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this is a distance between the isometry classes of compact metric spaces

shapes are represented as compact metric spaces

Comparing Shapes via Signatures

1

shapes space

GH distance

isometries

Mathematical formulation:

shapes ≡ compact metric spaces

distance between shapes ≡ Gromov-Hausdorff (GH) distance
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Comparing Shapes via Signatures

1

shapes space

signatures space

GH distance

hard to compute

isometries

equality

distance

easy to compute

Ideally, signatures distance = GH distance

In reality, ≤



Persistence: from Signatures for Functions...

2

f : X → R tame

persistence

Dg f



Persistence: from Signatures for Functions...

2

f : X → R tame

persistence

Dg f

g : X → R tame

persistence

Dg g

sup-norm distance

bottleneck distance

≥ [CEH’05]
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Persistence: from Signatures for Functions...

2

f : X → R tame

persistence

Dg f

g : X → R tame

persistence

Dg g

sup-norm distance

bottleneck distance

What do we learn
about X itself?

merely its homological type



as a metric space

... to Signatures for Spaces

3

Input: a compact metric space (X, dX)

Signature: Dg f

Parameter: a Lipschitz continuous function f : X → R derived from dX

Our hope: that Dg f reveals part of the structure of (X, dX)



let me show you an example to illustrate what I mean

... to Signatures for Spaces

3

Illustration: distinguishing between a sphere and an ellipsoid:

Input: a compact metric space (X, dX)

Signature: Dg f

Parameter: a Lipschitz continuous function f : X → R derived from dX

(X, dX) (Y, dY )



let me show you an example to illustrate what I mean

... to Signatures for Spaces

3

Illustration: distinguishing between a sphere and an ellipsoid:

Input: a compact metric space (X, dX)

Signature: Dg f

Parameter: a Lipschitz continuous function f : X → R derived from dX

→ eccentricity

f(x) = max
x′∈X

dX(x, x′) g(x) = max
y′∈Y

dX(y, y′)

(X, dX) (Y, dY )



the more elongated the ellipsoid, the more persistent the 1-dimensional feature, and so the farther from the diagonal this point

let me show you an example to illustrate what I mean

... to Signatures for Spaces

3

Illustration: distinguishing between a sphere and an ellipsoid:

Input: a compact metric space (X, dX)

Signature: Dg f

Parameter: a Lipschitz continuous function f : X → R derived from dX

→ eccentricity

f(x) = max
x′∈X

dX(x, x′) g(x) = max
y′∈Y

dX(y, y′)

∞

0

0

∞

0

0∆

∆

∆

Dg f Dg g

0-dim

1-dim

2-dim



... to Signatures for Spaces

3

Input: a compact metric space (X, dX)

Signature: Dg f

• higher-order eccentricities

Parameter: a Lipschitz continuous function f : X → R derived from dX

Other examples of functions derived from dX :



... to Signatures for Spaces

3

Input: a compact metric space (X, dX)

Signature: Dg f

Parameter: a Lipschitz continuous function f : X → R derived from dX

Other examples of functions derived from dX :

• heat-kernel signature [Sun, Ovsjanikov, Guibas 09] (hyp: X Riemannian manifold)

(from [Sun, Ovsjanikov, Guibas 09])



these are useful for comparing points within the shape

... to Signatures for Spaces

3

• distance to a base point x0 ∈ X

Input: a compact metric space (X, dX)

Signature: Dg f

x0

x0

Parameter: a Lipschitz continuous function f : X → R derived from dX

Other examples of functions derived from dX : (parametrized by base points)



these are useful for comparing points within the shape

x0 x1

Sun, Chen, Funkhauser, SGP 2010

... to Signatures for Spaces

3

• fuzzy geodesic [Sun, Chen, Funkhouser 10]

Input: a compact metric space (X, dX)

Signature: Dg f

Parameter: a Lipschitz continuous function f : X → R derived from dX

Other examples of functions derived from dX : (parametrized by base points)

x2

x3



these are useful for comparing points within the shape

x0 x1

... to Signatures for Spaces

3

• intersection configuration [Sun, Chen, Funkhouser 10]

Input: a compact metric space (X, dX)

Signature: Dg f

Parameter: a Lipschitz continuous function f : X → R derived from dX

Other examples of functions derived from dX : (parametrized by base points)

x2

x3

x2

x3

x0 x1



... to Signatures for Spaces

3

Input: a compact metric space (X, dX)

Signature: Dg f

Parameter: a Lipschitz continuous function f : X → R derived from dX

• same spirit as size theory for shape comparison [d’Amico, Frosini, Landi 05]

Observations:

• setting is more general



Stability of our Signatures

4

∞

0
0

∞

0
0∆

∆

∆

Dg f Dg gbottleneck distance

distance?

≥ ?

(X, dX , f) (Y, dY , g)



C is a subset of the product space whose canonical projections onto X and Y are surjective

Stability of our Signatures

4

Definitions:

X

Y

y
x

• correspondence:

a set C ⊆ X × Y such that:

∀x ∈ X, ∃y ∈ Y s.t. (x, y) ∈ C
∀y ∈ Y , ∃x ∈ X s.t. (x, y) ∈ C

Given (X, dX , f) and (Y, dY , g),



C is a subset of the product space whose canonical projections onto X and Y are surjective

Stability of our Signatures

4

Definitions:

• correspondence:

• distortion: distm(C) = sup(x,y),(x′,y′)∈C |dX(x, x′)− dY (y, y
′)|

distf (C) = sup(x,y)∈C |f(x)− g(y)|

a set C ⊆ X × Y such that:

∀x ∈ X, ∃y ∈ Y s.t. (x, y) ∈ C
∀y ∈ Y , ∃x ∈ X s.t. (x, y) ∈ C

YX

y
y′

x

x′

C

Given (X, dX , f) and (Y, dY , g),



C is a subset of the product space whose canonical projections onto X and Y are surjective
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Definitions:

• correspondence:

• distortion: distm(C) = sup(x,y),(x′,y′)∈C |dX(x, x′)− dY (y, y
′)|

distf (C) = sup(x,y)∈C |f(x)− g(y)|

• Gromov-Hausdorff distance:

dGH(X,Y ) = 1
2
infC∈C(X,Y ) distm(C)
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C is a subset of the product space whose canonical projections onto X and Y are surjective

Stability of our Signatures

4

Definitions:

• correspondence:

• distortion: distm(C) = sup(x,y),(x′,y′)∈C |dX(x, x′)− dY (y, y
′)|

distf (C) = sup(x,y)∈C |f(x)− g(y)|

• Gromov-Hausdorff distance:

dGH(X,Y ) = 1
2
infC∈C(X,Y ) distm(C)

a set C ⊆ X × Y such that:

∀x ∈ X, ∃y ∈ Y s.t. (x, y) ∈ C
∀y ∈ Y , ∃x ∈ X s.t. (x, y) ∈ C

→ In our bounds we decouple distm(C) and distf (C)

Given (X, dX , f) and (Y, dY , g),



This stability result is in the same vein as the previous one, modulo the resort to correspondences directly (instead of the GH-distance) because it is necessary to take into account the distortion in function values induced by the correspondence itself

Stability of our Signatures

4

Theorem (Stability): Let (X, dX) and (Y, dY ) be two compact metric spaces
equipped with c-Lipschitz functions f : X → R and g : Y → R. Then, for any
correspondence C ∈ C(X,Y ),

d∞B (Dg f,Dg g) ∈ O(cdistm(C) + distf (C)).

Desired stability result:



d’Amico, Frosini, Landi

This stability result is in the same vein as the previous one, modulo the resort to correspondences directly (instead of the GH-distance) because it is necessary to take into account the distortion in function values induced by the correspondence itself

Stability of our Signatures

4

Theorem (Stability): Let (X, dX) and (Y, dY ) be two compact metric spaces
equipped with c-Lipschitz functions f : X → R and g : Y → R. Then, for any
correspondence C ∈ C(X,Y ),

d∞B (Dg f,Dg g) ∈ O(cdistm(C) + distf (C)).

Desired stability result:

Note: this is nothing but a stability theorem for persistence diagrams

- improves over [CEH’05] (functions have different domains)

- improves over [dAFL’08] (domains are in different homeomorphism classes)

- relies on [CCGGO’09] with more explicit conditions



this means that the given upper bound cannot hold when X and Y are not homologically equivalent

This stability result is in the same vein as the previous one, modulo the resort to correspondences directly (instead of the GH-distance) because it is necessary to take into account the distortion in function values induced by the correspondence itself

Indeed, the finiteness of the bottleneck distance implies that f and g have the same number of essential classes, which represent the homology of their underlying domain

Stability of our Signatures

4

Theorem (Stability): Let (X, dX) and (Y, dY ) be two compact metric spaces
equipped with c-Lipschitz functions f : X → R and g : Y → R. Then, for any
correspondence C ∈ C(X,Y ),

d∞B (Dg f,Dg g) ∈ O(cdistm(C) + distf (C)).

Desired stability result:

But it is false in such generality:

- d∞B (Dg f,Dg g) <∞ ⇒ (X, dX) and (Y, dY ) are homologically equivalent

- distm(C) and distf (C) are finite regardless of homological types of X,Y

Note: this is nothing but a stability theorem for persistence diagrams

X = Y =
ε



The idea behind this restriction is that we want to ensure homological equivalence between the two spaces, which we can achieve by assuming that dGH(X,Y ) is small compared to some geometric quantities intrinsic to the two spaces, typically their convexity radii or normal radii

this means that the given upper bound cannot hold when X and Y are not homologically equivalent

This stability result is in the same vein as the previous one, modulo the resort to correspondences directly (instead of the GH-distance) because it is necessary to take into account the distortion in function values induced by the correspondence itself

Indeed, the finiteness of the bottleneck distance implies that f and g have the same number of essential classes, which represent the homology of their underlying domain

Stability of our Signatures

4

→ Restrict the focus to a class of sufficiently regular metric spaces

Theorem (Stability): Let (X, dX) and (Y, dY ) be two compact metric spaces
equipped with c-Lipschitz functions f : X → R and g : Y → R. Then, for any
correspondence C ∈ C(X,Y ),

d∞B (Dg f,Dg g) ∈ O(cdistm(C) + distf (C)).

Desired stability result:

But it is false in such generality:

- d∞B (Dg f,Dg g) <∞ ⇒ (X, dX) and (Y, dY ) are homologically equivalent

- distm(C) and distf (C) are finite regardless of homological types of X,Y

Note: this is nothing but a stability theorem for persistence diagrams



This stability result is in the same vein as the previous one, modulo the resort to correspondences directly (instead of the GH-distance) because it is necessary to take into account the distortion in function values induced by the correspondence itself
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equipped with c-Lipschitz functions f : X → R and g : Y → R. Then, for any
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length spaces of curvature bounded above

such that distm(C) < 1
10

min{%(X), %(Y )},

≤ 19 cdistm(C) + distf (C)

Obtained stability result:



This stability result is in the same vein as the previous one, modulo the resort to correspondences directly (instead of the GH-distance) because it is necessary to take into account the distortion in function values induced by the correspondence itself

Stability of our Signatures

4

Theorem (Stability): Let (X, dX) and (Y, dY ) be two compact metric spaces
equipped with c-Lipschitz functions f : X → R and g : Y → R. Then, for any
correspondence C ∈ C(X,Y ),

d∞B (Dg f,Dg g) ∈ O(cdistm(C) + distf (C)).

length spaces of curvature bounded above

such that distm(C) < 1
10

min{%(X), %(Y )},

≤ 19 cdistm(C) + distf (C)

Prerequisite: dGH(X,Y ) < 1
20

min{%(X), %(Y )}

X =

Y =
d∞B (Dg f,Dg g) =∞

dGH(X,Y ) <∞ = %(Y )

Obtained stability result:



5

Theorem (Stability): Let (X, dX) and (Y, dY ) be two compact length spaces
with curvature bounded above, equipped with c-Lipschitz functions f : X →
R and g : Y → R. Then, for any correspondence C ∈ C(X,Y ) such that
distm(C) < 1

10
min{%(X), %(Y )}, d∞B (Dg f,Dg g) ≤ 19c distm(C)+distf (C).

Stability of our Signatures



every correspondence C ∈ C(X,Y ) changes the distances to x by at most distm(C), so ecc(X) is modified by at most distm(C)

5

Theorem (Stability): Let (X, dX) and (Y, dY ) be two compact length spaces
with curvature bounded above, equipped with c-Lipschitz functions f : X →
R and g : Y → R. Then, for any correspondence C ∈ C(X,Y ) such that
distm(C) < 1

10
min{%(X), %(Y )}, d∞B (Dg f,Dg g) ≤ 19c distm(C)+distf (C).

Corollary 1: If dGH(X,Y ) < 1
20

min{%(X), %(Y )},
then d∞B (Dg eccX , Dg eccY ) ≤ 40 dGH(X,Y ).

Stability of our Signatures
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5

Theorem (Stability): Let (X, dX) and (Y, dY ) be two compact length spaces
with curvature bounded above, equipped with c-Lipschitz functions f : X →
R and g : Y → R. Then, for any correspondence C ∈ C(X,Y ) such that
distm(C) < 1

10
min{%(X), %(Y )}, d∞B (Dg f,Dg g) ≤ 19c distm(C)+distf (C).

Corollary 1: If dGH(X,Y ) < 1
20

min{%(X), %(Y )},
then d∞B (Dg eccX , Dg eccY ) ≤ 40 dGH(X,Y ).

Stability of our Signatures

Corollary 2: For any base points x ∈ X and y ∈ Y ,

d∞B (Dg dX(x, ·), Dg dY (y, ·)) ≤ 20 inf
C ∈ C(X, Y )

distm(C) < 1
10

min{%(X), %(Y )}
(x, y) ∈ C

distm(C).

YX

y
x C



every correspondence C ∈ C(X,Y ) changes the distances to x by at most distm(C), so ecc(X) is modified by at most distm(C)
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Theorem (Stability): Let (X, dX) and (Y, dY ) be two compact length spaces
with curvature bounded above, equipped with c-Lipschitz functions f : X →
R and g : Y → R. Then, for any correspondence C ∈ C(X,Y ) such that
distm(C) < 1

10
min{%(X), %(Y )}, d∞B (Dg f,Dg g) ≤ 19c distm(C)+distf (C).

Corollary 1: If dGH(X,Y ) < 1
20

min{%(X), %(Y )},
then d∞B (Dg eccX , Dg eccY ) ≤ 40 dGH(X,Y ).

Stability of our Signatures

Corollary 2: For any base points x ∈ X and y ∈ Y ,

d∞B (Dg dX(x, ·), Dg dY (y, ·)) ≤ 20 inf
C ∈ C(X, Y )

distm(C) < 1
10

min{%(X), %(Y )}
(x, y) ∈ C

distm(C).

Corollary 3: If dGH(X,Y ) < 1
20

min{%(X), %(Y )}, then given any base
point x ∈ X, for any ε > 0 there is a basepoint y ∈ Y such that
d∞B (Dg dX(x, ·), Dg dY (y, ·)) ≤ 40dGH(X,Y ) + ε.



Proving this result from scratch requires a lot of effort, especially because the functions are defined over different domains and so interleaving their sublevel-sets has to be done in quite a subtle way. Fortunately for us, we already did most of the work in previous papers, and so in the present proving the result can be done by a simple reduction to these papers. Today let me show you the reduction and point you to the following reference for the rest of the proof.

5

Theorem (Stability): Let (X, dX) and (Y, dY ) be two compact length spaces
with curvature bounded above, equipped with c-Lipschitz functions f : X →
R and g : Y → R. Then, for any correspondence C ∈ C(X,Y ) such that
distm(C) < 1

10
min{%(X), %(Y )}, d∞B (Dg f,Dg g) ≤ 19c distm(C)+distf (C).

Proof: by reduction to Scalar Fields Analysis from Point Cloud Data:

Y

X

Stability of our Signatures

[Chazal, Guibas, O., Skraba 11]



5

Theorem (Stability): Let (X, dX) and (Y, dY ) be two compact length spaces
with curvature bounded above, equipped with c-Lipschitz functions f : X →
R and g : Y → R. Then, for any correspondence C ∈ C(X,Y ) such that
distm(C) < 1

10
min{%(X), %(Y )}, d∞B (Dg f,Dg g) ≤ 19c distm(C)+distf (C).

Proof: by reduction to Scalar Fields Analysis from Point Cloud Data:

Given any positive ε < 1
10

min{%(X), %(Y )} − distm(C),

• take a finite ε-sample P of X (P ⊆ X)

• equip it with the induced metric dP = dX |P×P

• equip it with the restriction h = f |P

Y

P

X

Stability of our Signatures



CPY is the composition of CPX and C as a correspondence

We assign each point of X to its nearest neighbor(s) in P

5

Theorem (Stability): Let (X, dX) and (Y, dY ) be two compact length spaces
with curvature bounded above, equipped with c-Lipschitz functions f : X →
R and g : Y → R. Then, for any correspondence C ∈ C(X,Y ) such that
distm(C) < 1

10
min{%(X), %(Y )}, d∞B (Dg f,Dg g) ≤ 19c distm(C)+distf (C).

Proof: by reduction to Scalar Fields Analysis from Point Cloud Data:

Given any positive ε < 1
10

min{%(X), %(Y )} − distm(C),

• take a finite ε-sample P of X (P ⊆ X)

• equip it with the induced metric dP = dX |P×P

• equip it with the restriction h = f |P

Y

P

X

CPX = {(p, x) ∈ P ×X : dX(x, p) = minq∈P dX(x, q)}

CPY = {(p, y) ∈ P × Y : ∃x ∈ X s.t. (p, x) ∈ CPX and (x, q) ∈ C}

p
x

y
→ distm(CPX) ≤ 2ε and distf (CPX) = cε

distm(CPY ) ≤ 2ε+ distm(C) and distf (CPY ) ≤ cε+ distf (C)

Stability of our Signatures



CPY is the composition of CPX and C as a correspondence

We assign each point of X to its nearest neighbor(s) in P

5

Theorem (Stability): Let (X, dX) and (Y, dY ) be two compact length spaces
with curvature bounded above, equipped with c-Lipschitz functions f : X →
R and g : Y → R. Then, for any correspondence C ∈ C(X,Y ) such that
distm(C) < 1

10
min{%(X), %(Y )}, d∞B (Dg f,Dg g) ≤ 19c distm(C)+distf (C).

Proof: by reduction to Scalar Fields Analysis from Point Cloud Data:

Given any positive ε < 1
10

min{%(X), %(Y )} − distm(C),

• take a finite ε-sample P of X (P ⊆ X)

• equip it with the induced metric dP = dX |P×P

• equip it with the restriction h = f |P

Y

P

X

CPX = {(p, x) ∈ P ×X : dX(x, p) = minq∈P dX(x, q)}

CPY = {(p, y) ∈ P × Y : ∃x ∈ X s.t. (p, x) ∈ CPX and (x, q) ∈ C}

p
x

y
→ distm(CPX) ≤ 2ε and distf (CPX) = cε

distm(CPY ) ≤ 2ε+ distm(C) and distf (CPY ) ≤ cε+ distf (C)

→ goal: approximate persistence diagram from GH-close finite metric space

Stability of our Signatures



5

Theorem (Stability): Let (X, dX) and (Y, dY ) be two compact length spaces
with curvature bounded above, equipped with c-Lipschitz functions f : X →
R and g : Y → R. Then, for any correspondence C ∈ C(X,Y ) such that
distm(C) < 1

10
min{%(X), %(Y )}, d∞B (Dg f,Dg g) ≤ 19c distm(C)+distf (C).

Proof: by reduction to Scalar Fields Analysis from Point Cloud Data:

X, dX , f

P,dP , h

CPX

Stability of our Signatures
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Theorem (Stability): Let (X, dX) and (Y, dY ) be two compact length spaces
with curvature bounded above, equipped with c-Lipschitz functions f : X →
R and g : Y → R. Then, for any correspondence C ∈ C(X,Y ) such that
distm(C) < 1

10
min{%(X), %(Y )}, d∞B (Dg f,Dg g) ≤ 19c distm(C)+distf (C).

Proof: by reduction to Scalar Fields Analysis from Point Cloud Data:

X, dX , f

P,dP , h

CPX

Let φ : P → X be such that (p, φ(p)) ∈ CPX ∀p ∈ P

φ P ′

Stability of our Signatures



complete length spaces have the property of either being reduced to a point (an easy special case) or having infinite neighborhoods around each of their points, because the points are pairwise connected by shortest paths

5

Theorem (Stability): Let (X, dX) and (Y, dY ) be two compact length spaces
with curvature bounded above, equipped with c-Lipschitz functions f : X →
R and g : Y → R. Then, for any correspondence C ∈ C(X,Y ) such that
distm(C) < 1

10
min{%(X), %(Y )}, d∞B (Dg f,Dg g) ≤ 19c distm(C)+distf (C).

Proof: by reduction to Scalar Fields Analysis from Point Cloud Data:

X, dX , f

P,dP , h

CPX

Let φ : P → X be such that (p, φ(p)) ∈ CPX ∀p ∈ P

φ

Assume wlog that φ is injective and let ψ : X → P be a left inverse

ψ

P ′

Stability of our Signatures



once we have a left inverse map, we can equip P with the pullbacks of dP and h by that map

complete length spaces have the property of either being reduced to a point (an easy special case) or having infinite neighborhoods around each of their points, because the points are pairwise connected by shortest paths

5

Theorem (Stability): Let (X, dX) and (Y, dY ) be two compact length spaces
with curvature bounded above, equipped with c-Lipschitz functions f : X →
R and g : Y → R. Then, for any correspondence C ∈ C(X,Y ) such that
distm(C) < 1

10
min{%(X), %(Y )}, d∞B (Dg f,Dg g) ≤ 19c distm(C)+distf (C).

Proof: by reduction to Scalar Fields Analysis from Point Cloud Data:

X, dX , f

P,dP , h

CPX

Let φ : P → X be such that (p, φ(p)) ∈ CPX ∀p ∈ P

φ , dP ′ , h′

Assume wlog that φ is injective and let ψ : X → P be a left inverse

ψ

Equip P ′ = φ(P ) with dP ′ = dP (ψ(·), ψ(·)) and h′ = h ◦ ψ

‖h′ − f |P ′‖∞ ≤ distf (CPX) and ‖dP ′ − dX |P ′×P ′‖∞ ≤ distm(CPX)

→ dH(P ′, X) ≤ distm(CPX)

P ′

Stability of our Signatures



once we have a left inverse map, we can equip P with the pullbacks of dP and h by that map

complete length spaces have the property of either being reduced to a point (an easy special case) or having infinite neighborhoods around each of their points, because the points are pairwise connected by shortest paths

5

Theorem (Stability): Let (X, dX) and (Y, dY ) be two compact length spaces
with curvature bounded above, equipped with c-Lipschitz functions f : X →
R and g : Y → R. Then, for any correspondence C ∈ C(X,Y ) such that
distm(C) < 1

10
min{%(X), %(Y )}, d∞B (Dg f,Dg g) ≤ 19c distm(C)+distf (C).

Proof: by reduction to Scalar Fields Analysis from Point Cloud Data:

X, dX , f

P,dP , h

CPX

Let φ : P → X be such that (p, φ(p)) ∈ CPX ∀p ∈ P

φ , dP ′ , h′

Assume wlog that φ is injective and let ψ : X → P be a left inverse

ψ

Equip P ′ = φ(P ) with dP ′ = dP (ψ(·), ψ(·)) and h′ = h ◦ ψ

‖h′ − f |P ′‖∞ ≤ distf (CPX) and ‖dP ′ − dX |P ′×P ′‖∞ ≤ distm(CPX)

→ dH(P ′, X) ≤ distm(CPX)

P ′

scenario considered in [CGOS’11]

�

Stability of our Signatures
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In practice, the signatures can only be approximated:
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when a triangulation of the space X is given:•

- replace f by its PL interpolation f̂ over the triangulation

- compute Dg f̂

- d∞B (Dg f, Dg f̂) is controlled by the stability theorem for PDs [CEH’05]

In practice, the signatures can only be approximated:



Computing our Signatures

6

when a triangulation of the space X is given:•

• when a finite approximation (P,dP , g) of (X, dX , f) is given:

- choose a neighborhood parameter δ > 0

- build the filtrations {Rδ(g−1((−∞, α])}α∈R and {R3δ(g
−1((−∞, α])}α∈R

- replace f by its PL interpolation f̂ over the triangulation

- compute Dg f̂

- compute the PD of the image persistence module induced by inclusions:

{ImH∗(Rδ(g
−1((−∞, α]))→ H∗(R3δ(g

−1((−∞, α]))}α∈R

- d∞B (Dg f, Dg f̂) is controlled by the stability theorem for PDs [CEH’05]

- bottleneck distance to Dg f is controlled by the results in [CGOS’11]

In practice, the signatures can only be approximated:
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- input: shapes from the TOSCA database, in mesh form

- select a few base points by hand on each shape

- approximate geodesic distances to base points using the 1-skeleton graph

- use the PDs of the PL interpolations over the meshes as signatures
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note that blue and green are not contiguous after MDS, however they are in signatures space because they are on the shape and the mapping to signatures space is Lipschitz continuous

Some Experimental Results
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mapping to R3 via MDS

k-means in R3
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mapping to R3 via MDS

k-means in R3
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20.322 107.945 71.9286 102.34 130.602 189.146
85.3632 21.872 67.7957 67.7957 43.098 93.697
54.843 69.1745 21.609 45.2831 73.5451 132.089

90.0162 69.1745 29.3636 15.327 35.5291 89.044
104.753 69.1745 45.1231 26.101 23.927 74.307
172.427 74.568 110.585 81.213 52.951 15.161
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2
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3
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4

4
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5

5

5
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6

6
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• Remote analysis of the distance to a compact set:

(X, dX)

K

(P,dP )

C
Q

Idea: approximate Dg dX(·,K) by the diagram of the filtration of
Rδ(P,dP ) ↪→ R3δ(P,dP ) defined by dP (·, Q).



Current / Future Directions
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• Remote analysis of the distance to a compact set:

• Upper bounds on the Gromov-Hausdorff distance:

→ by picking up sufficiently many functions (e.g. distances to all points),
can one obtain a constant-factor approximation of the GH-distance?



This would then enable us to state the stability of our signatures everywhere in the neighborhood of a given metric space. However, we know it is not true (cf. the counter-example with the circle and segment), so this means that the construction of the signatures has to change. → use Rips complexes? This requires to define their diagrams when the spaces are infinite (cf. Fred’s talk).

Current / Future Directions

8

• Remote analysis of the distance to a compact set:

• Relaxation of the hypotheses of the stability theorem:

→ remove the assumption that dGH(X,Y ) < 1
20
%(Y )

• Upper bounds on the Gromov-Hausdorff distance:



Current / Future Directions

8

• Remote analysis of the distance to a compact set:

• Relaxation of the hypotheses of the stability theorem:

• Upper bounds on the Gromov-Hausdorff distance:

Thank You


