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Manifold Assumption

� Understanding data / spaces

� Information estimation, data processing (clustering, semi-
supervised learning, etc)

� Manifold assumption

� where the hidden domain is a smooth-manifold embedded in 
an ambient Euclidean space

� E.g., manifold learning, manifold reconstruction, topology 
estimation

Manifold Assumption:
•Reasonable model for non-linear data
•Provides nice structures and properties that algorithms 
can leverage



Relax Manifold Assumption

� To model more complex data

� Aim to relax manifold assumption

� Still keep some nice properties that manifold assumption can 
offer

� Allow three types of  “singularities”

� Boundary-type

� Intersection-type

� Edge-type



Singularities

� Boundary

� Configuration space may be constrained / limited

� Intersection-type

� Two classes of data may contain similar instances

� Edge-type

� Phase-transition in processes

Goal: 
Study how singularities may influence learning / 

information retrieval algorithms and how they can be 
learned from data. 



This Talk

� Aim to study singular manifolds through the lens of 
Gaussian-weighted graph Laplacian

� Laplacian-based methods is a widely used class of techniques 
used for recovering geometric properties of data. 

� There is a fairly good theoretical understanding of properties 
of Laplacian when data is sampled from a smooth manifold. 

� Goal of this talk:

� Behavior of graph Laplacian for data sampled from a singular 
manifold

� when singularities are present



Some Related Work

� Sampling theory for compact domains
� [Chazal, Cohen-Steiner, Lieutier 09], [Chazal,Oudot 08], 

[Cheng,Dey,Ramos 07], …

� Learning collection of linear sub-spaces
� [Vidal, Ma, Sastry 05], [Chen, Lerman 09], …

� Learning stratified spaces
� [Bendich, Cohen-Steiner, Edelsbrunner, Harer, Morozov 07],          

[Bendich, Wang, Mukherjee 12], …



This Talk

� Introduction

� Graph / Functional Laplacian 

� Behavior of Functional Laplacian on / around singularities

� Boundary-type

� Edge-type

� Intersection-type

� Discussion and implications



Extract Manifold

� Data from a hidden smooth manifold

� Construct a graph that describes the manifold

� Properties of graph reflect those of manifold



� Gaussian weighted graph Laplacian

� n data points: P = {p1, p2, …, pn}

� LP
t: n x n matrix

� When it performs on a function (n-vector) f: 

What Property?

Graph Laplacian is a light-weight structure (depending only 
proximity graph), suitable for high dimensional data analysis. 



Laplace-Beltrami Operator

� Given a manifold M , Laplace-Beltrami operator ∆

� Operates on functions ∆ f = g, with f , g: M −> R

� ∆ f = div (grad f)

� If M = R2,  

� then ∆ f  = ∂ 2f / ∂x2 + ∂ 2f / ∂y2

� It is a fundamental geometric object 

� Two manifolds M and N isometric 

� ∆M and ∆N share same eigenvalues & eigenfunctions

Nice properties of manifold Laplacian
• Reflect manifold geometry
• Eigenfunctions form basis for functions on manifold
• Relation to heat operator
• …

Applications
• Clustering, semi-supervised learning
• Data denoising 
• Data representation
• Graphics, mesh smoothing, optimization 



Functional Laplacian

� Laplace-Beltrami operator ∆M is useful

� Gaussian weighted graph Laplacian LP
t approximates ∆M

� For points P uniformly randomly sampled from manifold M. 

� LP
t pointwise-converges to ∆M [BN05]  

� Spectral convergence  [BN08]

� Connection made through functional Laplacian

� can be considered the limit of LP
t as the size of P goes to ∞. 



This Talk

� Introduction

� Graph / Functional Laplacian 

� Behavior of Functional Laplacian on / around singularities

� Boundary-type

� Edge-type

� Intersection-type

� Discussion and implications



Singular Manifold

Goal:
Given a function f, analyze the behavior of Lt f(x) where x is on 

or around singularities. 



Laplacian at a Regular Point

= C tr(H)



Laplacian at Boundary

� At a boundary point x

O(1)



Intuitive Illustration

� First term:

For a regular point x

For a boundary point x



Laplacian Around Boundary

As x moves away from the boundary, 
the boundary effect decreases rapidly.



Laplacian at Intersection Singularity

� For a point x on intersection singularity



Laplacian Around Intersection

� For a point x around intersection singularities

θ is the angle between n1 and n2



Laplacian On / Near Edge-Singularities

� For a point x on a “glued” boundary of two manifolds

� For a point x near an edge singularity

Have both boundary effect and 
effects from points of the other 

manifold. 
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� Graph Laplacian around all three types of singularities

� Bnd:

� Intersec:

� Edge: 

� Lt f(x) at points around singularities have significantly 
different behavior

� scaling vs.         scaling

� Values depending on partial derivative vs. depending on 
Laplacian (second order derivative)

Key Point I

This suggests potentially identifying singularities by 

finding points with high Ltf(x) values. 



Examples

� MNIST digit images

� Each image is considered as a single point in the feature space

� Function f:  sum of pixel intensities

Digit `1’ : average image Digit `1’ :  singularity imagesingularity image average image 



Examples

� Sharp feature curves identification from point clouds

� Apply Lt to coordinate functions
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Reeb Graph + Singular Points



Key Point II

� Around different types of singularities, scaling behaviors 
are different. 

Boundary Intersection Edge These local behaviors can potentially be used to 
distinguish different type of singularities



Examples

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Ω
1

Ω
2 Ω

3

edge intersection

boundary

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Data Domain

f(x1, x2) = (x1+0.2)2 + x2
2



Examples

Disclaimer:  No animals were harmed during the making of this slide.



Key Point III

� Can singularity points be simply ignored? 

� After all, these points are of measure zero

� No. At least not for singularity of codimension-one

� Roughly, the total effect is

� As t tends to 0, this effect does not vanish



Key Point IV

� Recall for a boundary point x

� It can be used to compute outward-normal at boundary

� It can also be used to compute the partial derivative of a 
function along outward-normal at boundary.  
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Eigen-functions



� Edge-type singularity

�

� Conjecture:

� Eigenvalues and eigenfunctions of two isometric singular 
manifolds are the same. 

Eigen-functions



Examples
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Summary and Other Discussions

� Initial study of the behavior of weighted Graph Laplacian 
on singular manifolds

� Lightweight structure, geometry information it captures

� Behavior of its eigenfunctions

� Potential applications:

� Feature curve reconstruction for surface models from point 
samples

� Better de-noising or classification algorithms ?

� Learning collection of linear subspaces ?

� Combining with stratification learning ? 



Examples

� Apply Lt to ambient space coordinate functions

� induces a vector field

Input Data Edge-singularity Intersectoin-singularity



Example: I

� Clustering: 

1 -1

n ∆ f = 0 if f is constant 
on each component

n Take Eigenfunction 
corresponding to 0
Eigenvalue

n Segmentation etc



Example II: 

� Smoothing

n Eigenfunctions form a 
basis for functions on 
manifold

n Relation to Heat 
diffusion operator

n Relation to curvature 
flow

� Levy: Laplace-beltrami eigenfunctions: Towards an algorithm 
that understands geometry. In IEEE SMI, invited talk (2006)

� Sorkine. Differential representations for mesh processing. 
Computer Graphics Forum, (2006).

� Zhang, Van Kaick, Dyer: Spectral mesh processing. Computer 
Graphics Forum, (2009).


