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e X C R%- a space

e f: X — X - continuous self map

e X is known only via a finite sampling set A C R? (point cloud)
e f known only via a map a: A — A (point cloud map)




Example 1:

P2

e Take S' C C as the space X.
e The map
f:8 3222 s!
e Point cloud
Ag ={ P, =K | k=0,1,... K -1}
e Point cloud map
a: A D Po— Pormod i € Ax



Example 1 - Vietoris-Rips filtration.

P2 P2 P2

PO P4 P0 P4

P0 P4

€1 ~ 0.765367, €0 ~ 1.41421, €5 = 1.84776, €4 = 2.0

o { P} - [0,
o {PWP, PP, PoPs, P3Py, P.Ps, PsPs, PsPr, Pr Py} - |e1,€4)
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Eigenvalues and eigenspacess

e )\ € F'is an eigenvalue of L if the \-eigenspace of L
E\NL)={veV|Lv=>X}#{0}.

e The spectrum o(L) is the set of all eigenvalues of L

If two automorphisms L; : V; — V, are conjugate, then
o(L1) = o(Ls) and the respective eigenspaces are isomorphic.
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Goérniewicz approach to computing homology of mv maps u

e f: X — X - a continuous map
e Then the diagram

commutes.
® Since p|g(y) is a homeomorphism, we have

f = @) o piay:



Example 1 - graph of the point cloud map «a s



Example 1 - graph of the point cloud map «a s

Proposition. Projections

PIG(a) 9IG(a) - Gla) — A
are simplicial with respect to Vietoris-Rips complexes R.(G(«))

and R.(A).



Example 1 - graph of the point cloud map a




Example 1 - Vietoris-Rips filtration of the graph

® p. is not invertible at ¢; and €3
e ¢.p. ' has one 1-eigenvector in dimension zero at €, €5 and €4
e ¢.p. ! has one 2-eigenvector in dimension one at €;
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Eigenvalues and eigenspaces of pairs of linear maps. i

e ['. IV - finitely dimensional vector spaces over F'.
ep,q:I"— V - linear maps
e If p is an isomorphism and
qp v = v
for some 0 £ v € V, then
qu = Apw
for some w € I" such that pw # 0.
e For \ € [ set

E\p,q) ={weTl |qu=\pw}
and define the \-eigenspace of (p, q) by
E(X\.p,q) = E(\ p,q)/ kerqn E(X,p, q).
e )\ is an eigenvalue of the pair (p,q) if E(\,p,q) # {0}.



Example 1 - Vietoris-Rips filtration of the graph i

PO P4 PO P4

® p. is not invertible at ¢; and €3
® (p., q.) has one l-eigenvector in dimension zero which perists in [€), €4]
® (p., q.) has one 2-eigenvector in dimension one which perists in [es, €4)
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o X := (X', &), 7 - a tower of vector spaces if X' € V and &' : X' —
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Persistence in towers of vector spaces x

o X := (X', &), 7 - a tower of vector spaces if X' € V and &' : X' —
X'"*is linear. I
o p: (X" &) — (X' &) - a morphism of towers if ¢ : X' — X" is linear
52902 _ SOZJrng
e composed maps:
gi,o = ldXz,
g = grTloghrl X XD

o X' :=im &Y - (i, p)-persistent vector space of X = (X, fi)iENO.
o 3P(X) := dim X*“? - the (i, p)-persistent Betti number of X.
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o (E', K') is a persistent basis of X if
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Persistent bases»

o X = (X", &) - tower of vector spaces over I
o (E', K') is a persistent basis of X if

(i) B U K" is a basis of X,

(ii) £ is zero on K and nonzero on £,

(iii) £ maps injectively £ into £ U KL,

Theorem. Any finitely generated tower of vector spaces
admits a persistent basis.



Persistent intervals »

o (a.:j)j.:i’iﬂw_ﬁp - an (i, p)-persistent tower of vectors if ‘a:'j S XJ
§(a)) = o/t ) £ O0for j =i+ 1.0 +p—1, 2 & im&!
and ' = (.

e [i,7 + p) - the corresponding persistent interval



Persistent intervals »

® (2/)j—iit1..i+p - an (i,p)-persistent tower of vectors if 7/ € XY,
) =7 ) £0forj =d,i+1,...,i+p—1 2" & im&!
and 2/ = (.

e [1,i + p) - the corresponding persistent interval

Proposition. Let (E', K') be a persistent basis of X Let
L"P denote the cardinality of the set of (7, p)-persistent towers
of vectors whose ith nonzero elements belong to E; U ;. Then

Lz,p ﬁz,p 1 ﬁi—l,p . ﬁi,p + Bz’—l,erl.



Derived towers

o X = (X" &) and Y = (Y, 0') - towers
e ) is a subtower of X' if Y* C X" and v' = &
e Quotient tower: |
X[V = (X,/Y,€)
e p: X — ) -amorphism of towers
o (ker ¢, ‘gliergoi) - tower of kernels
o (im ', v} ) - tower of images
e towers of cokernels, coimages, generalized kernels, generalized images ...



Towers of eigenspaces

Proposition. Let ¢ : X — X be a morphism of towers.
Then for any A € F

E(EM¢)) C B @),
In particular, (E(\, gpi),ffE(Ami)) is a tower.

Proposition. Let X', ) be two towers of modules and ¢, v :
X — )Y be morphisms of towers. Then for any A € F

E(EN ¢, ¢") C B @t ).
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General persistence algorithm x

e A matrix is a matching if all its entries are aither zero or one and each
column and row has at most one nonzero entry.

e The pivot position of a vector in R? is the position of the first nonzero
element of the vector if the vector is nonzero and infinity otherwise.

e A matching is monotone if the pivot positions of the columns are
Increasing.
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matirces A; are monotone matchings.

(1) Perform Smith diagonalization of A, (changes bases in X, and X,,,1)
(2) For i =n — 1 down to 1
(a) Bring A; to column echelon form (changes the base in X; but not in
Xit1)
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General persistence algorithm x

Input: Ay, Ao, ... A, - matrices of &1, &, ... &,

To find persistent bases it is enough to find bases in which all
matirces A; are monotone matchings.

(1) Perform Smith diagonalization of A, (changes bases in X, and X,,,1)
(2) For i =n — 1 down to 1
(a) Bring A; to column echelon form (changes the base in X; but not in
Xit1)
(b) Zero out the sub-pivot elements of nonzero columns by row operations
followed by respective operations on the bases in X; for all 7 > 1
(changes the bases but preserves monotone matchings)

Step 2b may be skipped if only persistence intervals but not
the corresponding towers of vectors are needed.
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Graph complexes and graph filtrations. »

e : A — A - the point cloud data map
e For U C A set

U ={(v,a())|veU} CAxA.
o Let X' be an abstract simplicial complex with vertices Xy C A

Proposition.
e The family XY* :={o0* |0 € X and a(o) € X' } is a sim-
plicial complex with vertices in A X A (graph complex).
e The maps

p: Xy (x,a(zr)) — x € Xy,
q: X553 (r,a(x)) — alr) € X,
are simplicial.
olf X = (X' X% ..., X") is a filtration of simplicial com-
plexes in A, then X* = (X X%, ..., X™) is a filtration
of simplicial complexes with vertices in A x A (graph fil-
tration).



Example 2 - a filtration 2

P2

P0 P4 P0 P4 P0 P4

P2
P3 P1
P5 P7
Po P6
P2
P3 P1
P5 P7
Po

P2 P2

P3 P1 P1
P4 PO P4 PO P4 PO P4

P35 P7 P7

Po6 P6

P2 P2
P1 P3
P4 PO

P7 P5

P2
P3 P1
P0 P4 P0 P4
P5 P7
Po6

P6 Po



Example 2 - graph filtration with projections 2

P2P4 P2P4 P2P4 P2P4

P4P0 0P0

P6P4 P6P4 P6P4 P6P4
p-q p-q p'q p-q
P2
P3 P1
P0 P4 PO P4 PO P4
PS5 P7
P6




Example 2 - graph filtration with projections s

P2P4 P2P4 P2P4 P2P4

P4pP 0P0

P6P4 P6P4 P6P4 P6P4

P.9 P.9 P.q P.q

P0 P4 PO P4 PO P4

Pé



Example 2 - graph filtration with projections

P2P4 P2P4 P2P4

P4p

P6P4 P6P4 P6P4

P.9 P.q P.q

PO P4 P0 P4




Example 2 - persistence of eigenvalues s

o )\=1
—{F} -
—{Pr}-
—{F5}-
—{F}-
—{P7}-

o )\=2
—{ R P}, PP}, BP;, P3Py, P Pr, PsPr, PsPr, PPy} - [6,11)

)

[\DL\DMM}—\
W W W W —

1
3
3
)
)



Example 3 33

e Take the map
Stz —ze St
e For K even we get the map
OKZAKBPZ‘I—)PH_K/QEAK.



Example 3 - filtration

P3 P2 P2 P3 P2
P4 P1 P4 P1 P4 P1
P5 PO PS5 PO P5 PO
Pé P9 P6 P9 Pé P9
P7 P8 P7 P8 P7 P8
P3 P2 P3 P2 P3 P2
P4 P1 P4 P1 P4 P1
P5 PO PS5 PO P5 PO
Pé PY Pé P9 Pé PY
P7 P8 P7 P8 P7 P8

PO P5




Example 3 - graph filtration with projections

P3P8 P2P7 P3P8 P2P7 P3P8 P2P7 P3P8 P2P7

P4P9 P1P6 P4P9

P5P0 POPS PSP

P6P1 PoP4 P6P1
P7P2 PSP3 P7P2 P8P3 P7P2 P8P3 P7P2 P8P3
P.q P.9 P.9 P.9
P3 P2 P3 P2 P3 P2 P3 P2
P4 P1 P4 P1 P4 P1 P4 P1
Ps P0 PS5 PO P5 PO P5 Po
P6 P9 P6 P9 P6 P9 P6 P9
P7 P8 P7 P8 P7 P8 P7 P8



Example 3 - graph filtration with projections s

P3P8 P2P7 P3P8 P2P7 P3P8 P2P7 P3P8 P2P7

P7P2 P8P3 P7P2 P8P3 P7P2 P8P3 P7P2 P8P3
p'q plq plq plq
P3 P2
P4 P1 P4
P5 PO P5 PO P5 PO PS5
P6 P9 P6
P7 P8




Example 3 - persistence intervals s

o\ =1

— [P} + FP¢] —interval [1,8)

— [P} + Fj] — interval [2,3)

— [Py + PZ] —interval [2,3)

- '131P2 + PPy + P3Py + Py Pr + P, P{ + Py Pg| — interval [3,6)
—|=_y PP~ ] - interval 4, 8)

— P1P3 + P3P} —I— P6P8 + Py Pf] — interval |5, 8)

— =V, PP, + 5/l PP* ] — interval [5,7)




Example 4 3

e Take again the map
Stz 22 e St
and K = 12.



Exampble 41{ filtration s

P3
P4 P2 P4 P2 P4 P2
P5 P1 P5 P1 P5 P1
Po PO Po PO Pé6 PO
P7 P11 P7 P11 P7 P11
P8 P10 P8 P10 P8 P10
P9 P9 P9
P3 P3 P3
P4 P2 P4 P2 P4 P2
P5 P1 P5 P1 P5 P1
Pé PO Pé PO Pé6 PO
P7 P11 P7 P11 P7 P11
P8 P10 P8 P10 P8 P10




Example 4 - graph filtration with projections 4«

P3P6 P3P6 P3P6
P4P8 P2P4

P5P10 P1P2 P1P2

P6P0 0P0 P6P 0P0

P7P2 11P10 11P10
P8P4 P10P8
P9P6 P9P6 P9P6
P.q X p.q
P3 P3 P3
P4 P2 P4 P2 P4 P2
P5 P1 P5 P1 P5 P1
Po6 PO P6 PO P6 PO
P7 P11 P7 P11 P7 P11
P8 P10 P8 P10 P8 P10
P9 P9 P9



Example 4 - graph filtration with projections «

P3P6 P3P6 P3P6

P5P10 P1P2

P6P 0P0

PI9P6 PI9P6 PI9P6

pIq p'q plq




Example 4 - graph filtration with projections s




Example 4 - persistence intervals s

o \=1

— |Py] — interval [1,9)

— [P} + PZ] - interval [4,5)
— [P}] — interval [2,3)
— | PZ] — interval [3,4)
— | P}y] — interval |3,4)

— [Py] — interval [3,4)

— | P}y] — interval |3, 5)

— | P;] — interval [4,5)

— [PyP}y + PPt + 55, PP?,,) - interval [7,9)
o)\ = 2

— =2y PP}y, — interval [6,9)

o\ = —1

— [, PP ] — interval [8,9)




Future plans

e Implementing the algorithm and experimenting with large data

e Persistence of Jordan form

e A convergence theorem?

e Persistence of topological invariants of dynamical systems: Conley index,
fixed point index, connection matrices ?

e Applications to time series dynamics
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Thank you for your attention!



