Towards the understanding of homological persistence of maps Research in progress - joint work with. H. Edelsbrunner

Workshop on Computational Topology The Fields Institute, Toronto, 10th November 2011

Marian Mrozek, Uniwersytet Jagielloński, Kraków

- ullet $X\subset \mathbb{R}^d$ a space
- ullet f:X o X continuous self map

- $ullet X\subset \mathbb{R}^d$ a space
- $ullet f: X \to X$ continuous self map
- ullet X is known only via a finite sampling set $A\subset \mathbb{R}^d$ (point cloud)
- f known only via a map $\alpha:A\to A$ (point cloud map)

- $ullet X\subset \mathbb{R}^d$ a space
- $ullet f: X \to X$ continuous self map
- ullet X is known only via a finite sampling set $A\subset \mathbb{R}^d$ (point cloud)
- f known only via a map $\alpha:A\to A$ (point cloud map)

Goal:

ullet for today: understanding the persistence of the map induced by f in homology

- $ullet X\subset \mathbb{R}^d$ a space
- ullet f: X o X continuous self map
- \bullet X is known only via a finite sampling set $A \subset \mathbb{R}^d$ (point cloud)
- f known only via a map $\alpha: A \to A$ (point cloud map)

Goal:

- ullet for today: understanding the persistence of the map induced by f in homology
- ullet ultimate: retrieving the information about the dynamics of f from A and α in the spirit of homological persistence
- in particular: studying the dynamics of a time series governed by a physical process

Example 1₃

- ullet Take $S^1\subset \mathbb{C}$ as the space X.
- The map

$$f: S^1 \ni z \mapsto z^2 \in S^1$$

• Point cloud

$$A_K := \{ P_k := e^{2k\pi i/K} \mid k = 0, 1, \dots K - 1 \}$$

Point cloud map

$$\alpha: A_K \ni P_k \mapsto P_{2k \bmod K} \in A_K$$

Example 1 - Vietoris-Rips filtration 4

 $\epsilon_1 \approx 0.765367, \epsilon_2 \approx 1.41421, \epsilon_3 \approx 1.84776, \epsilon_4 = 2.0$

- $\{P_0\}$ $[0, \epsilon_4]$
- $\{P_0P_1, P_1P_2, P_2P_3, P_3P_4, P_4P_5, P_5P_6, P_6P_7, P_7P_0\}$ $[\epsilon_1, \epsilon_4)$

• Can we use α to tell what H_*f does to $H_*(S^1)$?

- Can we use α to tell what H_*f does to $H_*(S^1)$?
- What can persist in a linear map?

- Can we use α to tell what H_*f does to $H_*(S^1)$?
- What can persist in a linear map?
- A linear map $L:V\to V$ is conjugate (isomorphic) to $L':V'\to V'$ if there exists an isomorphism $\theta:V\to V'$ such that $\theta L=L'\theta$.

- Can we use α to tell what H_*f does to $H_*(S^1)$?
- What can persist in a linear map?
- A linear map $L:V\to V$ is conjugate (isomorphic) to $L':V'\to V'$ if there exists an isomorphism $\theta:V\to V'$ such that $\theta L=L'\theta$.

A good starting point is the persistence of eigenspaces.

Eigenvalues and eigenspaces 6

- $\lambda \in F$ is an eigenvalue of L if the λ -eigenspace of L $E(\lambda, L) := \{ v \in V \mid Lv = \lambda v \} \neq \{0\}.$
- ullet The spectrum $\sigma(L)$ is the set of all eigenvalues of L

Eigenvalues and eigenspaces 6

- $\lambda \in F$ is an eigenvalue of L if the λ -eigenspace of L $E(\lambda, L) := \{ v \in V \mid Lv = \lambda v \} \neq \{0\}.$
- ullet The spectrum $\sigma(L)$ is the set of all eigenvalues of L

If two automorphisms $L_i:V_i\to V_i$ are conjugate, then $\sigma(L_1)=\sigma(L_2)$ and the respective eigenspaces are isomorphic.

Questions 7

To get the map induced in homology we need a simplicial map

Questions 7

To get the map induced in homology we need a simplicial map

- ullet Is the point cloud map lpha simplicial?
- How do we define persistence of eigenspaces?

Górniewicz approach to computing homology of mv maps 14

- ullet f:X o X a continuous map
- Then the diagram

commutes.

ullet Since $p_{|G(f)}$ is a homeomorphism, we have

$$f = q_{|G(f)} \circ p_{|G(f)}^{-1}.$$

Example 1 - graph of the point cloud map α 15

The graph $G(\alpha)$ of the point cloud map α forms a point cloud in $X\times X\subset \mathbb{R}^{2d}$.

Example 1 - graph of the point cloud map α 15

The graph $G(\alpha)$ of the point cloud map α forms a point cloud in $X \times X \subset \mathbb{R}^{2d}$.

Proposition. Projections

$$p_{|G(\alpha)}, q_{|G(\alpha)} : G(\alpha) \to A$$

are simplicial with respect to Vietoris-Rips complexes $\mathcal{R}_{\epsilon}(G(\alpha))$ and $\mathcal{R}_{\epsilon}(A)$.

Example 1 - graph of the point cloud map α 16

Example 1 - Vietoris-Rips filtration of the graph 17

- p_* is not invertible at ϵ_1 and ϵ_3
- $q_*p_*^{-1}$ has one 1-eigenvector in dimension zero at ϵ_0 , ϵ_2 and ϵ_4
- \bullet $q_*p_*^{-1}$ has one 2-eigenvector in dimension one at ϵ_2

- \bullet Γ , V finitely dimensional vector spaces over F.
- ullet $p,q:\Gamma o V$ linear maps

- \bullet Γ, V finitely dimensional vector spaces over F.
- $ullet p,q:\Gamma o V$ linear maps
- ullet If p is an isomorphism and

$$qp^{-1}v = \lambda v$$

for some $0 \neq v \in V$

- \bullet Γ, V finitely dimensional vector spaces over F.
- ullet $p,q:\Gamma o V$ linear maps
- \bullet If p is an isomorphism and

$$qp^{-1}v = \lambda v$$

for some $0 \neq v \in V$, then

$$qw = \lambda pw$$

for some $w \in \Gamma$ such that $pw \neq 0$.

- \bullet Γ, V finitely dimensional vector spaces over F.
- $ullet p,q:\Gamma o V$ linear maps
- \bullet If p is an isomorphism and

$$qp^{-1}v = \lambda v$$

for some $0 \neq v \in V$, then

$$qw = \lambda pw$$

for some $w \in \Gamma$ such that $pw \neq 0$.

• For $\lambda \in F$ set

$$\bar{E}(\lambda, p, q) := \{ w \in \Gamma \mid qw = \lambda pw \}.$$

and define the λ -eigenspace of (p,q) by

$$E(\lambda, p, q) := \bar{E}(\lambda, p, q) / \ker q \cap \bar{E}(\lambda, p, q).$$

- \bullet Γ, V finitely dimensional vector spaces over F.
- $ullet p,q:\Gamma o V$ linear maps
- ullet If p is an isomorphism and

$$qp^{-1}v = \lambda v$$

for some $0 \neq v \in V$, then

$$qw = \lambda pw$$

for some $w \in \Gamma$ such that $pw \neq 0$.

• For $\lambda \in F$ set

$$\bar{E}(\lambda, p, q) := \{ w \in \Gamma \mid qw = \lambda pw \}.$$

and define the λ -eigenspace of (p,q) by

$$E(\lambda, p, q) := \bar{E}(\lambda, p, q) / \ker q \cap \bar{E}(\lambda, p, q).$$

ullet λ is an eigenvalue of the pair (p,q) if $E(\lambda,p,q) \neq \{0\}$.

Example 1 - Vietoris-Rips filtration of the graph 19

- ullet p_* is not invertible at ϵ_1 and ϵ_3
- ullet (p_*,q_*) has one 1-eigenvector in dimension zero which perists in $[\epsilon_0,\epsilon_4]$
- ullet (p_*,q_*) has one 2-eigenvector in dimension one which perists in $[\epsilon_2,\epsilon_4)$

ullet $\mathcal{X}:=(X^i,\xi^i)_{i\in\mathbb{Z}}$ - a tower of vector spaces if $X^i\in\mathcal{V}$ and $\xi^i:X^i\to X^{i+1}$ is linear.

- ullet $\mathcal{X}:=(X^i,\xi^i)_{i\in\mathbb{Z}}$ a tower of vector spaces if $X^i\in\mathcal{V}$ and $\xi^i:X^i\to X^{i+1}$ is linear.
- $\bullet \ \varphi: (X^i, \xi^i) \to (\bar{X}^i, \bar{\xi}^i) \ \text{- a morphism of towers if} \ \varphi^i: X^i \to \bar{X}^i \ \text{is linear and}$ and

$$\bar{\xi}^i \varphi^i = \varphi^{i+1} \xi^i$$

- ullet $\mathcal{X}:=(X^i,\xi^i)_{i\in\mathbb{Z}}$ a tower of vector spaces if $X^i\in\mathcal{V}$ and $\xi^i:X^i\to X^{i+1}$ is linear.
- $\bullet \ \varphi: (X^i, \xi^i) \to (\bar{X}^i, \bar{\xi}^i) \ \text{- a morphism of towers if} \ \varphi^i: X^i \to \bar{X}^i \ \text{is linear and}$ and

$$\bar{\xi}^i \varphi^i = \varphi^{i+1} \xi^i$$

• composed maps:

$$\xi^{i,0} := \mathrm{id}_{X^i},$$

 $\xi^{i,p} := \xi^{i+p-1} \circ \xi^{i,p-1} : X^i \to X^{i+p},$

Persistence in towers of vector spaces 20

- ullet $\mathcal{X}:=(X^i,\xi^i)_{i\in\mathbb{Z}}$ a tower of vector spaces if $X^i\in\mathcal{V}$ and $\xi^i:X^i\to X^{i+1}$ is linear.
- $\bullet \ \varphi: (X^i, \xi^i) \to (\bar{X}^i, \bar{\xi}^i) \ \text{- a morphism of towers if} \ \varphi^i: X^i \to \bar{X}^i \ \text{is linear and}$ and

$$\bar{\xi}^i \varphi^i = \varphi^{i+1} \xi^i$$

• composed maps:

$$\xi^{i,0} := \mathrm{id}_{X^i},$$
 $\xi^{i,p} := \xi^{i+p-1} \circ \xi^{i,p-1} : X^i \to X^{i+p},$

- ullet $X^{i,p}:=\operatorname{im} \xi^{i,p}$ (i,p)-persistent vector space of $\mathcal{X}:=(X^i,\xi^i)_{i\in\mathbb{N}_0}$.
- ullet $eta^{i,p}(\mathcal{X}):=\dim X^{i,p}$ the (i,p)-persistent Betti number of $\mathcal{X}.$

Persistent bases 21

- ullet $\mathcal{X}=(X^i,\xi^i)$ tower of vector spaces over F.
- \bullet (E^i, K^i) is a persistent basis of $\mathcal X$ if
 - (i) $E^i \cup K^i$ is a basis of X^i ,
 - (ii) ξ^i is zero on K^i and nonzero on E^i ,
- (iii) ξ^i maps injectively E^i into $E^{i+1} \cup K^{i+1}$.

Persistent bases 21

- ullet $\mathcal{X}=(X^i,\xi^i)$ tower of vector spaces over F.
- \bullet (E^i, K^i) is a persistent basis of $\mathcal X$ if
 - (i) $E^i \cup K^i$ is a basis of X^i ,
 - (ii) ξ^i is zero on K^i and nonzero on E^i ,
- (iii) ξ^i maps injectively E^i into $E^{i+1} \cup K^{i+1}$.

Theorem. Any finitely generated tower of vector spaces admits a persistent basis.

Persistent intervals 22

- $(x^j)_{j=i,i+1,\dots,i+p}$ an (i,p)-persistent tower of vectors if $x^j \in X^j$, $\xi^j(x^j) = x^{j+1}$, $x^j \neq 0$ for $j=i,i+1,\dots,i+p-1$, $x^i \notin \operatorname{im} \xi^{i-1}$ and $x^{i+p} = 0$.
- ullet [i,i+p) the corresponding persistent interval

Persistent intervals 22

- $(x^j)_{j=i,i+1,\ldots,i+p}$ an (i,p)-persistent tower of vectors if $x^j \in X^j$, $\xi^j(x^j) = x^{j+1}$, $x^j \neq 0$ for $j=i,i+1,\ldots,i+p-1$, $x^i \notin \operatorname{im} \xi^{i-1}$ and $x^{i+p}=0$.
- ullet [i,i+p) the corresponding persistent interval

Proposition. Let (E^i, K^i) be a persistent basis of \mathcal{X} . Let $L^{i,p}$ denote the cardinality of the set of (i,p)-persistent towers of vectors whose ith nonzero elements belong to $E_i \cup K_i$. Then

$$L^{i,p} = \beta^{i,p-1} - \beta^{i-1,p} - \beta^{i,p} + \beta^{i-1,p+1}.$$

Derived towers 23

- ullet $\mathcal{X}=(X^i,\xi^i)$ and $\mathcal{Y}=(Y^i,\upsilon^i)$ towers
- ullet $\mathcal Y$ is a subtower of $\mathcal X$ if $Y^i\subset X^i$ and $\upsilon^i=\xi^i_{Y^i}$.
- Quotient tower:

$$\mathcal{X}/\mathcal{Y} := (X_i/Y_i, \bar{\xi}^i)$$

- $ullet \varphi: \mathcal{X} o \mathcal{Y}$ a morphism of towers
- ullet $(\ker arphi^i, \xi^i_{\ker arphi^i})$ tower of kernels
- $\bullet (\operatorname{im} \varphi^i, \upsilon^i_{\operatorname{im} \varphi^i})$ tower of images
- towers of cokernels, coimages, generalized kernels, generalized images ...

Towers of eigenspaces 24

Proposition. Let $\varphi: \mathcal{X} \to \mathcal{X}$ be a morphism of towers.

Then for any $\lambda \in F$

$$\xi^i(E(\lambda,\varphi^i)) \subset E(\lambda,\varphi^{i+1}).$$

In particular, $(E(\lambda, \varphi^i), \xi^i_{|E(\lambda, \varphi^i)})$ is a tower.

Proposition. Let \mathcal{X}, \mathcal{Y} be two towers of modules and φ, ψ : $\mathcal{X} \to \mathcal{Y}$ be morphisms of towers. Then for any $\lambda \in F$

$$\xi^{i}(E(\lambda,\varphi^{i},\psi^{i})) \subset E(\lambda,\varphi^{i+1},\psi^{i+1}).$$

Towers of eigenspaces 24

Proposition. Let $\varphi: \mathcal{X} \to \mathcal{X}$ be a morphism of towers.

Then for any $\lambda \in F$

$$\xi^i(E(\lambda,\varphi^i)) \subset E(\lambda,\varphi^{i+1}).$$

In particular, $(E(\lambda, \varphi^i), \xi^i_{|E(\lambda, \varphi^i)})$ is a tower.

Proposition. Let \mathcal{X}, \mathcal{Y} be two towers of modules and φ, ψ : $\mathcal{X} \to \mathcal{Y}$ be morphisms of towers. Then for any $\lambda \in F$

$$\xi^{i}(E(\lambda,\varphi^{i},\psi^{i})) \subset E(\lambda,\varphi^{i+1},\psi^{i+1}).$$

• A matrix is a matching if all its entries are aither zero or one and each column and row has at most one nonzero entry.

- A matrix is a matching if all its entries are aither zero or one and each column and row has at most one nonzero entry.
- The pivot position of a vector in \mathbb{R}^d is the position of the first nonzero element of the vector if the vector is nonzero and infinity otherwise.

- A matrix is a matching if all its entries are aither zero or one and each column and row has at most one nonzero entry.
- The pivot position of a vector in \mathbb{R}^d is the position of the first nonzero element of the vector if the vector is nonzero and infinity otherwise.
- A matching is monotone if the pivot positions of the columns are increasing.

- A matrix is a matching if all its entries are aither zero or one and each column and row has at most one nonzero entry.
- The pivot position of a vector in \mathbb{R}^d is the position of the first nonzero element of the vector if the vector is nonzero and infinity otherwise.
- A matching is monotone if the pivot positions of the columns are increasing.

$[1 \ 0 \ 0 \ 0 \ 0]$	$[1 \ 0 \ 0 \ 0 \ 0]$
0 0 1 0 0	$ 0 \ 1 \ 0 \ 0 \ 0 $
0 0 0 0 0	$ 0 \ 0 \ 0 \ 0 \ 0 $
0 1 0 0 0	$ 0 \ 0 \ 1 \ 0 \ 0 $
0 0 0 0 0	$ 0 \ 0 \ 0 \ 0 \ 0 $
$[0 \ 0 \ 0 \ 0 \ 1]$	$[0\ 0\ 0\ 1\ 0]$
$(1,4,2,\infty,6)$	$(1,2,4,6,\infty)$

Input: $A_1, A_2, \ldots A_n$ - matrices of $\xi_1, \xi_2, \ldots \xi_n$

Input: $A_1, A_2, \ldots A_n$ - matrices of $\xi_1, \xi_2, \ldots \xi_n$

Input: $A_1, A_2, \dots A_n$ - matrices of $\xi_1, \xi_2, \dots \xi_n$

To find persistent bases it is enough to find bases in which all matirces A_i are monotone matchings.

(1) Perform Smith diagonalization of A_n (changes bases in X_n and X_{n+1})

Input: $A_1, A_2, \dots A_n$ - matrices of $\xi_1, \xi_2, \dots \xi_n$

- (1) Perform Smith diagonalization of A_n (changes bases in X_n and X_{n+1})
- (2) For i = n 1 down to 1

Input: $A_1, A_2, \dots A_n$ - matrices of $\xi_1, \xi_2, \dots \xi_n$

- (1) Perform Smith diagonalization of A_n (changes bases in X_n and X_{n+1})
- (2) For i = n 1 down to 1
 - (a) Bring A_i to column echelon form (changes the base in X_i but not in X_{i+1})

Input: $A_1, A_2, \dots A_n$ - matrices of $\xi_1, \xi_2, \dots \xi_n$

- (1) Perform Smith diagonalization of A_n (changes bases in X_n and X_{n+1})
- (2) For i = n 1 down to 1
 - (a) Bring A_i to column echelon form (changes the base in X_i but not in X_{i+1})
 - (b) Zero out the sub-pivot elements of nonzero columns by row operations followed by respective operations on the bases in X_j for all j>i (changes the bases but preserves monotone matchings)

Input: $A_1, A_2, \ldots A_n$ - matrices of $\xi_1, \xi_2, \ldots \xi_n$

To find persistent bases it is enough to find bases in which all matirces A_i are monotone matchings.

- (1) Perform Smith diagonalization of A_n (changes bases in X_n and X_{n+1})
- (2) For i = n 1 down to 1
 - (a) Bring A_i to column echelon form (changes the base in X_i but not in X_{i+1})
 - (b) Zero out the sub-pivot elements of nonzero columns by row operations followed by respective operations on the bases in X_j for all j>i (changes the bases but preserves monotone matchings)

Step 2b may be skipped if only persistence intervals but not the corresponding towers of vectors are needed.

Graph complexes and graph filtrations. 27

- ullet $\alpha:A o A$ the point cloud data map
- ullet For $U\subset A$ set

$$U^{\star} := \{ (v, \alpha(v)) \mid v \in U \} \subset A \times A.$$

Graph complexes and graph filtrations. 27

- $ullet \alpha:A o A$ the point cloud data map
- ullet For $U\subset A$ set

$$U^{\star} := \{ (v, \alpha(v)) \mid v \in U \} \subset A \times A.$$

ullet Let $\mathcal X$ be an abstract simplicial complex with vertices $\mathcal X_0\subset A$

Graph complexes and graph filtrations. 27

- $\bullet \alpha : A \to A$ the point cloud data map
- \bullet For $U \subset A$ set

$$U^{\star} := \{ (v, \alpha(v)) \mid v \in U \} \subset A \times A.$$

• Let \mathcal{X} be an abstract simplicial complex with vertices $\mathcal{X}_0 \subset A$

Proposition.

- The family $\mathcal{X}^* := \{ \sigma^* \mid \sigma \in \mathcal{X} \text{ and } \alpha(\sigma) \in \mathcal{X} \}$ is a simplicial complex with vertices in $A \times A$ (graph complex).
- The maps

$$p: \mathcal{X}_0^{\star} \ni (x, \alpha(x)) \mapsto x \in \mathcal{X}_0,$$
$$q: \mathcal{X}_0^{\star} \ni (x, \alpha(x)) \mapsto \alpha(x) \in \mathcal{X}_0,$$

are simplicial.

• If $\mathcal{X} = (\mathcal{X}^1, \mathcal{X}^2, \dots, \mathcal{X}^n)$ is a filtration of simplicial complexes in A, then $\mathcal{X}^{\star} := (\mathcal{X}^{1\star}, \mathcal{X}^{2\star}, \dots, \mathcal{X}^{n\star})$ is a filtration of simplicial complexes with vertices in $A \times A$ (graph filtration).

Example 2 - a filtration 28

Example 2 - graph filtration with projections 29

Example 2 - graph filtration with projections 30

Example 2 - graph filtration with projections 31

Example 2 - persistence of eigenvalues 32

```
• \lambda = 1

- \{P_0^{\star}\} - [1, 11)

- \{P_1^{\star}\} - [2, 3)

- \{P_3^{\star}\} - [2, 3)

- \{P_5^{\star}\} - [2, 3)

- \{P_7^{\star}\} - [2, 3)

• \lambda = 2

- \{P_0P_1^{\star}, P_1P_2^{\star}, P_2P_3^{\star}, P_3P_4^{\star}, P_4P_5^{\star}, P_5P_6^{\star}, P_6P_7^{\star}, P_7P_0^{\star}\} - [6, 11)
```

Example 3₃₃

• Take the map

$$S^1 \ni z \mapsto -z \in S^1$$
.

ullet For K even we get the map

$$\alpha: A_K \ni P_i \mapsto P_{i+K/2} \in A_K.$$

Example 3 - filtration 34

Example 3 - graph filtration with projections 35

Example 3 - graph filtration with projections 36

Example 3 - persistence intervals 37

```
• \lambda = 1

- [P_1^{\star} + P_6^{\star}] - interval [1, 8)

- [P_4^{\star} + P_9^{\star}] - interval [2, 3)

- [P_0^{\star} + P_5^{\star}] - interval [2, 3)

- [P_1P_2^{\star} + P_2P_3^{\star} + P_3P_1^{\star} + P_6P_7^{\star} + P_7P_8^{\star} + P_8P_6^{\star}] - interval [3, 6)

- [\Sigma_{i=0}^9 P_i P_{i+1}^{\star}] - interval [4, 8)

- [P_1P_3^{\star} + P_3P_6^{\star} + P_6P_8^{\star} + P_8P_1^{\star}] - interval [5, 8)

- [\Sigma_{i=3}^6 P_i P_{i+1}^{\star} + \Sigma_{i=8}^{11} P_i P_{i+1}^{\star}] - interval [5, 7)
```

Example 4₃₈

• Take again the map

$$S^1 \ni z \mapsto z^2 \in S^1$$
.

and K := 12.

Example 4 - graph filtration with projections 40

Example 4 - graph filtration with projections 41

Example 4 - graph filtration with projections 42

Example 4 - persistence intervals 43

```
\bullet \lambda = 1
    -[P_0^{\star}] – interval [1,9)
    -[P_{4}^{\star}+P_{8}^{\star}] - interval [4, 5)
    -[P_1^{\star}] - interval [2, 3)
    -[P_5^{\star}] – interval [3, 4)
    -[P_{11}^{\star}] - interval [3, 4)
     -[P_0^{\star}] – interval [3,4)
     -[P_{10}^{\star}] - interval [3, 5)
    -[P_{\aleph}^{\star}] – interval [4,5)
    -[P_{10}P_{11}^{\star} + P_{11}P_{0}^{\star} + \Sigma_{i=0}^{8} P_{i}P_{i+2}^{\star}] - \text{interval} [7, 9)
\bullet \lambda = 2
    -\left[\sum_{i=0}^{11} P_i P_{i+1}^{\star}\right] - \text{interval}\left[6, 9\right]
\bullet \lambda = -1
    -\left[\sum_{i=0}^{8} P_{i} P_{i+4}^{\star}\right] - interval [8, 9)
```

Future plans 44

- Implementing the algorithm and experimenting with large data
- Persistence of Jordan form
- A convergence theorem?
- Persistence of topological invariants of dynamical systems: Conley index, fixed point index, connection matrices ?
- Applications to time series dynamics

References 45

- G. Carlsson, V. de Silva, Zigzag persistence, preprint (2009).
- D. Cohen-Steiner, H. Edelsbrunner, J. Harer and D. Morozov, Persistent homology for kernels, images, and cokernels, *Proc.* 20th Ann. ACM-SIAM Sympos. Discrete Alg. (2009).
- H. Edelsbrunner, D. Letscher, A. Zomorodian, Topological Persistence and Simplification, *Discrete and Computational Geometry* (2002).
- L. Górniewicz, Homological Methods in Fixed Point Theory of Multi-Valued Maps, *Dissertationes Math.* (1976).
- K. Mischaikow, M. Mrozek, P. Pilarczyk, Graph Approach to the Computation of the Homology of Continuous Maps, *Foundations of Computational Mathematics* (2005).
- A. Zomorodian, G. Carlsson, Computing Persistent Homology, Discrete and Computational Geometry (2005).

Thank you for your attention!