Workshop on Computational Topology – November 7-11, 2011

Stable Multi-Scale Signatures for Shapes using Topological Persistence

Steve Oudot – Geometrica group, INRIA Saclay – Île-de-France

joint work (still in progress..) with Frédéric Chazal and Alexandre Bos

Mathematical formulation:

shapes \equiv compact metric spaces

distance between shapes \equiv Gromov-Hausdorff (GH) distance

Input: a compact metric space (X, d_X)

Parameter: a Lipschitz continuous function $f: X \to \mathbb{R}$ derived from d_X

Signature: Dg f

Our hope: that $\operatorname{Dg} f$ reveals part of the structure of (X,d_X)

Input: a compact metric space (X, d_X)

Parameter: a Lipschitz continuous function $f: X \to \mathbb{R}$ derived from d_X

Signature: Dg f

Illustration: distinguishing between a sphere and an ellipsoid:

Input: a compact metric space (X, d_X)

Parameter: a Lipschitz continuous function $f: X \to \mathbb{R}$ derived from d_X

Signature: $\operatorname{Dg} f$

Illustration: distinguishing between a sphere and an ellipsoid:→ eccentricity

Input: a compact metric space (X, d_X)

Parameter: a Lipschitz continuous function $f: X \to \mathbb{R}$ derived from d_X

Signature: $\operatorname{Dg} f$

Illustration: distinguishing between a sphere and an ellipsoid:→ eccentricity

Input: a compact metric space (X, d_X)

Parameter: a Lipschitz continuous function $f: X \to \mathbb{R}$ derived from d_X

Signature: $\operatorname{Dg} f$

Other examples of functions derived from d_X :

• higher-order eccentricities

Input: a compact metric space (X, d_X)

Parameter: a Lipschitz continuous function $f: X \to \mathbb{R}$ derived from d_X

Signature: $\operatorname{Dg} f$

Other examples of functions derived from d_X :

• heat-kernel signature [Sun, Ovsjanikov, Guibas 09] (hyp: X Riemannian manifold)

Input: a compact metric space (X, d_X)

Parameter: a Lipschitz continuous function $f: X \to \mathbb{R}$ derived from d_X

Signature: Dg f

Other examples of functions derived from d_X : (parametrized by base points)

ullet distance to a base point $x_0 \in X$

Input: a compact metric space (X, d_X)

Parameter: a Lipschitz continuous function $f: X \to \mathbb{R}$ derived from d_X

Signature: $\operatorname{Dg} f$

Other examples of functions derived from d_X : (parametrized by base points)

• fuzzy geodesic [Sun, Chen, Funkhouser 10]

Input: a compact metric space (X, d_X)

Parameter: a Lipschitz continuous function $f: X \to \mathbb{R}$ derived from d_X

Signature: $\operatorname{Dg} f$

Other examples of functions derived from d_X : (parametrized by base points)

• intersection configuration [Sun, Chen, Funkhouser 10]

Input: a compact metric space (X, d_X)

Parameter: a Lipschitz continuous function $f: X \to \mathbb{R}$ derived from d_X

Signature: $\operatorname{Dg} f$

Observations:

• same spirit as size theory for shape comparison [d'Amico, Frosini, Landi 05]

setting is more general

Definitions: Given (X, d_X, f) and (Y, d_Y, g) ,

• correspondence:

a set $C \subseteq X \times Y$ such that:

$$\forall x \in X$$
, $\exists y \in Y \text{ s.t. } (x,y) \in C$

$$\forall y \in Y$$
, $\exists x \in X \text{ s.t. } (x,y) \in C$

Definitions: Given (X, d_X, f) and (Y, d_Y, g) ,

• correspondence:

a set
$$C \subseteq X \times Y$$
 such that:

$$\forall x \in X$$
, $\exists y \in Y \text{ s.t. } (x,y) \in C$

$$\forall y \in Y$$
, $\exists x \in X \text{ s.t. } (x,y) \in C$

• distortion: $\operatorname{dist}_m(C) = \sup_{(x,y),(x',y') \in C} |\operatorname{d}_X(x,x') - \operatorname{d}_Y(y,y')|$ $\operatorname{dist}_f(C) = \sup_{(x,y) \in C} |f(x) - g(y)|$

Definitions: Given (X, d_X, f) and (Y, d_Y, g) ,

• correspondence:

a set
$$C \subseteq X \times Y$$
 such that:

$$\forall x \in X$$
, $\exists y \in Y$ s.t. $(x,y) \in C$
 $\forall y \in Y$, $\exists x \in X$ s.t. $(x,y) \in C$

• Gromov-Hausdorff distance:

$$d_{GH}(X,Y) = \frac{1}{2} \inf_{C \in \mathcal{C}(X,Y)} \operatorname{dist}_m(C)$$

Definitions: Given (X, d_X, f) and (Y, d_Y, g) ,

• correspondence:

a set
$$C \subseteq X \times Y$$
 such that:

$$\forall x \in X, \exists y \in Y \text{ s.t. } (x,y) \in C$$

 $\forall y \in Y, \exists x \in X \text{ s.t. } (x,y) \in C$

Gromov-Hausdorff distance:

$$d_{GH}(X,Y) = \frac{1}{2} \inf_{C \in \mathcal{C}(X,Y)} \operatorname{dist}_m(C)$$

 \rightarrow In our bounds we decouple $\operatorname{dist}_m(C)$ and $\operatorname{dist}_f(C)$

Desired stability result:

Theorem (Stability): Let (X, d_X) and (Y, d_Y) be two compact metric spaces equipped with c-Lipschitz functions $f: X \to \mathbb{R}$ and $g: Y \to \mathbb{R}$. Then, for any correspondence $C \in \mathcal{C}(X,Y)$,

$$d_{\mathrm{B}}^{\infty}(\mathrm{Dg}\,f,\mathrm{Dg}\,g)\in O(c\,\mathrm{dist}_m(C)+\mathrm{dist}_f(C)).$$

Desired stability result:

Theorem (Stability): Let (X, d_X) and (Y, d_Y) be two compact metric spaces equipped with c-Lipschitz functions $f: X \to \mathbb{R}$ and $g: Y \to \mathbb{R}$. Then, for any correspondence $C \in \mathcal{C}(X,Y)$,

$$d_{\mathrm{B}}^{\infty}(\mathrm{Dg}\,f,\mathrm{Dg}\,g)\in O(c\,\mathrm{dist}_m(C)+\mathrm{dist}_f(C)).$$

Note: this is nothing but a stability theorem for persistence diagrams

- improves over [CEH'05] (functions have different domains)
- improves over [dAFL'08] (domains are in different homeomorphism classes)
- relies on [CCGGO'09] with more explicit conditions

Desired stability result:

Theorem (Stability): Let (X, d_X) and (Y, d_Y) be two compact metric spaces equipped with c-Lipschitz functions $f: X \to \mathbb{R}$ and $g: Y \to \mathbb{R}$. Then, for any correspondence $C \in \mathcal{C}(X,Y)$,

$$d_{\mathrm{B}}^{\infty}(\mathrm{Dg}\,f,\mathrm{Dg}\,g)\in O(c\,\mathrm{dist}_m(C)+\mathrm{dist}_f(C)).$$

Note: this is nothing but a stability theorem for persistence diagrams

But it is false in such generality:

- $d_B^{\infty}(\operatorname{Dg} f, \operatorname{Dg} g) < \infty \Rightarrow (X, d_X)$ and (Y, d_Y) are homologically equivalent
- $\operatorname{dist}_m(C)$ and $\operatorname{dist}_f(C)$ are finite regardless of homological types of X,Y

$$X = \bullet$$
 $Y = \bullet \stackrel{\varepsilon}{\longleftarrow} \bullet$

Desired stability result:

Theorem (Stability): Let (X, d_X) and (Y, d_Y) be two compact metric spaces equipped with c-Lipschitz functions $f: X \to \mathbb{R}$ and $g: Y \to \mathbb{R}$. Then, for any correspondence $C \in \mathcal{C}(X,Y)$,

$$d_{\mathrm{B}}^{\infty}(\mathrm{Dg}\,f,\mathrm{Dg}\,g)\in O(c\,\mathrm{dist}_m(C)+\mathrm{dist}_f(C)).$$

Note: this is nothing but a stability theorem for persistence diagrams

But it is false in such generality:

- $d_B^{\infty}(\operatorname{Dg} f, \operatorname{Dg} g) < \infty \Rightarrow (X, d_X)$ and (Y, d_Y) are homologically equivalent
- $\operatorname{dist}_m(C)$ and $\operatorname{dist}_f(C)$ are finite regardless of homological types of X,Y
- → Restrict the focus to a class of *sufficiently regular* metric spaces

Obtained stability result:

length spaces of curvature bounded above

Theorem (Stability): Let (X, d_X) and (Y, d_Y) be two compact metric spaces equipped with c-Lipschitz functions $f: X \to \mathbb{R}$ and $g: Y \to \mathbb{R}$. Then, for any correspondence $C \in \mathcal{C}(X,Y)$ such that $\mathrm{dist}_m(C) < \frac{1}{10} \min\{\varrho(X), \varrho(Y)\}$,

$$d_{\mathbf{B}}^{\infty}(\operatorname{Dg} f, \operatorname{Dg} g) \in O(c \operatorname{dist}_{m}(C) + \operatorname{dist}_{f}(C)).$$

$$\leq 19 c \operatorname{dist}_{m}(C) + \operatorname{dist}_{f}(C)$$

Obtained stability result:

length spaces of curvature bounded above

Theorem (Stability): Let (X, d_X) and (Y, d_Y) be two compact metric spaces equipped with c-Lipschitz functions $f: X \to \mathbb{R}$ and $g: Y \to \mathbb{R}$. Then, for any correspondence $C \in \mathcal{C}(X,Y)$ such that $\mathrm{dist}_m(C) < \frac{1}{10} \min\{\varrho(X), \varrho(Y)\}$,

$$d_{\mathbf{B}}^{\infty}(\operatorname{Dg} f, \operatorname{Dg} g) \in O(c \operatorname{dist}_{m}(C) + \operatorname{dist}_{f}(C)).$$

$$\leq 19 c \operatorname{dist}_{m}(C) + \operatorname{dist}_{f}(C)$$

$$X = \bigcirc$$

$$Y = \bigcirc$$

Prerequisite: $d_{GH}(X,Y) < \frac{1}{20} \min\{\varrho(X), \varrho(Y)\}$

$$d_{\mathrm{GH}}(X,Y) < \infty = \varrho(Y)$$

$$d_{\mathbf{B}}^{\infty}(\operatorname{Dg} f, \operatorname{Dg} g) = \infty$$

Theorem (Stability): Let (X, d_X) and (Y, d_Y) be two compact length spaces with curvature bounded above, equipped with c-Lipschitz functions $f: X \to \mathbb{R}$ and $g: Y \to \mathbb{R}$. Then, for any correspondence $C \in \mathcal{C}(X,Y)$ such that $\mathrm{dist}_m(C) < \frac{1}{10} \min\{\varrho(X), \varrho(Y)\}, \ \mathrm{d}_\mathrm{B}^\infty(\mathrm{Dg}\,f, \mathrm{Dg}\,g) \leq 19c \, \mathrm{dist}_m(C) + \mathrm{dist}_f(C).$

Theorem (Stability): Let (X, d_X) and (Y, d_Y) be two compact length spaces with curvature bounded above, equipped with c-Lipschitz functions $f: X \to \mathbb{R}$ and $g: Y \to \mathbb{R}$. Then, for any correspondence $C \in \mathcal{C}(X,Y)$ such that $\mathrm{dist}_m(C) < \frac{1}{10} \min\{\varrho(X), \varrho(Y)\}$, $\mathrm{d}_\mathrm{B}^\infty(\mathrm{Dg}\,f, \mathrm{Dg}\,g) \leq 19c\,\mathrm{dist}_m(C) + \mathrm{dist}_f(C)$.

Corollary 1: If $d_{GH}(X,Y) < \frac{1}{20} \min\{\varrho(X), \varrho(Y)\}$, then $d_B^{\infty}(\operatorname{Dg}\operatorname{ecc}_X, \operatorname{Dg}\operatorname{ecc}_Y) \leq 40 d_{GH}(X,Y)$.

Theorem (Stability): Let (X, d_X) and (Y, d_Y) be two compact length spaces with curvature bounded above, equipped with c-Lipschitz functions $f: X \to \mathbb{R}$ and $g: Y \to \mathbb{R}$. Then, for any correspondence $C \in \mathcal{C}(X,Y)$ such that $\mathrm{dist}_m(C) < \frac{1}{10} \min\{\varrho(X), \varrho(Y)\}$, $\mathrm{d}_\mathrm{B}^\infty(\mathrm{Dg}\,f, \mathrm{Dg}\,g) \leq 19c\,\mathrm{dist}_m(C) + \mathrm{dist}_f(C)$.

Corollary 1: If $d_{GH}(X,Y) < \frac{1}{20} \min\{\varrho(X), \varrho(Y)\}$, then $d_B^{\infty}(\operatorname{Dg}\operatorname{ecc}_X, \operatorname{Dg}\operatorname{ecc}_Y) \leq 40 d_{GH}(X,Y)$.

Corollary 2: For any base points $x \in X$ and $y \in Y$,

$$\mathrm{d}_{\mathrm{B}}^{\infty}(\mathrm{Dg}\,\mathrm{d}_{X}(x,\cdot),\ \mathrm{Dg}\,\mathrm{d}_{Y}(y,\cdot))\leq 20 \quad \inf_{\substack{C\ \in \mathcal{C}(X,Y)\\ \mathrm{dist}_{m}(C)<\frac{1}{10}\min\{\varrho(X),\ \varrho(Y)\}\\ (x,y)\in C}} \mathrm{dist}_{m}(C).$$

Theorem (Stability): Let (X, d_X) and (Y, d_Y) be two compact length spaces with curvature bounded above, equipped with c-Lipschitz functions $f: X \to \mathbb{R}$ and $g: Y \to \mathbb{R}$. Then, for any correspondence $C \in \mathcal{C}(X,Y)$ such that $\mathrm{dist}_m(C) < \frac{1}{10} \min\{\varrho(X), \varrho(Y)\}$, $\mathrm{d}_\mathrm{B}^\infty(\mathrm{Dg}\,f, \mathrm{Dg}\,g) \leq 19c\,\mathrm{dist}_m(C) + \mathrm{dist}_f(C)$.

Corollary 1: If $d_{GH}(X, Y) < \frac{1}{20} \min\{\varrho(X), \varrho(Y)\}$, then $d_B^{\infty}(\operatorname{Dg}\operatorname{ecc}_X, \operatorname{Dg}\operatorname{ecc}_Y) \leq 40 d_{GH}(X, Y)$.

Corollary 2: For any base points $x \in X$ and $y \in Y$,

$$d_{\mathcal{B}}^{\infty}(\operatorname{Dg} d_{X}(x,\cdot), \operatorname{Dg} d_{Y}(y,\cdot)) \leq 20 \quad \inf_{\substack{C \in \mathcal{C}(X,Y) \\ \operatorname{dist}_{m}(C) < \frac{1}{10} \min\{\varrho(X), \varrho(Y)\} \\ (x,y) \in C}} \operatorname{dist}_{m}(C).$$

Corollary 3: If $d_{\mathrm{GH}}(X,Y) < \frac{1}{20} \min\{\varrho(X), \varrho(Y)\}$, then given any base point $x \in X$, for any $\varepsilon > 0$ there is a basepoint $y \in Y$ such that $d_{\mathrm{B}}^{\infty}(\mathrm{Dg}\,d_X(x,\cdot), \,\mathrm{Dg}\,d_Y(y,\cdot)) \leq 40d_{\mathrm{GH}}(X,Y) + \varepsilon$.

Theorem (Stability): Let (X, d_X) and (Y, d_Y) be two compact length spaces with curvature bounded above, equipped with c-Lipschitz functions $f: X \to \mathbb{R}$ and $g: Y \to \mathbb{R}$. Then, for any correspondence $C \in \mathcal{C}(X,Y)$ such that $\mathrm{dist}_m(C) < \frac{1}{10} \min\{\varrho(X), \varrho(Y)\}$, $\mathrm{d}_\mathrm{B}^\infty(\mathrm{Dg}\,f, \mathrm{Dg}\,g) \leq 19c\,\mathrm{dist}_m(C) + \mathrm{dist}_f(C)$.

Proof: by reduction to *Scalar Fields Analysis from Point Cloud Data*: [Chazal, Guibas, O., Skraba 11]

Theorem (Stability): Let (X, d_X) and (Y, d_Y) be two compact length spaces with curvature bounded above, equipped with c-Lipschitz functions $f: X \to \mathbb{R}$ and $g: Y \to \mathbb{R}$. Then, for any correspondence $C \in \mathcal{C}(X,Y)$ such that $\mathrm{dist}_m(C) < \frac{1}{10} \min\{\varrho(X), \varrho(Y)\}$, $\mathrm{d}_\mathrm{B}^\infty(\mathrm{Dg}\,f, \mathrm{Dg}\,g) \leq 19c\,\mathrm{dist}_m(C) + \mathrm{dist}_f(C)$.

Proof: by reduction to *Scalar Fields Analysis from Point Cloud Data*:

Given any positive $\varepsilon < \frac{1}{10} \min\{\varrho(X), \, \varrho(Y)\} - \mathrm{dist}_m(C)$,

- ullet take a finite ε -sample P of X ($P \subseteq X$)
- \bullet equip it with the induced metric $d_P = d_X|_{P \times P}$
- ullet equip it with the restriction $h=f|_P$

Theorem (Stability): Let (X, d_X) and (Y, d_Y) be two compact length spaces with curvature bounded above, equipped with c-Lipschitz functions $f: X \to \mathbb{R}$ and $g: Y \to \mathbb{R}$. Then, for any correspondence $C \in \mathcal{C}(X,Y)$ such that $\mathrm{dist}_m(C) < \frac{1}{10} \min\{\varrho(X), \varrho(Y)\}$, $\mathrm{d}_\mathrm{B}^\infty(\mathrm{Dg}\,f, \mathrm{Dg}\,g) \leq 19c\,\mathrm{dist}_m(C) + \mathrm{dist}_f(C)$.

Proof: by reduction to *Scalar Fields Analysis from Point Cloud Data*:

Given any positive $\varepsilon < \frac{1}{10} \min\{\varrho(X), \, \varrho(Y)\} - \mathrm{dist}_m(C)$,

- ullet take a finite ε -sample P of X ($P \subseteq X$)
- \bullet equip it with the induced metric $d_P = d_X|_{P \times P}$
- ullet equip it with the restriction $h = f|_P$

$$C_{PX} = \{(p, x) \in P \times X : d_X(x, p) = \min_{q \in P} d_X(x, q)\}$$

$$C_{PY} = \{(p, y) \in P \times Y : \exists x \in X \text{ s.t. } (p, x) \in C_{PX} \text{ and } (x, q) \in C\}$$

$$|\operatorname{dist}_m(C_{PX}) \leq 2\varepsilon \text{ and } \operatorname{dist}_f(C_{PX}) = c\varepsilon$$

$$\operatorname{dist}_m(C_{PY}) \leq 2\varepsilon + \operatorname{dist}_m(C) \text{ and } \operatorname{dist}_f(C_{PY}) \leq c\varepsilon + \operatorname{dist}_f(C)$$

Theorem (Stability): Let (X, d_X) and (Y, d_Y) be two compact length spaces with curvature bounded above, equipped with c-Lipschitz functions $f: X \to \mathbb{R}$ and $g: Y \to \mathbb{R}$. Then, for any correspondence $C \in \mathcal{C}(X,Y)$ such that $\mathrm{dist}_m(C) < \frac{1}{10} \min\{\varrho(X), \varrho(Y)\}$, $\mathrm{d}_\mathrm{B}^\infty(\mathrm{Dg}\,f, \mathrm{Dg}\,g) \leq 19c\,\mathrm{dist}_m(C) + \mathrm{dist}_f(C)$.

Proof: by reduction to *Scalar Fields Analysis from Point Cloud Data*:

Given any positive $\varepsilon < \frac{1}{10} \min\{\varrho(X), \, \varrho(Y)\} - \mathrm{dist}_m(C)$,

- ullet take a finite ε -sample P of X ($P \subseteq X$)
- \bullet equip it with the induced metric $d_P = d_X|_{P \times P}$
- ullet equip it with the restriction $h = f|_P$

$$C_{PX} = \{(p, x) \in P \times X : d_X(x, p) = \min_{q \in P} d_X(x, q)\}$$

$$C_{PY} = \{(p, y) \in P \times Y : \exists x \in X \text{ s.t. } (p, x) \in C_{PX} \text{ and } (x, q) \in C\}$$

$$\to |\operatorname{dist}_m(C_{PX}) \le 2\varepsilon \text{ and } \operatorname{dist}_f(C_{PX}) = c\varepsilon$$
$$\operatorname{dist}_m(C_{PY}) \le 2\varepsilon + \operatorname{dist}_m(C) \text{ and } \operatorname{dist}_f(C_{PY}) \le c\varepsilon + \operatorname{dist}_f(C)$$

→ goal: approximate persistence diagram from GH-close finite metric space

Theorem (Stability): Let (X, d_X) and (Y, d_Y) be two compact length spaces with curvature bounded above, equipped with c-Lipschitz functions $f: X \to \mathbb{R}$ and $g: Y \to \mathbb{R}$. Then, for any correspondence $C \in \mathcal{C}(X,Y)$ such that $\mathrm{dist}_m(C) < \frac{1}{10} \min\{\varrho(X), \varrho(Y)\}$, $\mathrm{d}_\mathrm{B}^\infty(\mathrm{Dg}\,f, \mathrm{Dg}\,g) \leq 19c\,\mathrm{dist}_m(C) + \mathrm{dist}_f(C)$.

Proof: by reduction to *Scalar Fields Analysis from Point Cloud Data*:

Theorem (Stability): Let (X, d_X) and (Y, d_Y) be two compact length spaces with curvature bounded above, equipped with c-Lipschitz functions $f: X \to \mathbb{R}$ and $g: Y \to \mathbb{R}$. Then, for any correspondence $C \in \mathcal{C}(X,Y)$ such that $\mathrm{dist}_m(C) < \frac{1}{10} \min\{\varrho(X), \varrho(Y)\}$, $\mathrm{d}_\mathrm{B}^\infty(\mathrm{Dg}\,f, \mathrm{Dg}\,g) \leq 19c\,\mathrm{dist}_m(C) + \mathrm{dist}_f(C)$.

Proof: by reduction to *Scalar Fields Analysis from Point Cloud Data*:

Theorem (Stability): Let (X, d_X) and (Y, d_Y) be two compact length spaces with curvature bounded above, equipped with c-Lipschitz functions $f: X \to \mathbb{R}$ and $g: Y \to \mathbb{R}$. Then, for any correspondence $C \in \mathcal{C}(X,Y)$ such that $\mathrm{dist}_m(C) < \frac{1}{10} \min\{\varrho(X), \varrho(Y)\}$, $\mathrm{d}_\mathrm{B}^\infty(\mathrm{Dg}\,f, \mathrm{Dg}\,g) \leq 19c\,\mathrm{dist}_m(C) + \mathrm{dist}_f(C)$.

Proof: by reduction to *Scalar Fields Analysis from Point Cloud Data*:

Assume wlog that ϕ is **injective** and let $\psi: X \to P$ be a left inverse

Theorem (Stability): Let (X, d_X) and (Y, d_Y) be two compact length spaces with curvature bounded above, equipped with c-Lipschitz functions $f: X \to \mathbb{R}$ and $g: Y \to \mathbb{R}$. Then, for any correspondence $C \in \mathcal{C}(X,Y)$ such that $\mathrm{dist}_m(C) < \frac{1}{10} \min\{\varrho(X), \varrho(Y)\}$, $\mathrm{d}_\mathrm{B}^\infty(\mathrm{Dg}\,f, \mathrm{Dg}\,g) \leq 19c\,\mathrm{dist}_m(C) + \mathrm{dist}_f(C)$.

Proof: by reduction to *Scalar Fields Analysis from Point Cloud Data*:

Assume wlog that ϕ is **injective** and let $\psi: X \to P$ be a left inverse

Equip $P' = \phi(P)$ with $d_{P'} = d_P(\psi(\cdot), \psi(\cdot))$ and $h' = h \circ \psi$

$$\rightarrow \left| \begin{array}{l} d_{H}(P',X) \leq \operatorname{dist}_{m}(C_{PX}) \\ \|h' - f|_{P'}\|_{\infty} \leq \operatorname{dist}_{f}(C_{PX}) \text{ and } \|d_{P'} - d_{X}|_{P' \times P'}\|_{\infty} \leq \operatorname{dist}_{m}(C_{PX}) \end{array} \right|$$

Theorem (Stability): Let (X, d_X) and (Y, d_Y) be two compact length spaces with curvature bounded above, equipped with c-Lipschitz functions $f:X\to$ \mathbb{R} and $g:Y\to\mathbb{R}$. Then, for any correspondence $C\in\mathcal{C}(X,Y)$ such that $\operatorname{dist}_m(C) < \frac{1}{10} \min\{\varrho(X), \, \varrho(Y)\}, \, \operatorname{d}_{\mathrm{B}}^{\infty}(\operatorname{Dg} f, \operatorname{Dg} g) \leq 19c \operatorname{dist}_m(C) + \operatorname{dist}_f(C).$

Proof: by reduction to Scalar Fields Analysis from Point Cloud Data:

Assume wlog that ϕ is **injective** and let $\psi: X \to P$ be a left inverse

Equip $P' = \phi(P)$ with $d_{P'} = d_P(\psi(\cdot), \psi(\cdot))$ and $h' = h \circ \psi$

Computing our Signatures

In practice, the signatures can only be approximated:

Computing our Signatures

In practice, the signatures can only be approximated:

- ullet when a triangulation of the space X is given:
 - replace f by its PL interpolation \hat{f} over the triangulation
 - compute $\operatorname{Dg} \hat{f}$
 - $d_{\rm B}^{\infty}({\rm Dg}\,f,\,{\rm Dg}\,\hat{f})$ is controlled by the stability theorem for PDs [CEH'05]

Computing our Signatures

In practice, the signatures can only be approximated:

- ullet when a triangulation of the space X is given:
 - replace f by its PL interpolation \hat{f} over the triangulation
 - compute $\operatorname{Dg} \hat{f}$
 - $d_{\rm B}^{\infty}({\rm Dg}\,f,\,{\rm Dg}\,\hat{f})$ is controlled by the stability theorem for PDs [CEH'05]
- when a finite approximation (P, d_P, g) of (X, d_X, f) is given:
 - choose a neighborhood parameter $\delta>0$
 - build the filtrations $\{R_{\delta}(g^{-1}((-\infty,\alpha]))\}_{\alpha\in\mathbb{R}}$ and $\{R_{3\delta}(g^{-1}((-\infty,\alpha]))\}_{\alpha\in\mathbb{R}}$
 - compute the PD of the image persistence module induced by inclusions:

$$\{\operatorname{Im} H_*(R_{\delta}(g^{-1}((-\infty,\alpha])) \to H_*(R_{3\delta}(g^{-1}((-\infty,\alpha])))\}_{\alpha \in \mathbb{R}}$$

- bottleneck distance to $\operatorname{Dg} f$ is controlled by the results in [CGOS'11]

- input: shapes from the TOSCA database, in *mesh* form
- select a few base points by hand on each shape
- approximate geodesic distances to base points using the 1-skeleton graph
- use the PDs of the PL interpolations over the meshes as signatures

	1	2	3	4	5	6
1	20.322	107.945	71.9286	102.34	130.602	189.146
2	85.3632	21.872	67.7957	67.7957	43.098	93.697
3	54.843	69.1745	21.609	45.2831	73.5451	132.089
4	90.0162	69.1745	29.3636	15.327	35.5291	89.044
5	104.753	69.1745	45.1231	26.101	23.927	74.307
6	172.427	74.568	110.585	81.213	52.951	15.161

• Remote analysis of the distance to a compact set:

Idea: approximate $\operatorname{Dg} \operatorname{d}_X(\cdot, K)$ by the diagram of the filtration of $\operatorname{R}_{\delta}(P, \operatorname{d}_P) \hookrightarrow \operatorname{R}_{3\delta}(P, \operatorname{d}_P)$ defined by $\operatorname{d}_P(\cdot, Q)$.

Remote analysis of the distance to a compact set:

• Upper bounds on the Gromov-Hausdorff distance:

→ by picking up sufficiently many functions (e.g. distances to all points), can one obtain a constant-factor approximation of the GH-distance?

• Remote analysis of the distance to a compact set:

• Upper bounds on the Gromov-Hausdorff distance:

- Relaxation of the hypotheses of the stability theorem:
 - ightarrow remove the assumption that $d_{\mathrm{GH}}(X,Y) < \frac{1}{20} \varrho(Y)$

Remote analysis of the distance to a compact set:

• Upper bounds on the Gromov-Hausdorff distance:

Relaxation of the hypotheses of the stability theorem:

Thank You