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Goal 2

•X ⊂ Rd - a space
• f : X → X - continuous self map
•X is known only via a finite sampling set A ⊂ Rd (point cloud)
• f known only via a map α : A→ A (point cloud map)

Goal:
• for today: understanding the persistence of the map induced

by f in homology
• ultimate: retrieving the information about the dynamics of
f from A and α in the spirit of homological persistence
• in particular: studying the dynamics of a time series gover-

ned by a physical process



Example 1 3

• Take S1 ⊂ C as the space X .
• The map

f : S1 3 z 7→ z2 ∈ S1
• Point cloud

AK := {Pk := e2kπi/K | k = 0, 1, . . . K − 1 }
• Point cloud map

α : AK 3 Pk 7→ P2kmodK ∈ AK



Example 1 - Vietoris-Rips filtration 4

ε1 ≈ 0.765367, ε2 ≈ 1.41421, ε3 ≈ 1.84776, ε4 = 2.0
• {P0} - [0, ε4]
• {P0P1, P1P2, P2P3, P3P4, P4P5, P5P6, P6P7, P7P0} - [ε1, ε4)
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Persistence of a map induced in homology? 5

• Can we use α to tell what H∗f does to H∗(S1)?
•What can persist in a linear map?

• A linear map L : V → V is conjugate (isomorphic) to L′ : V ′ → V ′ if
there exists an isomorphism θ : V → V ′ such that θL = L′θ.

A good starting point is the persistence of eigenspaces.



Eigenvalues and eigenspaces 6

• λ ∈ F is an eigenvalue of L if the λ-eigenspace of L
E(λ, L) := { v ∈ V | Lv = λv } 6= {0}.

• The spectrum σ(L) is the set of all eigenvalues of L



Eigenvalues and eigenspaces 6

• λ ∈ F is an eigenvalue of L if the λ-eigenspace of L
E(λ, L) := { v ∈ V | Lv = λv } 6= {0}.

• The spectrum σ(L) is the set of all eigenvalues of L

If two automorphisms Li : Vi → Vi are conjugate, then
σ(L1) = σ(L2) and the respective eigenspaces are isomorphic.
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To get the map induced in homology we need a simplicial map

• Is the point cloud map α simplicial?
• How do we define persistence of eigenspaces?
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Górniewicz approach to computing homology of mv maps 14

• f : X → X - a continuous map
• Then the diagram

G(f )

X X

�
�

�
�
�	

p|G(f) @
@
@
@
@R

q|G(f)

-
f

commutes.
• Since p|G(f) is a homeomorphism, we have

f = q|G(f) ◦ p−1|G(f).
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The graph G(α) of the point cloud map α forms a point cloud
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Example 1 - graph of the point cloud map α 15

The graph G(α) of the point cloud map α forms a point cloud
in X ×X ⊂ R2d.

Proposition. Projections
p|G(α), q|G(α) : G(α)→ A

are simplicial with respect to Vietoris-Rips complexes Rε(G(α))
and Rε(A).
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Example 1 - Vietoris-Rips filtration of the graph 17

• p∗ is not invertible at ε1 and ε3
• q∗p−1∗ has one 1-eigenvector in dimension zero at ε0, ε2 and ε4
• q∗p−1∗ has one 2-eigenvector in dimension one at ε2
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Eigenvalues and eigenspaces of pairs of linear maps. 18

• Γ, V - finitely dimensional vector spaces over F .
• p, q : Γ→ V - linear maps
• If p is an isomorphism and

qp−1v = λv

for some 0 6= v ∈ V , then
qw = λpw

for some w ∈ Γ such that pw 6= 0.
• For λ ∈ F set

Ē(λ, p, q) := {w ∈ Γ | qw = λpw }.
and define the λ-eigenspace of (p, q) by

E(λ, p, q) := Ē(λ, p, q)/ ker q ∩ Ē(λ, p, q).
• λ is an eigenvalue of the pair (p, q) if E(λ, p, q) 6= {0}.



Example 1 - Vietoris-Rips filtration of the graph 19

• p∗ is not invertible at ε1 and ε3
• (p∗, q∗) has one 1-eigenvector in dimension zero which perists in [ε0, ε4]
• (p∗, q∗) has one 2-eigenvector in dimension one which perists in [ε2, ε4)
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• X := (X i, ξi)i∈Z - a tower of vector spaces if X i ∈ V and ξi : X i →
X i+1 is linear.
• ϕ : (X i, ξi)→ (X̄ i, ξ̄i) - a morphism of towers if ϕi : X i → X̄ i is linear

and
ξ̄iϕi = ϕi+1ξi

• composed maps:
ξi,0 := idXi,

ξi,p := ξi+p−1 ◦ ξi,p−1 : X i → X i+p,

•X i,p := im ξi,p - (i, p)-persistent vector space of X := (X i, ξi)i∈N0.
• βi,p(X ) := dimX i,p - the (i, p)-persistent Betti number of X .



Persistent bases 21

• X = (X i, ξi) - tower of vector spaces over F .
• (Ei, K i) is a persistent basis of X if

(i) Ei ∪K i is a basis of X i,
(ii) ξi is zero on K i and nonzero on Ei,

(iii) ξi maps injectively Ei into Ei+1 ∪K i+1.
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• X = (X i, ξi) - tower of vector spaces over F .
• (Ei, K i) is a persistent basis of X if

(i) Ei ∪K i is a basis of X i,
(ii) ξi is zero on K i and nonzero on Ei,

(iii) ξi maps injectively Ei into Ei+1 ∪K i+1.

Theorem. Any finitely generated tower of vector spaces
admits a persistent basis.



Persistent intervals 22

• (xj)j=i,i+1,...,i+p - an (i, p)-persistent tower of vectors if xj ∈ Xj,
ξj(xj) = xj+1, xj 6= 0 for j = i, i + 1, . . . , i + p − 1, xi 6∈ im ξi−1

and xi+p = 0.
• [i, i + p) - the corresponding persistent interval
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• (xj)j=i,i+1,...,i+p - an (i, p)-persistent tower of vectors if xj ∈ Xj,
ξj(xj) = xj+1, xj 6= 0 for j = i, i + 1, . . . , i + p − 1, xi 6∈ im ξi−1

and xi+p = 0.
• [i, i + p) - the corresponding persistent interval

Proposition. Let (Ei, K i) be a persistent basis of X . Let
Li,p denote the cardinality of the set of (i, p)-persistent towers
of vectors whose ith nonzero elements belong to Ei∪Ki. Then

Li,p = βi,p−1 − βi−1,p − βi,p + βi−1,p+1.



Derived towers 23

• X = (X i, ξi) and Y = (Y i, υi) - towers
• Y is a subtower of X if Y i ⊂ X i and υi = ξiY i.
• Quotient tower:

X/Y := (Xi/Yi, ξ̄
i)

• ϕ : X → Y - a morphism of towers
• (kerϕi, ξikerϕi) - tower of kernels
• (imϕi, υiimϕi) - tower of images
• towers of cokernels, coimages, generalized kernels, generalized images ...



Towers of eigenspaces 24

Proposition. Let ϕ : X → X be a morphism of towers.
Then for any λ ∈ F

ξi(E(λ, ϕi)) ⊂ E(λ, ϕi+1).

In particular, (E(λ, ϕi), ξi|E(λ,ϕi)) is a tower.

Proposition. Let X ,Y be two towers of modules and ϕ, ψ :
X → Y be morphisms of towers. Then for any λ ∈ F

ξi(E(λ, ϕi, ψi)) ⊂ E(λ, ϕi+1, ψi+1).
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Proposition. Let ϕ : X → X be a morphism of towers.
Then for any λ ∈ F

ξi(E(λ, ϕi)) ⊂ E(λ, ϕi+1).

In particular, (E(λ, ϕi), ξi|E(λ,ϕi)) is a tower.

Proposition. Let X ,Y be two towers of modules and ϕ, ψ :
X → Y be morphisms of towers. Then for any λ ∈ F

ξi(E(λ, ϕi, ψi)) ⊂ E(λ, ϕi+1, ψi+1).
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General persistence algorithm 25

• A matrix is a matching if all its entries are aither zero or one and each
column and row has at most one nonzero entry.
• The pivot position of a vector in Rd is the position of the first nonzero

element of the vector if the vector is nonzero and infinity otherwise.
• A matching is monotone if the pivot positions of the columns are

increasing.


1 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 1





1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 1 0


(1, 4, 2,∞, 6) (1, 2, 4, 6,∞)
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General persistence algorithm 26

Input: A1, A2, . . . An - matrices of ξ1, ξ2, . . . ξn

To find persistent bases it is enough to find bases in which all
matirces Ai are monotone matchings.

(1) Perform Smith diagonalization of An (changes bases in Xn and Xn+1)
(2) For i = n− 1 down to 1

(a) Bring Ai to column echelon form (changes the base in Xi but not in
Xi+1)

(b) Zero out the sub-pivot elements of nonzero columns by row operations
followed by respective operations on the bases in Xj for all j > i
(changes the bases but preserves monotone matchings)

Step 2b may be skipped if only persistence intervals but not
the corresponding towers of vectors are needed.
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Graph complexes and graph filtrations. 27

• α : A→ A - the point cloud data map
• For U ⊂ A set

U ? := { (v, α(v)) | v ∈ U } ⊂ A× A.
• Let X be an abstract simplicial complex with vertices X 0 ⊂ A

Proposition.
• The family X ? := {σ? | σ ∈ X and α(σ) ∈ X } is a sim-

plicial complex with vertices in A× A (graph complex).
• The maps

p : X ?
0 3 (x, α(x)) 7→ x ∈ X 0,

q : X ?
0 3 (x, α(x)) 7→ α(x) ∈ X 0,

are simplicial.
• If X = (X 1,X 2, . . . ,X n) is a filtration of simplicial com-

plexes in A, then X ? := (X 1?,X 2?, . . . ,X n?) is a filtration
of simplicial complexes with vertices in A × A (graph fil-
tration).
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Example 2 - persistence of eigenvalues 32

• λ = 1
– {P ?

0 } - [1, 11)
– {P ?

1 } - [2, 3)
– {P ?

3 } - [2, 3)
– {P ?

5 } - [2, 3)
– {P ?

7 } - [2, 3)
• λ = 2

– {P0P ?
1 , P1P

?
2 , P2P

?
3 , P3P

?
4 , P4P

?
5 , P5P

?
6 , P6P

?
7 , P7P

?
0 } - [6, 11)



Example 3 33

• Take the map
S1 3 z 7→ −z ∈ S1.

• For K even we get the map
α : AK 3 Pi 7→ Pi+K/2 ∈ AK.
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Example 3 - persistence intervals 37

• λ = 1
– [P ?

1 + P ?
6 ] – interval [1, 8)

– [P ?
4 + P ?

9 ] – interval [2, 3)
– [P ?

0 + P ?
5 ] – interval [2, 3)

– [P1P ?
2 + P2P

?
3 + P3P

?
1 + P6P

?
7 + P7P

?
8 + P8P

?
6 ] – interval [3, 6)

– [∑9i=0 PiP ?
i+1] – interval [4, 8)

– [P1P ?
3 + P3P

?
6 + P6P

?
8 + P8P

?
1 ] – interval [5, 8)

– [∑6i=3 PiP ?
i+1 + ∑11

i=8 PiP
?
i+1] – interval [5, 7)



Example 4 38

• Take again the map
S1 3 z 7→ z2 ∈ S1.

and K := 12.



Example 4 - filtration 39



Example 4 - graph filtration with projections 40



Example 4 - graph filtration with projections 41



Example 4 - graph filtration with projections 42



Example 4 - persistence intervals 43

• λ = 1
– [P ?

0 ] – interval [1, 9)
– [P ?

4 + P ?
8 ] – interval [4, 5)

– [P ?
1 ] – interval [2, 3)

– [P ?
5 ] – interval [3, 4)

– [P ?
11] – interval [3, 4)

– [P ?
9 ] – interval [3, 4)

– [P ?
10] – interval [3, 5)

– [P ?
8 ] – interval [4, 5)

– [P10P ?
11 + P11P

?
0 + ∑8

i=0 PiP
?
i+2] – interval [7, 9)

• λ = 2
– [∑11i=0 PiP ?

i+1] – interval [6, 9)
• λ = −1

– [∑8i=0 PiP ?
i+4] – interval [8, 9)



Future plans 44

• Implementing the algorithm and experimenting with large data
• Persistence of Jordan form
• A convergence theorem?
• Persistence of topological invariants of dynamical systems: Conley index,

fixed point index, connection matrices ?
• Applications to time series dynamics
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Thank you for your attention!


