Euler Integral Transforms and Applications

Michael Robinson

Acknowledgements

- Collaborators:
 - Robert Ghrist (Penn)
 - Sam Krupa (Penn)
 - Yuliy Baryshnikov (UIUC)
- Funding by:
 - DARPA # HR0011-07-1-0002
 - ONR # N000140810668
- Website reference:

http://www.math.upenn.edu/~robim/

Signal processing

(image courtesy of Fir0002/Flagstaffotos)

(image courtesy of NOAA)

(image courtesy of FAA)

(image courtesy of www.pixeleye.com)

(image courtesy of www.mgef.org)

Topological signal processing

- Topological data analysis
 - Gunnar Carlsson (Stanford)
 - Many others
- Persistent cohomology (especially circular coordinates)
 - Vin daSilva (Pomona)
 - Mikael Vejdemo-Johanssen (Stanford)
- Euler calculus
 - Robert Ghrist (Penn)
 - Yuliy Baryshnikov (UIUC)
- Statistical topology
 - Shmuel Weinberger (Chicago)
 - Robert Adler (Technion)

This is a non-exhastive list Mostly, it shows my proclivities toward addressing data from actual systems

Problem statement

• Task: Develop filters that can localize centers and discriminate shapes of targets given a dense field of sensors that return anonymous integer counts of detected targets in their vicinity

• Assume:

- Sensors are distributed evenly in the plane
- Sensors have no knowledge of their absolute position
- They only know about their position relative to other nearby sensors
- Therefore, we look for methods based on topological invariants

Constructible functions

- We consider exclusively constructible integervalued functions $CF(\mathbb{R}^n;\mathbb{Z})$
 - Roughly, their graphs have a finite cell decomposition
- Constructible sets have an Euler characteristic
 - For a constructible set A, its Euler characteristic X is the sum $\sum (-1)^{\dim(C_i)}$ where $\bigcup C_i = A$ is its cellular decomposition
 - It is a homeomorphism invariant
- The Euler characteristic generalizes counting...

$$\chi($$
 $) = 3$

$$\chi(\int_{-\infty}^{\infty})=2$$

$$\chi(\int_{-\infty}^{\infty})=1$$

$$\chi(\boxed{})=0$$

$$\chi($$
 $) = 1$

The Euler measure

- An important property of the Euler characteristic is that it is a valuation
- In particular, it satisfies an inclusion-exclusion principle

$$\chi(\bigcirc) = \chi(\bigcirc) + \chi(\bigcirc) - \chi(\bigcirc)$$

• This lets us define an integration theory based around the Euler characteristic as a measure

$$\int h \, d\chi = \sum_{s=-\infty}^{\infty} s\chi(h^{-1}(s))$$

The Euler integral

Properties of the Euler integral

- It is linear over $CF(\mathbb{R}^n;\mathbb{Z})$
 - This is false for a very important reason if one extends to definable functions (c.f. Baryshnikov & Ghrist 2010)
- It is finitely summable
- It is not monotonic
- It has nontrivial measure-zero sets

Target enumeration

Discretization analysis

- What if there isn't a sensor at every point?
- Discretization errors are not straightforward
 - This is a *completely open* field!

Discretization analysis

• Statistical analysis of asymptotics of the Euler characteristic integral for many identical targets,

Euler integral transforms

The Euler-Bessel transform

$$(Bh)(x) = \int_0^\infty \int_{\partial B_r(x)} h \, d\chi \, dr$$

The Euler-Bessel transform

• Theorem: (Ghrist & R.) The Euler-Bessel transform also concentrates the measure on a set of critical points, counted with sign

Benefit:

Computationally efficient simulations

Why might we care?

- The Euler-Bessel transform localizes targets
 - It usually has a minimum at each target center
- It detects target shape
 - The minimum isn't as pronounced if the target isn't circular

Target sidelobes

• When contours and targets are not matched, one gets sidelobes

Circular contours, rectangular target

Circular contours, two rectangular targets, partially overlapping

Sidelobes in the far-field: *n*-gons

Other contours

- Sidelobes are mitigated by matched filtering
- Swap out for other contours of integration

SVA* (Fourier case)

Euler-Bessel SVA results

More EBSVA results

EBSVA with two targets

SVA recovers target, with some SNR loss

Shape filtering

- By selecting the norm and tailoring the use of SVA, it is possible to create *shape filters*
 - They are **Z**-linear
 - They are insensitive to position and size of targets
 - They can be made insensitive to orientation if desired

SVA to remove

rotational depedence

aligned with x,y-axes

supports with overlap

Wavelet transforms

Euler "orthogonality"

• <u>Definition</u>: Euler "inner product"

$$(f,g)_{\chi} = \int f g d \chi$$

- It's not an inner product:
 - Not positive (semi)-definite
- Additionally, no nice convergence properties due to finite summability of the Euler measure
- So don't expect to get complete orthonormal sets
 - There do exist orthogonal sets, though

Euler Haar wavelets (Type 1)

• <u>Definition</u>: Mother Haar wavelet (ω_{00}^1)

We define the child wavelets ω^1_{st} in the usual way

Extend this definition to \mathbb{R}^n via tensor products

• The set of these wavelets is $(.,.)_{\chi}$ -orthogonal, but for each wavelet ω , $(\omega,\omega)_{\chi}=-2$

Good news/Bad news

• This is enough to define a practical transform, working on $f \in CF(\mathbb{R}^n; \mathbb{Z})$

$$f \mapsto (f, \omega_{st})_{\chi} \text{ (for } s, t \in \mathbb{Z})$$

• Sadly, this transform is *not injective*!

- This doesn't present difficulties if you are only interested in "images"
 - But it does indicate we need more wavelets

Euler Haar wavelets (Type 0)

- A second kind of wavelet: ω^0_{st}
 - Indicator functions on dyadic points in R
 - This extends to higher dimenions by tensor products
- <u>Definition</u>: Euler Haar Wavelet Transform (EHWT)

$$f \mapsto (f, \omega^p)_{xt} \text{ (for } s, t \in \mathbb{Z}, p \in \{0,1\})$$

- Obviously the $\{\omega^0_{st}\}$ wavelets and the $\{\omega^1_{st}\}$ wavelets are each orthogonal sets
 - But their union is **not**
 - So there will be some redundancy in the EHWT

Sparsity and injectivity

- It appears from the examples that not all of the coefficients are necessary
 - Many of them are zero
- If the transform is injective, maybe we can use it for
 - Detection processing
 - Filtering and reconstruction
- Theorem: (R.) The EHWT is injective
- But the usual Fourier representation fails...

$$f \neq \sum_{st} \omega_{st}(\omega_{st}, f)_{\chi}$$

Future directions: applications

- Refine and explore shape filtering
 - Testing on examples from machine vision, radar
- Quantitative analysis of sidelobe mitigation techniques
 - In particular, how much should one anticipate that SVA will help?
 - Target break-up and occlusion effects need to be addressed
- Treat inversion for the EHWT
 - Examine its uses for filtering, compression

For more information

Michael Robinson robim@math.upenn.edu

Preprints available from my website:

http://www.math.upenn.edu/~robim

