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Signal processing
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Topological signal processing
● Topological data analysis

– Gunnar Carlsson (Stanford)

– Many others

● Persistent cohomology (especially circular coordinates)

– Vin daSilva (Pomona)

– Mikael Vejdemo-Johanssen (Stanford)

● Euler calculus

– Robert Ghrist (Penn)

– Yuliy Baryshnikov (UIUC)

● Statistical topology

– Shmuel Weinberger (Chicago)

– Robert Adler (Technion)

This is a non­exhastive list
Mostly, it shows my proclivities
toward addressing data from 
actual systems
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Problem statement
● Task: Develop filters that can localize centers and 

discriminate shapes of targets given a dense field 
of sensors that return anonymous integer counts of 
detected targets in their vicinity

● Assume: 

– Sensors are distributed evenly in the plane

– Sensors have no knowledge of their absolute position

– They only know about their position relative to other 
nearby sensors

– Therefore, we look for methods based on topological 
invariants
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Constructible functions
● We consider exclusively constructible integer-

valued functions CF(ℝn;ℤ)

– Roughly, their graphs have a finite cell decomposition

● Constructible sets have an Euler characteristic

– For a constructible set A, its Euler characteristic  is the 
sum ∑(­1)dim(Ci) where ∪C

i 
= A is its cellular 

decomposition

– It is a homeomorphism invariant
● The Euler characteristic generalizes counting...
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χ(        ) = 3

Euler characteristic
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χ(        ) = 2

Euler characteristic
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χ(        ) = 1

Euler characteristic
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χ(        ) = 0

Euler characteristic
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Euler characteristic

`χ(        ) = 1
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The Euler measure
● An important property of the Euler characteristic is 

that it is a valuation

● In particular, it satisfies an inclusion-exclusion 
principle

● This lets us define an integration theory based 
around the Euler characteristic as a measure
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The Euler integral
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Properties of the Euler integral
● It is linear over CF(ℝn;ℤ)

– This is false for a very important reason if one extends to 
definable functions (c.f. Baryshnikov & Ghrist 2010)

● It is finitely summable

● It is not monotonic

● It has nontrivial measure-zero sets
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Target enumeration

(Baryshnikov & Ghrist 2007)
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Discretization analysis
● What if there isn't a sensor at every point?

● Discretization errors are not straightforward

– This is a completely open field!

(joint with Sam Krupa)
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Discretization analysis
● Statisical analysis of asymptotics of the Euler 

characteristic integral for many identical targets, 
randomly placed
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Euler integral transforms
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The Euler-Bessel transform



 

 

Michael Robinson

The Euler-Bessel transform
● Theorem: (Ghrist & R.) The Euler-Bessel transform 

also concentrates the measure on a set of critical 
points, counted with sign

Benefit:
Computationally 
efficient 
simulations
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Why might we care?
● The Euler-Bessel 

transform localizes 
targets 

– It usually has a minimum 
at each target center 

● It detects target shape

– The minimum isn't as 
pronounced if the target 
isn't circular
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Target sidelobes
● When contours and targets are not matched, one gets 

sidelobes

Circular contours, 
rectangular target

Circular contours, two 
rectangular targets, 
partially overlapping

More local minima than 
targets!
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Sidelobes in the far-field: n-gons
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Other contours
● Sidelobes are mitigated by matched filtering

● Swap out for other contours of integration

Square contours
Square target
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SVA* (Fourier case)

Low 
sidelobes

Some “break­up” 
of target support

Original 
target

Processed target 
returns (various 
bandwidths)

Final result
* Spatially Variant Apodization
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Euler-Bessel SVA results

Rotated 
square target

Square integration 
contours used, 
aligned with 
coordinate frame

Sidelobes 
almost 
completely 
eliminated

No target break­up

Square integration 
contours rotated to 
various positions, 
SVA applied to 
results
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More EBSVA results

Response outside of 
some remaining 
sidelobes is stabilized Minimal target break­up

Regular 
hexagonal 
target
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EBSVA with two targets

Second target, rotated

SVA recovers target, with some SNR loss
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Shape filtering
● By selecting the norm and tailoring the use of SVA, 

it is possible to create shape filters

– They are ℤ-linear

– They are insensitive to position and size of targets

– They can be made insensitive to orientation if desired

Circular contours Square contours,
aligned with x,y­axes

Square contours, using 
SVA to remove 

rotational depedence

Can still detect square
supports with overlap

Squares
and 

hexagon 
suppressed

Circle 
suppressed

Both 
squares 

detected, 
other 

shapes 
suppressed
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Wavelet transforms
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Euler “orthogonality”
● Definition: Euler “inner product”

● It's not an inner product:

– Not positive (semi)-definite

● Additionally, no nice convergence properties due to 
finite summability of the Euler measure

● So don't expect to get complete orthonormal sets

– There do exist orthogonal sets, though

 f , g=∫ f g d
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Euler Haar wavelets (Type 1)

● Definition: Mother Haar wavelet (ω1

00
)

We define the child wavelets ω1

st 
in the usual way

Extend this definition to ℝn via tensor products

● The set of these wavelets is (.,.)

-orthogonal, but for 

each wavelet ω, (ω,ω)

 = -2
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(       , ω1

st
)χ

Good news/Bad news
● This is enough to define a practical transform, 

working on f ∈ CF(ℝn;ℤ)

f ↦ (f, ω
st
)

 (for s,t  ℤ )

● Sadly, this transform is not injective!

● This doesn't present difficulties if you are only 
interested in “images”

– But it does indicate we need more wavelets

= 0
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Euler Haar wavelets (Type 0)

● A second kind of wavelet: ω0

st

– Indicator functions on dyadic points in ℝ

– This extends to higher dimenions by tensor products

● Definition: Euler Haar Wavelet Transform (EHWT)

f ↦ (f, ω p

st
)

 (for s,t  ℤ,  p  {0,1} )

● Obviously the {ω0

st
} wavelets and the {ω1

st
} 

wavelets are each orthogonal sets

– But their union is not

– So there will be some redundancy in the EHWT
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2-d example
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2-d example
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2-d example
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2-d example
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Sparsity and injectivity
● It appears from the examples that not all of the 

coefficients are necessary

– Many of them are zero

● If the transform is injective, maybe we can use it for 

– Detection processing

– Filtering and reconstruction

● Theorem: (R.) The EHWT is injective

● But the usual Fourier representation fails...

f ≠∑st
st st , f 
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Future directions: applications
● Refine and explore shape filtering

– Testing on examples from machine vision, radar 

● Quantitative analysis of sidelobe mitigation 
techniques

– In particular, how much should one anticipate that SVA 
will help?

– Target break-up and occlusion effects need to be 
addressed

● Treat inversion for the EHWT

– Examine its uses for filtering, compression



 

 

Michael Robinson

For more information

Michael Robinson

robim@math.upenn.edu

Preprints available from my website:

http://www.math.upenn.edu/~robim

mailto:robim@math.upenn.edu
http://www.math.upenn.edu/~robim
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