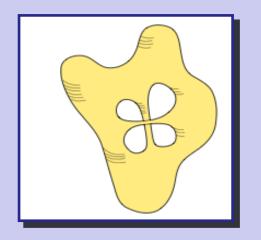
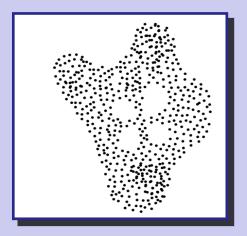
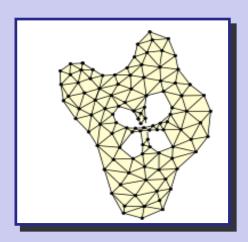
Vietoris-Rips complexes also provide topologically correct reconstructions of sampled shapes

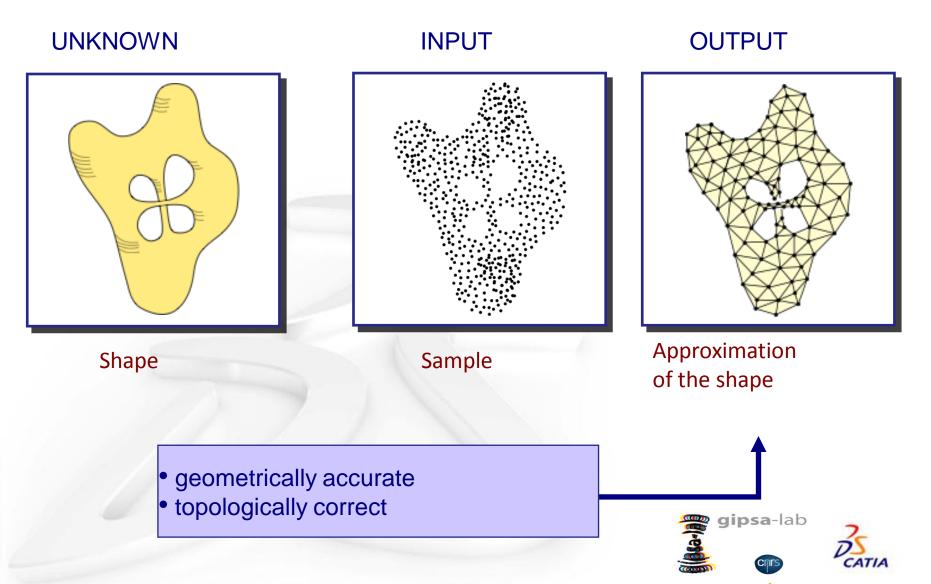
Dominique Attali, Andre Lieutier and David Salinas



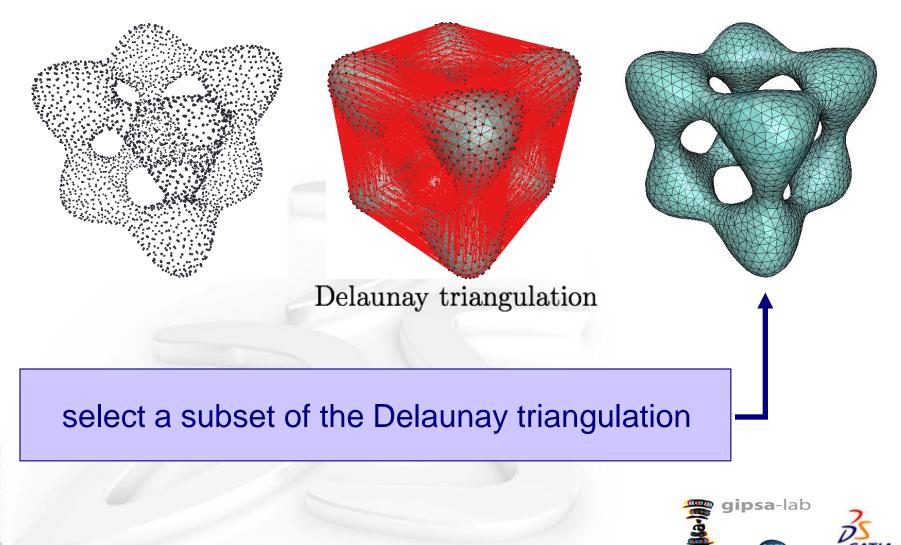




Shape Reconstruction

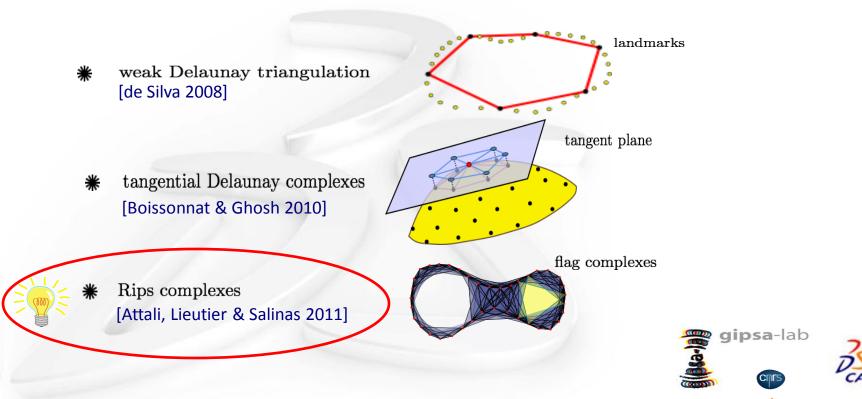


Algorithms in 3D

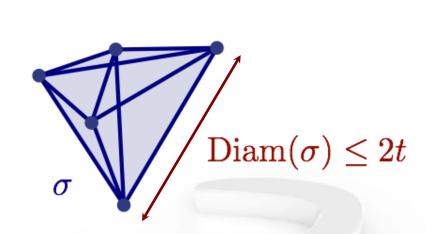


Algorithms in High Dimemsions

How can we reconstruct without having to build the whole Delaunay triangulation ?



Rips Complex (or Vietoris-Rips complex)



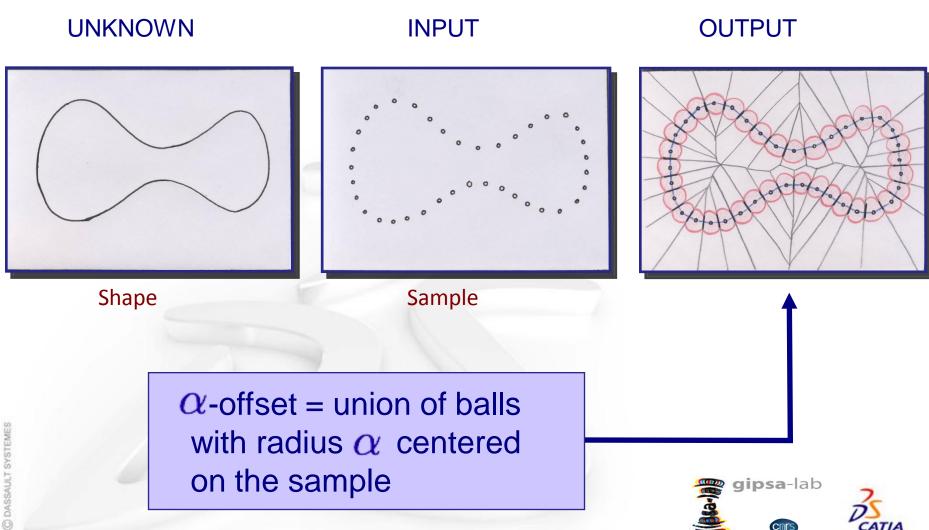
P finite set of points

$$\mathcal{R}(P,t) = \{ \sigma \mid \emptyset \neq \sigma \subset P, \operatorname{Diam}(\sigma) \le 2t \}$$

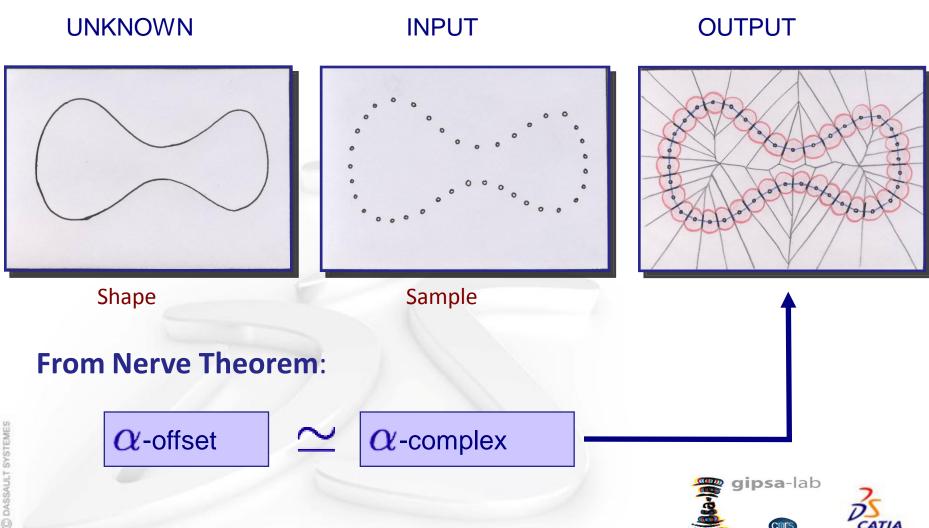
Rips complexes are **flag** (or **clique**) **complexes**, they can therefore be represented by their 1-skeleton, which is a **graph**:

This allows a parcimonious representation even in high ambient dimension

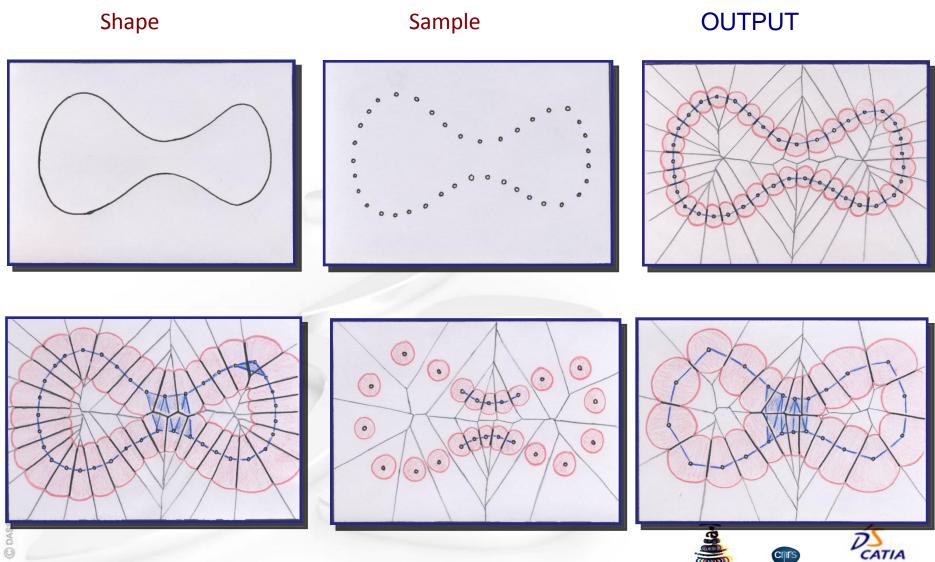
A Simple Algorithm

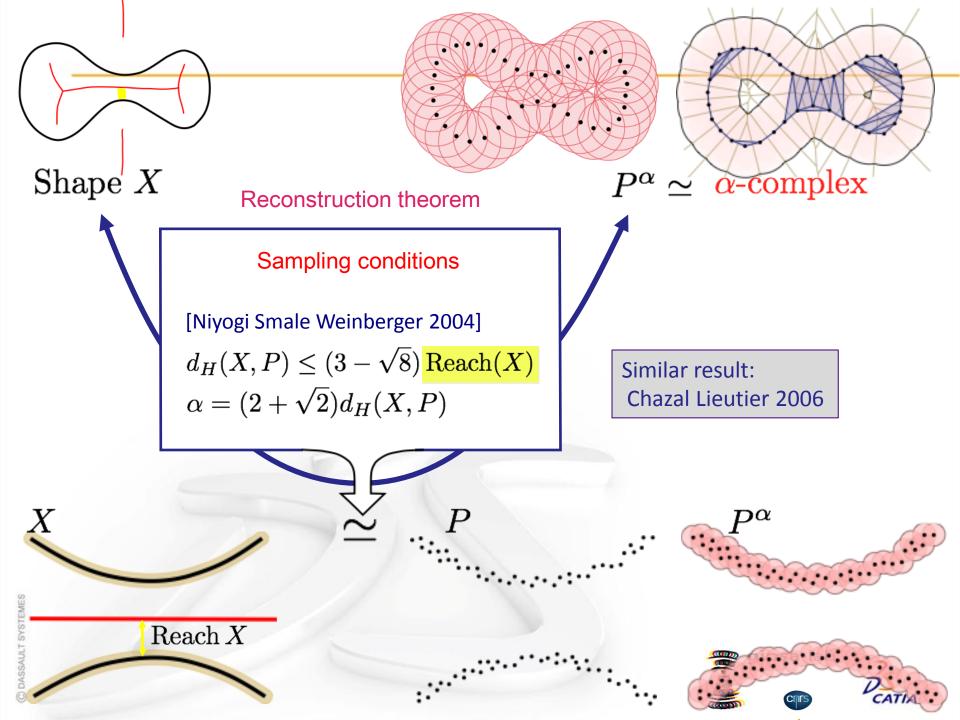


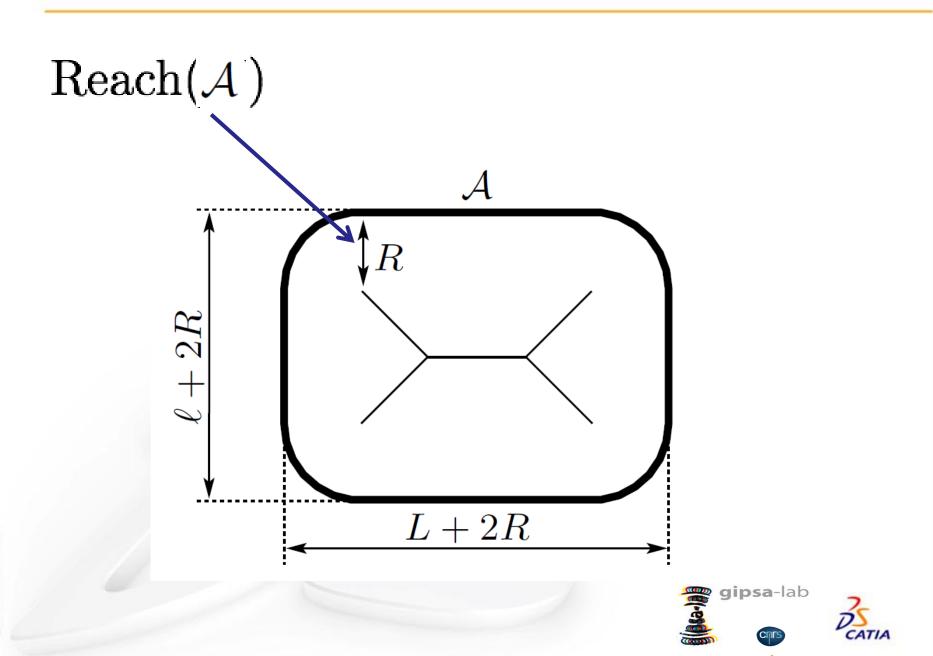
A Simple Algorithm

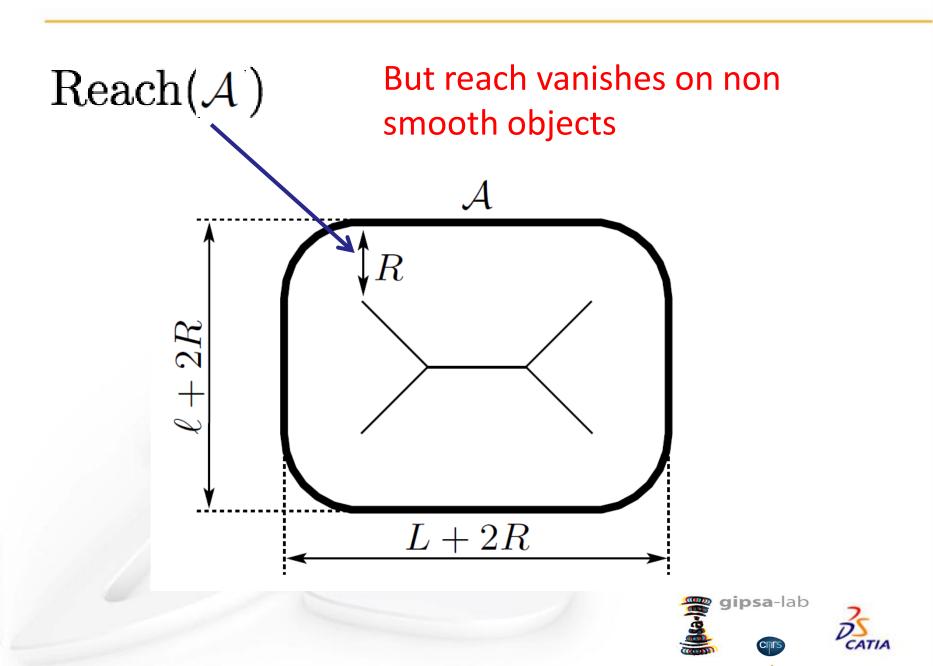


A Simple Algorithm

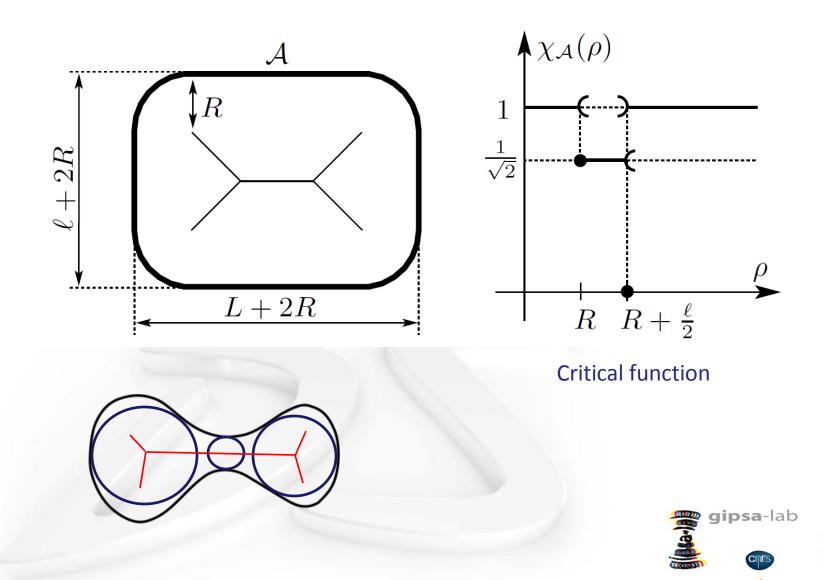


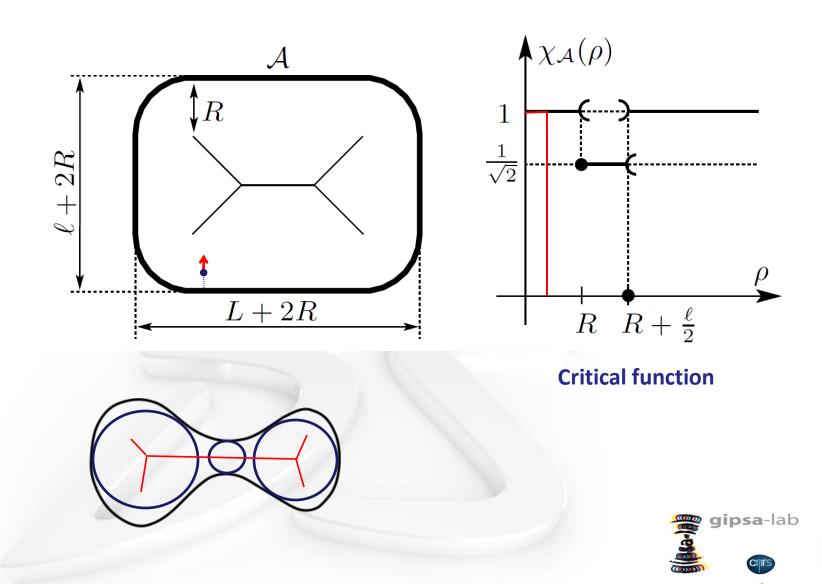


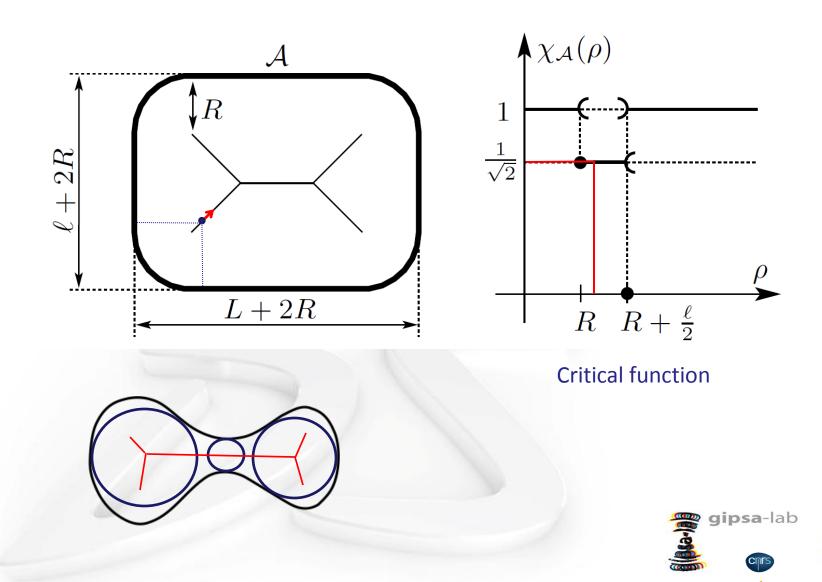


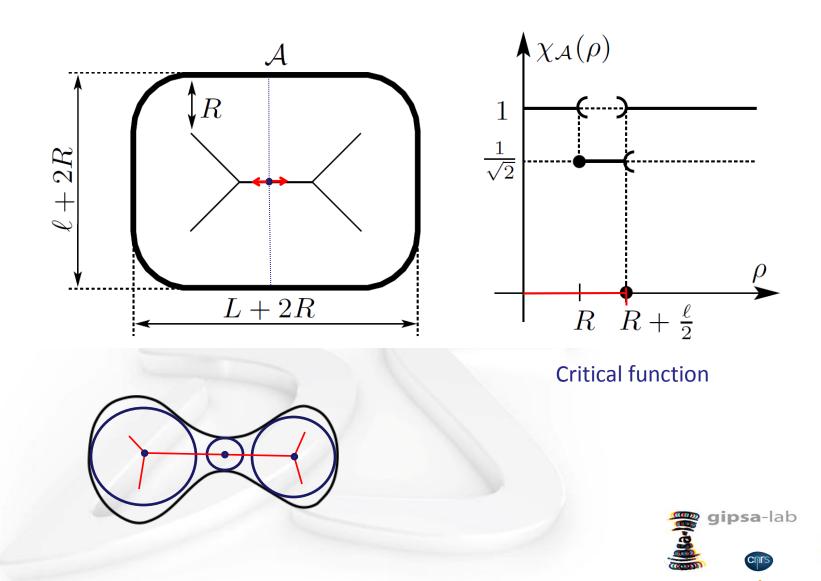


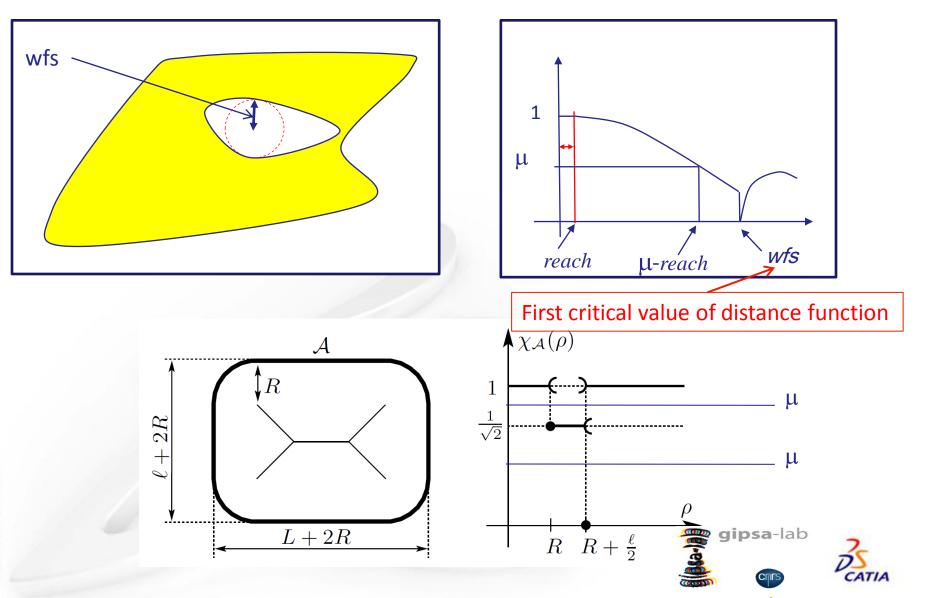
C DASSAULT SYSTEMES











Previous best known result for faithful reconstruction of set with positive m-reach (Chazal, Cohen-Steiner, Lieutier 2006)

Theorem 2. Let \mathcal{A} and \mathcal{S} be compact subsets of \mathbb{R}^n and a real number $\alpha > 0$ such that

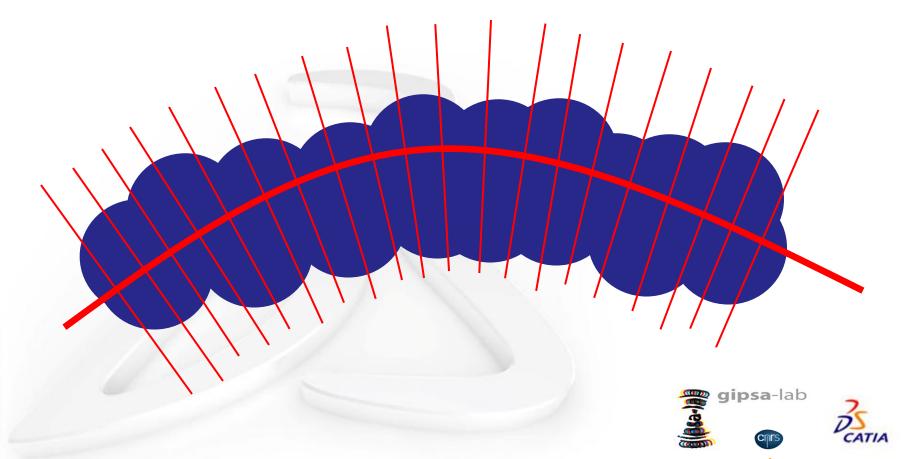
$$d_H(\mathcal{S}, \mathcal{A}) < \alpha < \frac{\mu^2}{5\mu^2 + 12} r_\mu(\mathcal{A}) \tag{2}$$

Then $\mathcal{S}^{\frac{4\alpha}{\mu^2}}$ is a faithful reconstruction of \mathcal{A} .

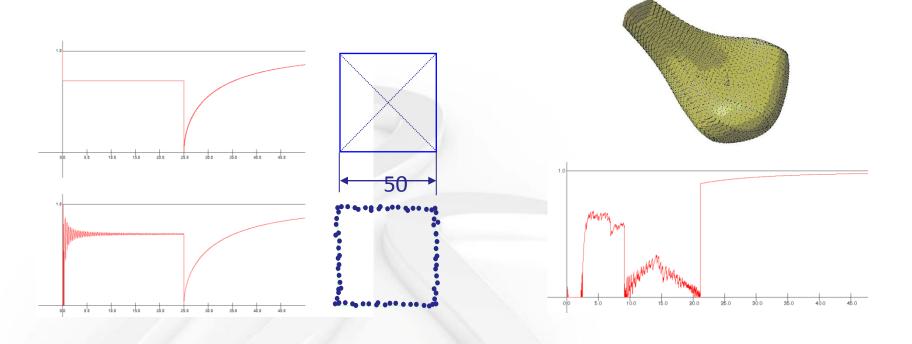
Under the conditions of the theorem, a simple offset of the sample is a faithful reconstruction

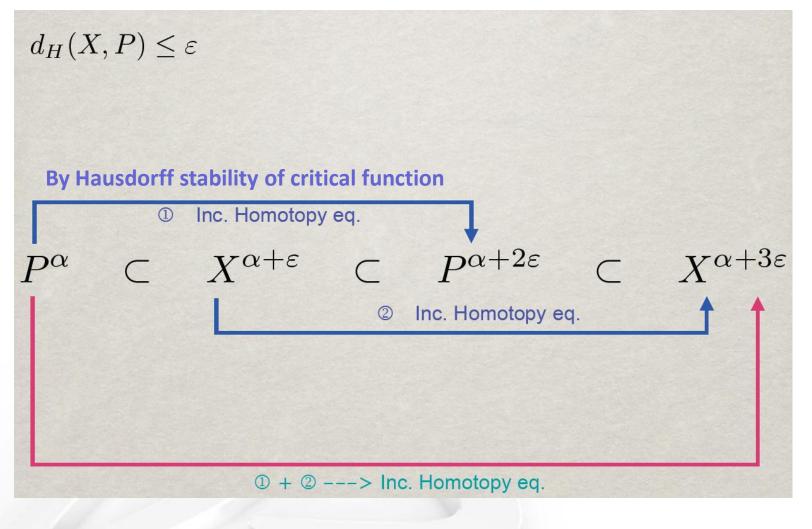
Proof for Cech / α -complexes for **positive reach** (i.e.smooth) case (NSW04, CL06) relies upon :

Transversality of normal fibers to union of balls boundary



Proof for **previous result (C.C.-S.L. 06)** Cech / α -complexes for positive μ -reach case (**non smooth**) relies upon: **Hausdorff stability of critical function**

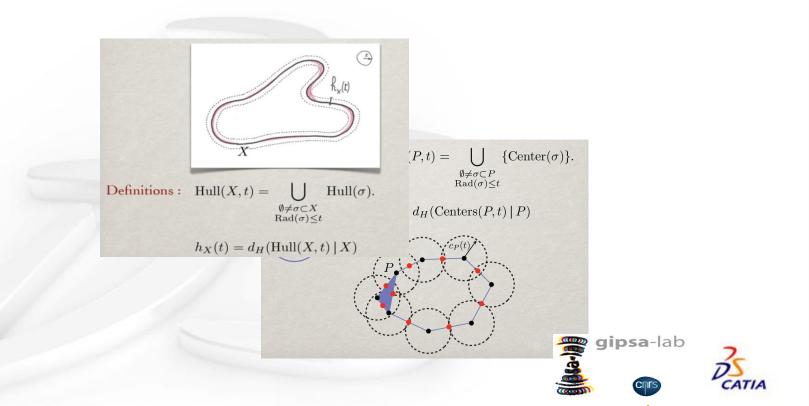




New Proof Technics (socg 2011) that both:

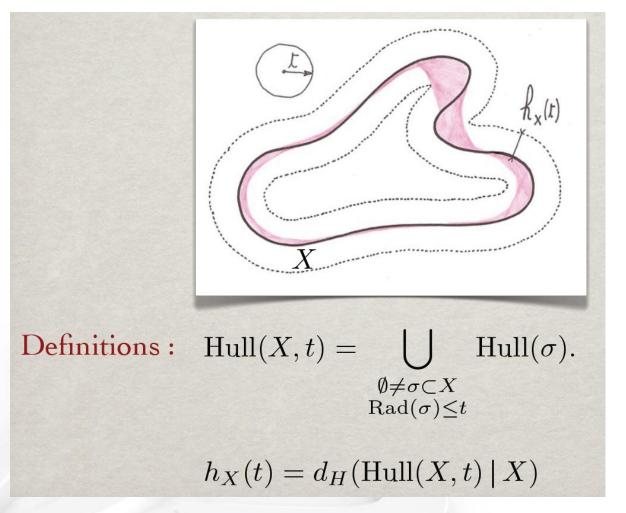
- improves over previous result (C.C.-S.L. 06) Cech / α-complexes for positive μ-reach case (i.e. non smooth case)
- Extends reconstruction theorem to Rips complex

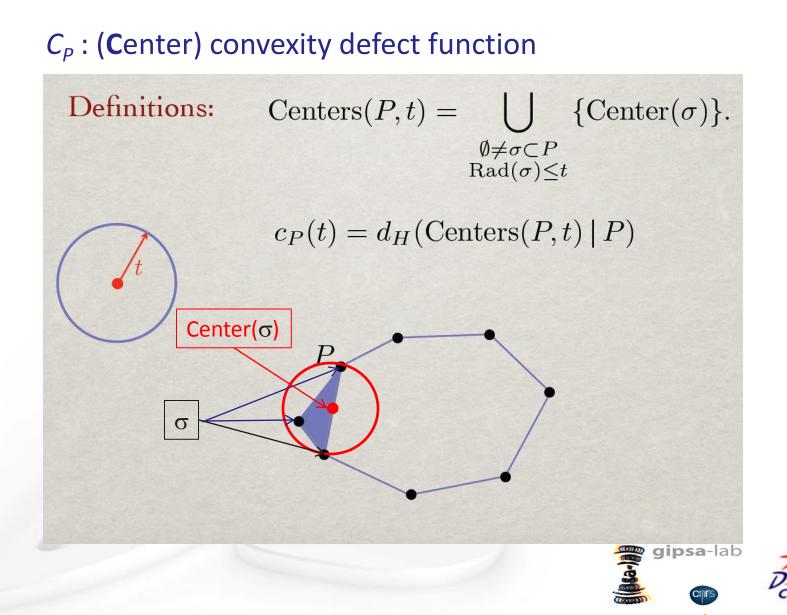
Relies upon the new notion of **convexity defect functions** :

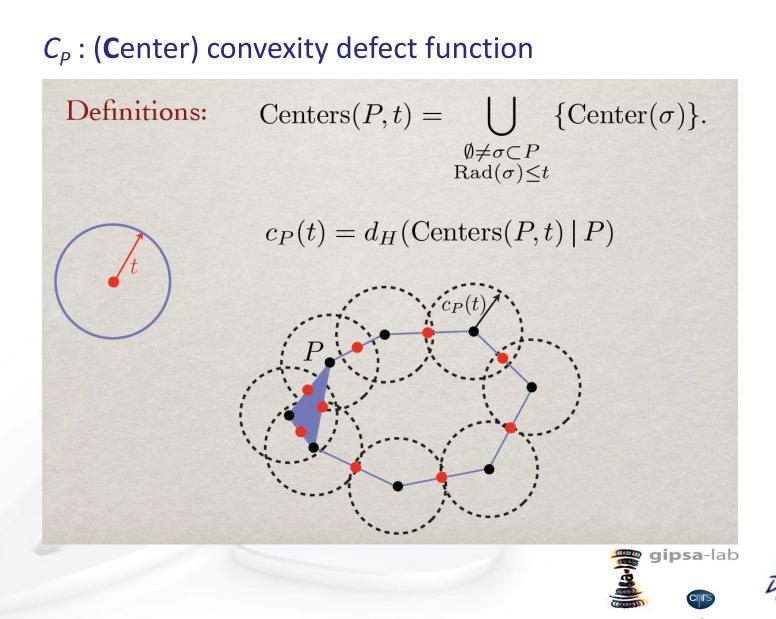


Convexity defects function

h_X : (convex Hull) convexity defect function

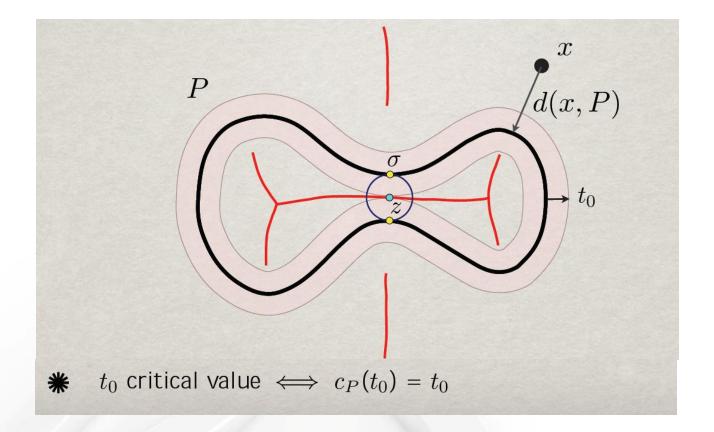


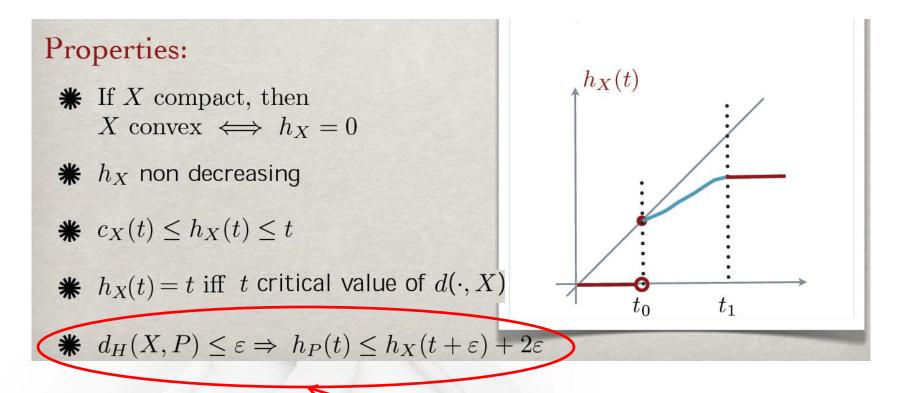




Convexity defects function

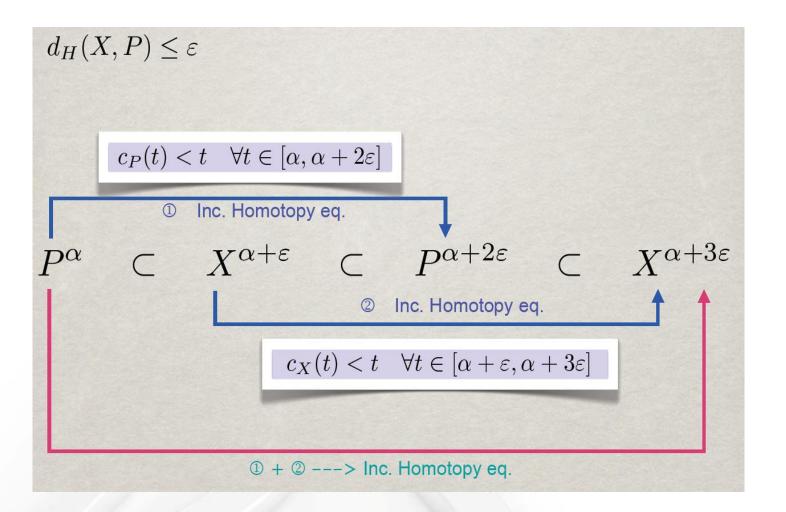
h_X : (convex Hull) convexity defect function



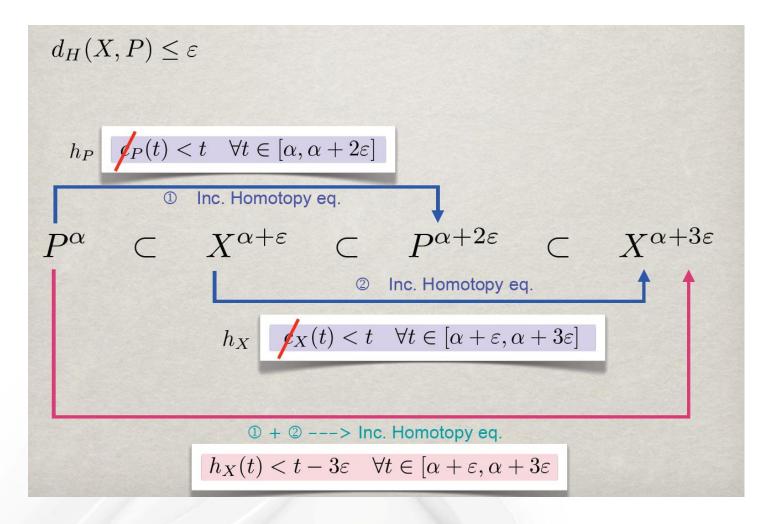


Hausdorff stability of defects of convexity

Convexity defects function



Convexity defects function



Large µ-reach

=> small convexity defect functions

LEMMA 6. Consider two real numbers $\mu \in (0, 1]$ and $R \ge 0$. Let $X \subset \mathbb{R}^n$ be a compact set such that $\chi_X(t) \ge \mu$ for all $t \in (0, R)$. Then, for all $0 \le t \le R$, one has:

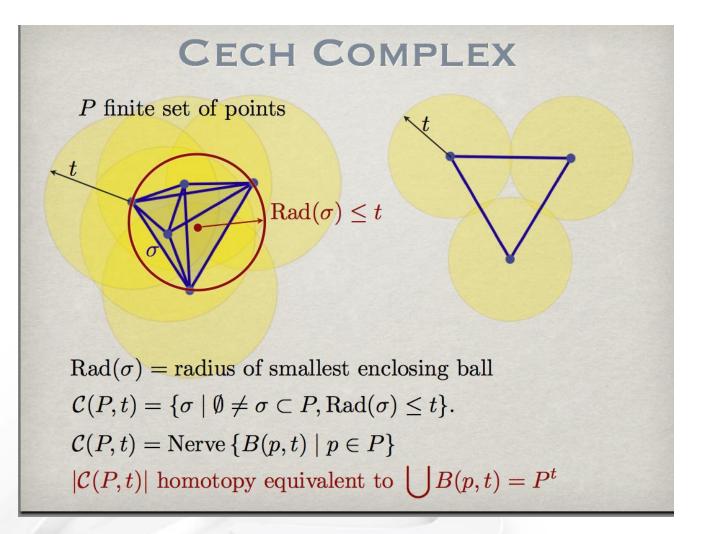
$$h_X(t) \leq \frac{1 + \mu(1 - \mu) - \sqrt{1 - \mu(2 - \mu) \left(\frac{t}{R}\right)^2}}{\mu(2 - \mu)} R.$$

Small convexity defect functions => Large critical function and therefore large μ-reach

LEMMA 5. For all compact set $X \subset \mathbb{R}^n$, all $0 \le \mu \le 1$ and all $t \ge 0$, the following implication holds:

 $c_X(t) < (1-\mu)t \implies \chi_X(t) > \mu.$

Union of balls $\approx \alpha$ -complex \approx Cech complex

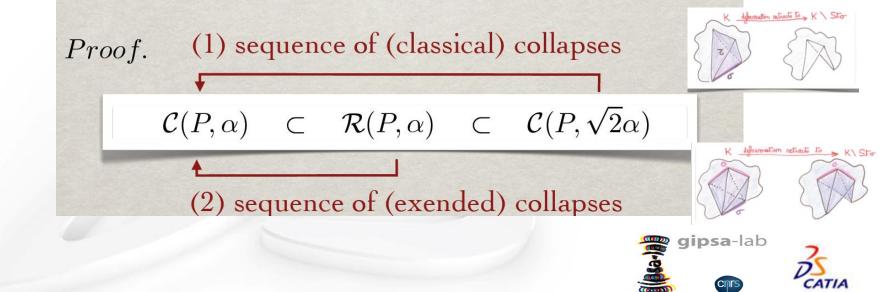


Small defect of convexity => Rips complexes collapses on Cech complexes

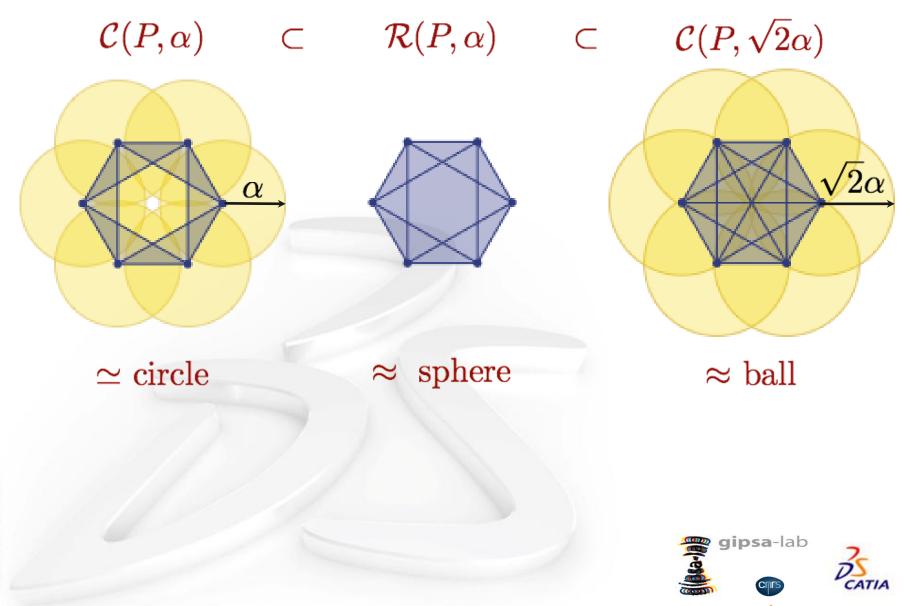
Theorem 1. Let $P \subset \mathbb{R}^d$ be a finite set of points in general position. If

 $c_P(\sqrt{2}\alpha) < 2\alpha - \sqrt{2}\alpha$

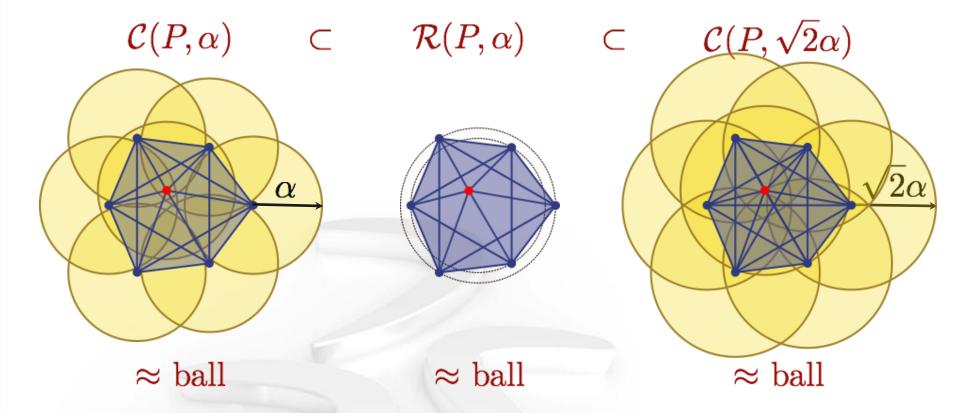
there exists a sequence of collapses from the Rips complex $\mathcal{R}(P, \alpha)$ to the Čech complex $\mathcal{C}(P, \alpha)$.



Cech / Rips



Cech / Rips

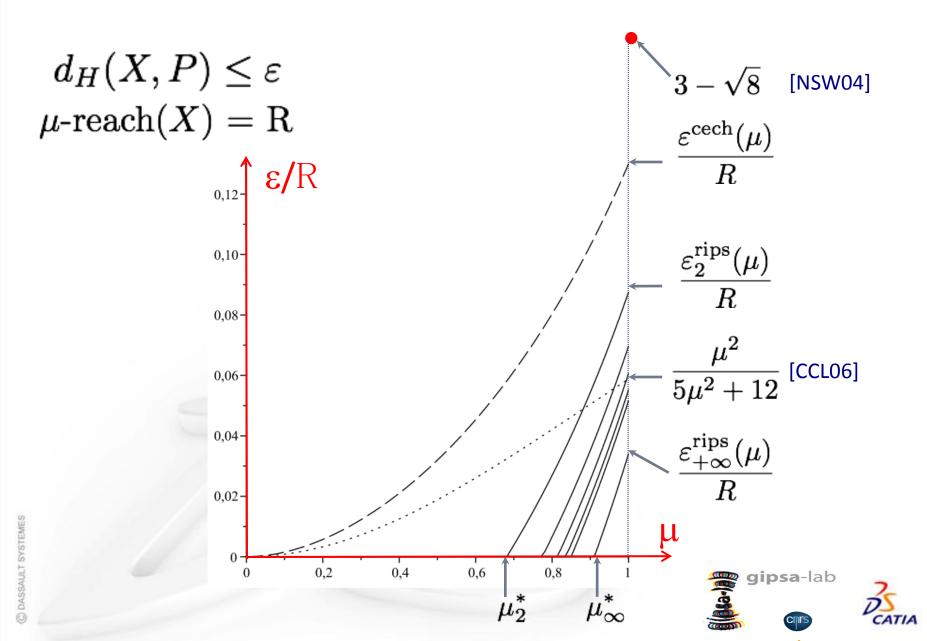


Had there been a point close to the center, it would have distroy spirituous cycles appearing in the Rips, without changing the Cech.

CATIA

C DASSAULT SYSTEME

Sampling conditions for Cech and Rips



Questions ?

Questions ?

CLASSICAL COLLAPSES

 $\operatorname{St}_K(\sigma) = \operatorname{set} \operatorname{of} \operatorname{cofaces} \operatorname{of} \sigma$

C DASSAUL

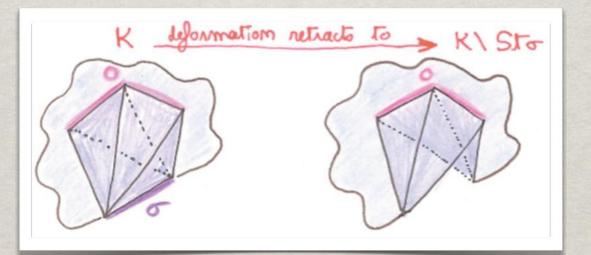
K deformation retracts to $K \setminus St_K(\sigma)$ provided that $St_K(\sigma)$ has a unique maximal simplex $\tau \neq \sigma$



EXTENDED COLLAPSES

 $\operatorname{St}_K(\sigma) = \operatorname{set} \operatorname{of} \operatorname{cofaces} \operatorname{of} \sigma$

K deformation retracts to $K \setminus St_K(\sigma)$ provided that link of σ is a cone

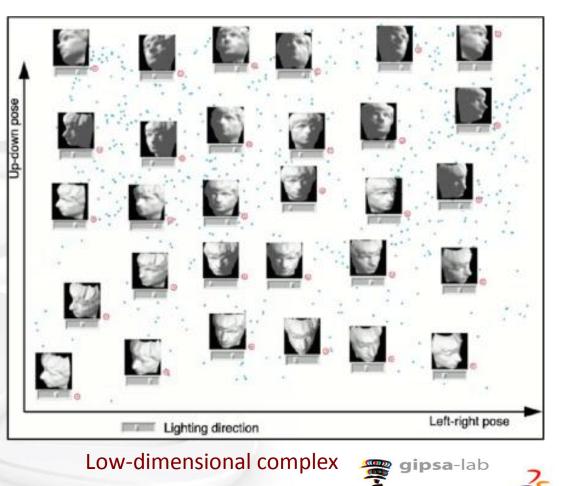


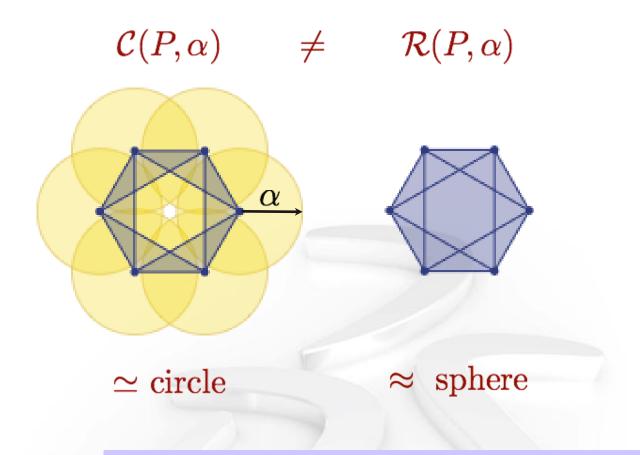
Shape Reconstruction (or manifold learning)

INPUT

OUTPUT

Unordered sequence of images varying in pose and lighting





Rips and Cech complexes generally don't share **the same topology, but** ...