable.

Corollary Let M be a binary matroid. If G(M) contains a vertex X having exactly d neighbours where d = dim(P(M)) then P(M) is indecomposable.

Remark The *d*-dimensional hypercube is the base graph of a binary matroid.

Corollary (Chatelain and R.A. 2011) Let P(M) be the base matroid polytope of a matroid M having as 1-skeleton the hypercube. Then, P(M) is indecomposable.