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Why is manifold learning useful?

Manifold learning

1. Build better predictive model: high-dim data, low-dim
structure.

2. Estimate function: fewer variables, compact representation.



What is stratification learning?

Stratification learning: singularities, mixed dimension



Stratification

A pinched torus

= ∪ ∪ ∪

1. Decompose into manifold pieces (strata). 2. Pieces fit “nicely”.



Towards a problem in stratification learning...

Given a point cloud sampled from a stratified space, how do we
cluster points that belong to the same stratum piece together?
Points whose local structure glue together nicely belong to the
same cluster.

Why do we care?

1. Visualization (current): more interesting data, i.e. medical
imagining, blood vessel, intersecting surfaces.

2. Preprocessing for manifold learning.

3. Automatic process to detect data structure.



Stratification learning at multi-scale

Our goal: clustering points, study multi-scale stratified structure.

r1 r2

Coming up next: a gentle introduction to local homology and
persistence.



Local structure

cs-space: every point x in a strata has a small enough nbhd N(x)
in X stratum-preserving homeomorphic to the product of an i-ball
and the cone on the link of x.
N(x) can take the form X ∩Br(x) for a small enough r.
Points in the same strata have same local structure.
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The converse is false: here x and y must be placed into different
strata, although local homology groups have the same ranks in all
dimensions.



Why do we care about (local) homology?

Local homology is a tool to study local structure.

What is homology? Count “components” or “holes”.

cookie cookie with holes basketball



Local homology (at a given radius)

Count independent “relative holes”. Features of the space.
Ball of radius r: local neighborhood.
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H(X,X− x)
H(X ∩Br(x),X ∩ ∂Br)



Local homology (at a given radius)

Count independent “relative holes”. Features of the space.
Ball of radius r: local neighborhood.
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Local homology (at a given radius)

Count independent “relative holes”. Features of the space.
Ball of radius r: local neighborhood.
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Local homology intersection map

How are local structures of two nearby points “glued together”?
Map local structure to the neighborhood intersection.

H(X∩Br(x),X∩∂Br(x)) f−→ H(X∩Br(x)∩Br(y),X∩∂(Br(x)∩Br(y)))
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kernel not empty ≡ local structures disappear during mapping ⇒ not the

same local structure.



Local homology intersection map
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cokernel not empty ≡ extra local structures exist in the
intersection ⇒ not the same local structure.



Local homology intersection map

kernel/cokernel both empty ≡ local structures have one-to-one
correspondance ⇒ same local structure.
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persistent homology philosophy

persistent homology studies multi-scale features (“holes”) of spaces:

1. If the space is known, gives multi-scale representation of its features.

2. Given a point cloud sample, it describes features at different
resolution. It separates features from noise.

3. Here, we explain the theories assuming ideal spaces, later on
replacing the spaces with point cloud samples.



persistent homology

A tool to study multiscale features (“holes”) of space.
Some holes are larger (more persistent) than others.
We simulate the scale by “thickening” the space.
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persistent homology

A tool to study multiscale features (“holes”) of space.
Some holes are larger (more persistent) than others.
We simulate the scale by “thickening” the space.
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persistent homology

A tool to study multiscale features (“holes”) of space.
Some holes are larger (more persistent) than others.
We simulate the scale by “thickening” the space.
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persistent homology

A tool to study multiscale features (“holes”) of space.
Some holes are larger (more persistent) than others.
We simulate the scale by “thickening” the space.
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persistent homology

A tool to study multiscale features (“holes”) of space.
Some holes are larger (more persistent) than others.
We simulate the scale by “thickening” the space.
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persistent homology

A tool to study multiscale features (“holes”) of space.
Some holes are larger (more persistent) than others.
We simulate the scale by “thickening” the space.
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Kernel persistent homology

Study extra local structure in the kernel with high persistence.

(a) (b)

(c)
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Kernel persistent homology: example
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Kernel persistent homology: example
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Kernel persistent homology: example
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Kernel persistent homology: example
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Kernel persistent homology: example
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Kernel persistent homology for point cloud
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Kernel persistence diagram stability
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Suppose the point cloud is an ε-approximation of the space, then
the distance between their diagrams is at most ε.



What is homology inference?

If we have a dense enough sample, we can infer local structure.

More precisely, we have 2 theorems:

1. Topological: If sample density is smaller than the minimum
feature size, we can infer local structure.

2. Probabilistic: If we sample enough points i.i.d uniform from
the space, we can infer local structure with confidence.



Why is topological homology inference useful?

Impose equivalence relation among points: clustering.
If the sample is dense enough, then we can use persistence
diagrams to build a graph on points. There is an edge between
points whose local structure map into the intersection bijectively,
and return connected components of the graph as clusters.



Minimum feature size

Minimum feature size: the smallest non-zero thickening parameter
where local structures change in the ball or in the intersection.
Here, it is min{a, b, c}.
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Topological inference theorem: the big picture

Given ε-approximation where ε < minimum feature size/4, if the
(co)kernel persistence diagrams contain no points in certain
rectangle areas (right cornered at (ε, 3ε)), then two points are
locally equivalent.
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Topological Inference theorem

Theorem (Topological Inference Theorem)

Suppose that we have an ε-approximation U from X. Then for
each pair of points x, y ∈ RN such that ρ = ρ(p, q, r) ≥ 4ε, the
map fX = fX(x, y, r) is an isomorphism iff
Dgm(ker fU )(ε, 3ε) ∪Dgm(cok fU )(ε, 3ε) = ∅.



Topological homology inference explained

If we do not know the true space:
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Two points have same local structure iff rectangles(ε, 3ε) in the
diagrams are empty.



Topological homology inference explained
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Two points do not have same local structure if rectangles(ε, 3ε) in
the diagrams are not empty.



Probabilistic homology inference: the big picture

Suppose points are sampled in i.i.d. fashion from the uniform
probability distribution on the space.
We need at least n such points so that we can infer local homology
with probability 1− δ, where n is a function of δ, r, ε, the volume
of the space, etc.

If we do not sample enough points, locally the homology inference fails.



Sampling strategies

Remove the problems of singularities and varying dimension:

M : a mixture model. A uniform measure is assigned to the
closure of each maximal stratum, µi(Si). Assume a finite
number of maximal strata K and assign to the closure of each
such stratum a probability pi = 1/K. Measure:
f(x) = 1

K

∑K
j=1 µi(X = x).



Probabilistic homology inference: the theorem

Theorem (Local Probabilistic Sampling Theorem)

Let U = {x1, x2, ..., xn} be drawn from model M . Fix a pair of
points p, q ∈ RN and a positive radius r, and put
ρ = min{ρ(p, q, r), ρ(q, p, r)}. If

n ≥ 1

v(ρ)

(
log

1

v(ρ)
+ log

1

ξ

)
,

then, with probability greater than 1− ξ we can correctly infer
whether or not fX(p, q, r) and fX(q, p, r) are both isomorphisms.

v(ρ) = inf
x∈X

vol (Bρ/24(x) ∩ X)
vol (X)

Prove use some results from [Niyogi, Smale and Weinberger 2008].



Algorithm

Compute local structure through simplicial complexes.



Algorithm

Compute local structure through simplicial complexes.



Experiments

The algorithm is readily implementable but slow.
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Discussions

Faster algorithms in practice: Rips/Witness complexes,
dimension reduction, random projection.

Robustness of clustering: false positives (false connection),
false negatives (missing connection).

Fractional weights between pairs of points, probabilistic
inference.



Fractional weights
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Figure: µ = 0.7017, σ = 0.2



Some application of local homology...

Detect branching and parametrization in high dimension...
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[W, Summa, Pascucci, Vejdemo-Johansson 2011]
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On-going direction: weight matrix for strata inference



Laplacian eigenmaps: a review

Given a point cloud U , build a weight matrix W

D(x, x) =
∑

yW (x, y), L = D −W .

Compute eigenvalues and eigenvectors from the generalized
eigenvector problem: Lv = λDv.

Let v0, ..., vk−1 be the solutions ordered according to their
eigenvalues 0 = λ0 ≤ λ1 ≤ ... ≤ λk−1.

Ignore v0 and use the next m eigenvectors for embedding in
m-dim space: x→ (f1(x), ..., fm(x)).

49,



Two types of weight matrix

KNN weight matrix.

Ker/Cok weight matrix.

50,



KNN weight matrix

W: weight matrix

k: number of nearest neighbors.

Nodes x and y are connected by an edge if x (or y) is among
k nearest neighbors of y (or x).

d(x, y) is the Euclidean distance between the nodes x and y

Heat kernel weight: W (x, y) = e−
d(x,y)2

t

51,



Ker/Cok weight matrix

W: weight matrix

For a fixed radius r, µ, σ: mean and std of the normal
distribution.

Nodes x and y are connected if balls of radius r centered
around them have non-empty intersections.

M(x, y) represents the “dissimilarity” between two nodes, the
higher, the more dissimilar.

Heat kernel weight: W (x, y) = e−
M(x,y)2

t

52,



Dissimilarity measure M

Given x, y ∈ U and a radius r > 0, compute four persistence
diagrams. One for each of the (co)kernels of φU (x, y, r) and
φU (y, x, r).

Let µ and σ be the estimated mean and std of ε.

f(ε) = 1
σ
√
2π
e−

(ε−µ)2

2σ2 .

Let the union of these four diagrams be Dgm(x, y, r).

Define Q(ε) = {(x, y) ∈ R2|0 ≤ x ≤ ε, y ≥ 3ε}
For each point p ∈ Dgm(x, y, r), define I(p) = {ε|p ∈ Q(ε)}.
Define m(p) =

∫
I(p) f(x)dx.

W (x, y) = maxp∈Dgm(x,y,r)m(p).

53,



Data
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Ker/Cok weight matrix 2D embedding
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Data
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KNN weight matrix 2D embedding
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KNN weight matrix 3D embedding
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Ker/Cok weight matrix 2D embedding
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Ker/Cok weight matrix 3D embedding
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Extra



Kernel persistent homology

BX
x (α) = Xα ∩Br(x), ∂BX

x (α) = Xα ∩ ∂Br(x).
BX
xy(α) = Xα ∩Br(x) ∩Br(y), ∂BX

xy(α) = Xα ∩ ∂(Br(x) ∩Br(y)).

H(BX
x (α), ∂B

X
x (α))

fX
α−→ H(BX

xy(α), ∂B
X
xy(α))

↓ ↓

H(BX
x (β), ∂B

X
x (β))

fX
β−→ H(BX

xy(β), ∂B
X
xy(β))

ker fXα → ker fXβ

The map fX is an isomorphism iff its kernel and cokernel are both zero.

That is, neither Dgm(ker fX) nor Dgm(cok fX) contain any points on

the y-axis above 0.


