Convex Sets in Empty Convex Position

Gábor Fejes Tóth

Let $f(n)$ be the smallest number such that any set of $f(n)$ points in general position in the plane has a subset of n points which are in convex position.

It is conjectured that

$$
f(n)=2^{n-2}+1 .
$$

The best upper bound for $f(n)$ is due to Géza Tóth and Pavel Valtr:

$$
f(n) \leq\binom{ 2 n-5}{n-2}+1
$$

Let S be a set of points in general position in the plane. A subset of n points of S is an empty convex n gon, if they form the vertices of a convex n-gon which does not contain any point of S in its interior. Erdős asked whether for any n a sufficiently large cardinality of S guaranties the existence of an empty n-gon.

Harborth showed that from 10 points we can always choose an empty pentagon. Horton constructed sets of arbitrary large cardinality which do not contain any empty heptagon. Erdős's question for $n=6$ was answered positively by Gerken and Nicolas.

Let \mathcal{F} be a family of disjoint compact convex sets. A member A of \mathcal{F} is a vertex of \mathcal{F} if it is not contained in the convex hull of the union of the sets belonging to $\mathcal{F} \backslash\{A\}$. A sub-family $\underline{\mathcal{F}} \subset \mathcal{F}$ is in convex position if all of its members are vertices of $\underline{\mathcal{F}}$.

Theorem (Bisztriczky, GFT). For every $n \geq 4$ there exists a smallest natural number $g(n)$ such that any family of at least $g(n)$ disjoint compact convex sets with the property that every three members of it are in convex position contains n members in convex position.

It is an open question whether $f(n)=g(n)$. The best upper bound for $g(n)$ was obtained by Hubard, Montejano, Mora and Suk:

$$
g(n) \leq\left(\binom{2 n-5}{n-2}+1\right)\binom{2 n-4}{n-2}+1 .
$$

A family \mathcal{F} of convex discs satisfies property P_{k} if any $m \leq k$ members of \mathcal{F} are in convex position.

Theorem (Bisztriczky, GFT). For every pair of integers $k \geq 3$ and $n \geq 4$ there exists a smallest natural number $h(k, n)$ such that any family of at least $h(k, n)$ disjoint compact convex sets satisfying property P_{k} contains n members in convex position.

A sub-family $\underline{\mathcal{F}}$ of \mathcal{F} is in empty convex position in \mathcal{F} if it is in convex position and the convex hull of the union of its members does not contain any member of $\mathcal{F} \backslash \underline{\mathcal{F}} . n$ members of \mathcal{F} that are in empty convex position is called an n-hole.

Theorem. For every pair of integers $k \geq 4$ and $n \geq k$ there is an integer N such that any family of more than N disjoint compact convex sets satisfying property P_{k} has n members in empty convex position.

Let A_{1} and A_{2} be two disjoint compact convex sets with non-empty interiors. We observe that there are two distinct supporting lines $l\left(A_{1}, A_{2}\right)$ and $l\left(A_{2}, A_{1}\right)$ of conv $\left(A_{1} \cup A_{2}\right)$ which also support A_{1} and A_{2}. We choose the notation so that while traveling on $l\left(A_{i}, A_{j}\right)$ so that conv $\left(A_{1} \cup A_{2}\right)$ is to the left, we meet first A_{i} and then A_{j}.

$l\left(A_{2}, A_{1}\right)$

Let $H\left(A_{i}, A_{j}\right)$ be the open half-plane bounded by $l\left(A_{i}, A_{j}\right)$ containing int conv $\left(A_{1} \cup B_{2}\right)$ and let $H^{-}\left(A_{i}, A_{j}\right)$ be the complement of $H\left(A_{i}, A_{j}\right)$.

$H\left(A_{1}, A_{2}\right)$

$l\left(A_{1}, A_{2}\right)$
$l\left(A_{2}, A_{1}\right)$

$H\left(A_{2}, A_{1}\right)$

$H^{-}\left(A_{1}, A_{2}\right)$
$l\left(A_{2}, A_{1}\right)$
$\left.H \overline{(} A_{2}, A_{1}\right)$

$$
\text { Let } L\left(A_{1} A_{2}\right)=L\left(A_{2} A_{1}\right)=H\left(A_{1} A_{2}\right) \cap H\left(A_{2} A_{1}\right)
$$ and define $S\left(A_{i}, A_{j}\right)$ as that component of $L\left(A_{1} A_{2}\right) \backslash$ int conv $\left(A_{1} \cap A_{2}\right)$ which has nonempty intersection with A_{j}. We call $S\left(A_{i}, A_{j}\right)$ the shadow of A_{j} from A_{i}.

$l\left(A_{2}, A_{1}\right)$
$H\left(A_{1}, A_{2}\right)$

$H\left(A_{2}, A_{1}\right)$

Members of \mathcal{F} that are not vertices of \mathcal{F} are called internal members of \mathcal{F}. A vertex V is called regular if $\mathrm{bd} V \cap \operatorname{conv} \bigcup_{A \in \mathcal{F}} A$ is connected, otherwise it is said to be irregular. The sub-families of \mathcal{F} consisting of the vertices and of the internal embers of \mathcal{F} are denoted by $\mathcal{V}(\mathcal{F})$ and $\mathcal{I}(\mathcal{F})$, respectively.

$$
\because \because
$$

Lemma 1 (Géza Tóth). Let $k \geq 4$ and let \mathcal{F} be a family of disjoint compact convex sets satisfying property P_{k}. Let A be an arbitrary and B an internal member of \mathcal{F}. Then $S(A, B)$, contains at least $k-3$ vertices of \mathcal{F}.

Write $\mathcal{F}_{1}=\mathcal{F}$ and define inductively the families \mathcal{F}_{i} and $\mathcal{S}_{i}, i=1, \ldots, N$, by $\mathcal{F}_{i}=\mathcal{I}\left(\mathcal{F}_{i-1}\right), \mathcal{S}_{i}=\mathcal{V}\left(\mathcal{F}_{i}\right)$, $\mathcal{F}_{N}=\mathcal{V}\left(\mathcal{F}_{N}\right)=\mathcal{S}_{N}$. We shall refer to the families \mathcal{F}_{i} and \mathcal{S}_{i} as the i-th core and the i-th shell of \mathcal{F}, respectively.

Lemma 2. Let $k \geq 4$ and let \mathcal{F} be a family of disjoint compact convex sets satisfying property P_{k}. Suppose that \mathcal{F} consists of N shells. If \mathcal{S}_{N} contains more than one members, then \mathcal{F} contains a $2 N$-hole. If \mathcal{S}_{N} consists of a single member, then \mathcal{F} contains ($2 N-1$) members in empty convex position

Lemma 3. Let \mathcal{H} be a family of disjoint compact

 convex sets and let $\underline{\mathcal{H}}$ be the sub-family of \mathcal{H} consisting of all members of \mathcal{H} which intersect a straight segment L.(i) If \mathcal{H} satisfies property P_{5}, then $\underline{\mathcal{H}}$ is in empty convex position in \mathcal{H}.
(ii) If \mathcal{H} satisfies property P_{4} and

Proposition. Suppose that all members of a family \mathcal{F} of disjoint compact convex sets intersect a line L. Then the first, as well as the last member of \mathcal{F} intersecting L is a vertex of \mathcal{F}. If a convex set B which is disjoint from all members of the family is contained in conv $\bigcup_{A \in \mathcal{F}} A$, then B is contained in the convex hull of the union of at most four members of \mathcal{F}. Moreover, if B lies in one of the closed half-planes bounded by L, then it is contained in the convex hull of the union of two members of \mathcal{F}.

N

$$
011.1
$$

Lemma 4. Let \mathcal{F} be a family of disjoint compact convex sets satisfying property P_{k} for some $k \geq 3$. Let V_{1}, \ldots, V_{m} be the regular vertices of \mathcal{F} enumerated in the cyclic order as we meet them while traveling on bd conv $\bigcup_{A \in \mathcal{F}} A$ in clockwise direction. Then one can choose $l \leq m$ regular vertices $V_{i_{1}}, \ldots, V_{i_{l}}$ of \mathcal{F} enumerated in their natural cyclic order such that $V_{l} \cap$ $H^{-}\left(V_{i_{j}}, V_{i_{j+1}}\right) \neq \emptyset$ for $l=i_{j}, i_{j}+1, \ldots, i_{j+1}-1, i_{j+1}$ and no member of \mathcal{F} is contained in $S\left(V_{i_{j}}, V_{i_{j+1}}\right)$ or $S\left(V_{i_{j}}, V_{i_{j-1}}\right), j=1, \ldots, l, V_{i_{j \pm l}}=V_{i_{j}}$.

Lemma 5. Let $k \geq 3$ be an integer and let \mathcal{F} be a family of disjoint compact convex sets satisfying property P_{k} for some $k \geq 4$. Let $\overline{\mathcal{F}}$ be a sub-family of \mathcal{F} with M vertices and let $\underline{\mathcal{F}}$ be the sub-family of $\overline{\mathcal{F}}$ consisting of its internal members. If $\underline{\mathcal{F}}$ has $m \geq 2$ regular vertices,
(i) $k \geq 5$, and $M \geq 2 m(2 n-k)$,
or if

$$
\text { (ii) } k=4 \text { and } M \geq m[(n-3)|\underline{\mathcal{F}}|+4] \text {. }
$$

then \mathcal{F} has n members in empty convex position.

Proof of the Theorem. Suppose that the family \mathcal{F} of disjoint compact convex sets satisfies property P_{k} for $k \geq 4$ and does not contain any n-hole. Let

$$
a_{i}=\left|\mathcal{F}_{i}\right|
$$

be the number of members in the i-th core \mathcal{F}_{i}. Then

$$
\left|\mathcal{S}_{i}\right|=a_{i}-a_{i+1} \quad \text { for } \quad i=1, \ldots, N-1 .
$$

Since \mathcal{F} does not contain any n-hole, we have

$$
a_{N} \leq n-1
$$

It follows from Lemma 2 that \mathcal{F} consists of at most $\left\lfloor\frac{n+1}{2}\right\rfloor$ shells, thus

$$
N \leq\left\lfloor\frac{n+1}{2}\right\rfloor
$$

We apply Lemma 5 to \mathcal{S}_{i} and \mathcal{S}_{i+1} in the roles of $\overline{\mathcal{F}}$ and $\underline{\mathcal{F}}$.

$$
a_{i}-a_{i+1} \leq\left[(n-3) a_{i}+4\right]\left(a_{i-1}-a_{i}\right)-1, \quad 1 \leq i \leq N-1
$$

if $k=4$ and
$a_{i}-a_{i+1} \leq(2 n-k)\left(a_{i-1}-a_{i}\right)-1, \quad 1 \leq i \leq N-1$
if $k>4$.

We do not expect that the exact solution of these recursions gives a sharp bound for $e(k, n)$. Therefore we use the following weaker inequalities that are easily obtained from the above ones.

$$
\begin{equation*}
a_{i} \leq n a_{i+1}^{2} \quad \text { for } \quad 1 \leq i \leq N-1 \tag{1}
\end{equation*}
$$

if $k=4$ and

$$
\begin{equation*}
a_{i} \leq(2 n-k+1) a_{i+1} \quad \text { for } \quad 1 \leq i \leq N-1 \tag{2}
\end{equation*}
$$

if $k>4$.

Hence it follows that

$$
\left|\mathcal{F}_{i}\right|=\left|\mathcal{F}_{i}\right|=a_{1} \leq a_{N} \leq a_{\frac{n+1}{2}} \leq n^{2^{n}}
$$

if $k=4$ and

$$
\left|\mathcal{F}_{i}\right|=\left|\mathcal{F}_{i}\right|=a_{1} \leq a_{N} \leq(n-1)(2 n-k+1)^{\frac{n+1}{2}}
$$

if $k \geq 5$.

