Towards Efficient Computation of Trace Spaces of Concurrent Programs

Samuel Mimram

CEA, LIST

Workshop on Computational Topology

Plan

(1) Efficient implementation of the computation of the trace space
(2) Extension to programs containing loops

Goal

When verifying a concurrent program, there is a priori a large number of possible interleavings to check (exponential in the number of processes)

Many executions are equivalent: we want here to provide a minimal number of execution traces which describe all the possible cases

Goal

When verifying a concurrent program, there is a priori a large number of possible interleavings to check (exponential in the number of processes)

Many executions are equivalent: we want here to provide a minimal number of execution traces which describe all the possible cases

Homotopy classes of execution traces!

Goal

When verifying a concurrent program, there is a priori a large number of possible interleavings to check (exponential in the number of processes)

Many executions are equivalent: we want here to provide a minimal number of execution traces which describe all the possible cases

Homotopy classes of execution traces!

Joint work with, L. Fajstrup, É. Goubault, E. Haucourt and M. Raussen

Programs generate trace spaces

Consider the program

$$
x:=1 ; y:=2 \quad \mid y:=3
$$

It can be scheduled in three different ways:

$$
y:=3 ; x:=1 ; y:=2 \quad x:=1 ; y:=3 ; y:=2 \quad x:=1 ; y:=2 ; y:=3
$$

Giving rise to the following graph of traces:

Programs generate trace spaces

Consider the program

$$
x:=1 ; y:=2 \quad \mid y:=3
$$

It can be scheduled in three different ways:

$$
\begin{array}{ccc}
\mathrm{y}:=3 ; \mathrm{x}:=1 ; \mathrm{y}:=2 & \mathrm{x}:=1 ; \mathrm{y}:=3 ; \mathrm{y}:=2 & \mathrm{x}:=1 ; \mathrm{y}:=2 ; \mathrm{y}:=3 \\
(x, y)=(1,2) & (x, y)=(1,2) & (x, y)=(1,3)
\end{array}
$$

Giving rise to the following graph of traces:

homotopy: commutation / filled square

Programs generate trace spaces

Consider the program

$$
P_{a} ; \mathrm{x}:=1 ; V_{a} ; P_{b} ; \mathrm{y}:=2 ; V_{b} \mid \quad P_{b} ; \mathrm{y}:=3 ; V_{b}
$$

It can be scheduled in three different ways:

$$
\begin{array}{ccc}
\mathrm{y}:=3 ; \mathrm{x}:=1 ; \mathrm{y}:=2 & \mathrm{x}:=1 ; \mathrm{y}:=3 ; \mathrm{y}:=2 & \mathrm{x}:=1 ; \mathrm{y}:=2 ; \mathrm{y}:=3 \\
(x, y)=(1,2) & (x, y)=(1,2) & (x, y)=(1,3)
\end{array}
$$

Giving rise to the following graph of traces:

homotopy: commutation / filled square

Programs generate trace spaces

Consider the program

$$
P_{a} ; \quad ; V_{a} ; P_{b} \quad ; V_{b} \mid P_{b} ; \quad ; V_{b}
$$

It can be scheduled in three different ways:

$$
\begin{array}{ccc}
y:=3 ; \mathrm{x}:=1 ; \mathrm{y}:=2 & \mathrm{x}:=1 ; \mathrm{y}:=3 ; \mathrm{y}:=2 & \mathrm{x}:=1 ; \mathrm{y}:=2 ; \mathrm{y}:=3 \\
(x, y)=(1,2) & (x, y)=(1,2) & (x, y)=(1,3)
\end{array}
$$

Giving rise to the following graph of traces:

homotopy: commutation / filled square

Geometric semantics

We thus consider programs p of the form

$$
p \quad:: \left.=1\left|\begin{array}{ll|l|l|l}
p & 1 & P_{a} & V_{a} & p . p
\end{array}\right| p \right\rvert\, p
$$

Geometric semantics

We thus consider programs p of the form

$$
p \quad::=1 \left\lvert\, \begin{array}{ll|l|l|l|l}
& 1 & P_{a} & V_{a} & p . p & p|p|
\end{array} p^{*}\right.
$$

Geometric semantics

We thus consider programs p of the form

$$
p \quad::=1 \quad 1 \quad P_{a}\left|V_{a}\right| \begin{array}{ll|l|l}
& p . p & p|p| & p^{*}
\end{array}
$$

To every program with n threads

$$
p=p_{1}\left|p_{2}\right| \ldots \mid p_{n}
$$

we associate a directed space, its geometric semantics:

- an n-dimensional directed cube
- minus / forbidden rectangular cubes (holes)

Geometric semantics

A program will be interpreted as a directed space:

- $P_{b} \cdot V_{b} \cdot P_{a} \cdot V_{a}$

Geometric semantics

A program will be interpreted as a directed space:

- $P_{b} \cdot V_{b} \cdot P_{a} \cdot V_{a}$

- $P_{a} \cdot V_{a}$

Geometric semantics

A program will be interpreted as a directed space:

- $P_{b} \cdot V_{b} \cdot P_{a} \cdot V_{a}$

- $P_{a} \cdot V_{a}$

- $P_{b} \cdot V_{b} \cdot P_{a} \cdot V_{a} \mid P_{a} \cdot V_{a}$

Geometric semantics

A program will be interpreted as a directed space:

- $P_{b} \cdot V_{b} \cdot P_{a} \cdot V_{a}$

- $P_{a} \cdot V_{a}$

- $P_{b} \cdot V_{b} \cdot P_{a} \cdot V_{a} \mid P_{a} \cdot V_{a}$

$$
P_{a} \cdot P_{b} \cdot V_{a} \cdot V_{b} \cdot P_{a} \cdot V_{a}
$$

Geometric semantics

A program will be interpreted as a directed space:

- $P_{b} \cdot V_{b} \cdot P_{a} \cdot V_{a}$

- $P_{a} \cdot V_{a}$

- $P_{b} \cdot V_{b} \cdot P_{a} \cdot V_{a} \mid P_{a} \cdot V_{a}$ Homotopy

$$
P_{a} \cdot P_{b} \cdot V_{a} \cdot V_{b} \cdot P_{a} \cdot V_{a}
$$

Geometric semantics

A program will be interpreted as a directed space:

- $P_{b} \cdot V_{b} \cdot P_{a} \cdot V_{a}$

- $P_{a} \cdot V_{a}$

- $P_{b} \cdot V_{b} \cdot P_{a} \cdot V_{a} \mid P_{a} \cdot V_{a}$

$P_{b} \cdot V_{b} \cdot P_{a} \cdot P_{a} \cdot V_{a} \cdot V_{a}$
Forbidden region

Schedulings

We want to compute one path in every homotopy class:

Schedulings

We want to compute one path in every homotopy class:

We do this by testing possible ways to go around forbidden regions:

(these are called schedulings)

Idea of the algorithm

The main idea of the algorithm is to consider schedulings and look whether there is a path from b to e in the resulting space.

By combining those information, we will be able to compute traces modulo homotopy.

The directions in which to extend the holes will be coded by boolean matrices M.

The index poset

$\mathcal{M}_{l, n}$: boolean matrices with / rows and n columns.
X_{M} :
space obtained by extending for every (i, j) such that $M(i, j)=1$ the forbidden cube i downwards in every direction other than j

$$
\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right)
$$

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$

- M is alive if there is a path $b \rightarrow e$
- M is dead if there is no path $b \rightarrow e$

The index poset

$$
P_{a} \cdot V_{a} \cdot P_{b} \cdot V_{b}\left|P_{a} \cdot V_{a} \cdot P_{b} \cdot V_{b}\right| \quad P_{a} \cdot V_{a} \cdot P_{b} \cdot V_{b}
$$

$$
\begin{array}{ccc}
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) & \left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) & \left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
\end{array}\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 1 & 1
\end{array}\right)
$$

The algorithm

The algorithm proceeds as follows:
(1) Compute the minimal dead matrices.

The algorithm

The algorithm proceeds as follows:
(1) Compute the minimal dead matrices.
(2) Deduce the maximal alive matrices.

The algorithm

The algorithm proceeds as follows:
(1) Compute the minimal dead matrices.
(2) Deduce the maximal alive matrices.
(3) The set of maximal alive matrices quotiented by the connexity equivalence relation is in bijection with homotopy classes of paths!

Definition
Two matrices M and N are connected when their intersection $M \wedge N$ does not contain any row filled with zeros.
n processes p_{k} in parallel:

Dining philosophers

$$
p_{k}=P_{a_{k}} \cdot P_{a_{k+1}} \cdot V_{a_{k}} \cdot V_{a_{k+1}}
$$

n	sched.	ALCOOL (s)	ALCOOL (MB)	SPIN (s)	SPIN (MB)
8	254	0.1	0.8	0.3	12
9	510	0.8	1.4	1.5	41
10	1022	5	4	8	179
11	2046	32	9	42	816
12	4094	227	26	313	3508
13	8190	1681	58	∞	∞
14	16382	13105	143	∞	∞

How do we extend this methodology to program with loops?

Loops

Given a thread p, we write p^{*} for its looping: while (. .) \{p\}.

Loops

Given a thread p, we write p^{*} for its looping: while (. . .) $\{p\}$.

Given a program p with n threads:

$$
p=p_{1}\left|p_{2}\right| \ldots \mid p_{n}
$$

we write p^{*} for

$$
p^{*}=p_{1}^{*}\left|p_{2}^{*}\right| \ldots \mid p_{n}^{*}
$$

Loops

Given a thread p, we write p^{*} for its looping: while (. .) \{p\}.

Given a program p with n threads:

$$
p=p_{1}\left|p_{2}\right| \ldots \mid p_{n}
$$

we write p^{*} for

$$
p^{*}=p_{1}^{*}\left|p_{2}^{*}\right| \ldots \mid p_{n}^{*}
$$

Notice that the geometric semantics $X_{p^{*}}$ can be deduced from the semantics of p by glueing copies of X_{p} in every direction:

$$
p_{i}^{*}=p_{i} \cdot p_{i} \cdot p_{i} \ldots
$$

Deloopings

Notice that the geometric semantics $X_{p^{*}}$ can be deduced from the semantics of p by glueing copies of X_{p} in every direction.

Example

Consider the program $p=q|q| q$ with $q=P_{a} . V_{a}$ (and a of arity 3):

$X_{p^{*}}$

Deloopings

Notice that the geometric semantics $X_{p^{*}}$ can be deduced from the semantics of p by glueing copies of X_{p} in every direction.

Example
Consider the program $p=q|q| q$ with $q=P_{a} \cdot V_{a}$ (and a of arity 3):

Finite deloopings:
$X_{p^{(3,2,2)}}=\left(Y \oplus_{1} Y\right) \oplus_{2}\left(Y \oplus_{1} Y\right) \quad$ with $\quad Y=X_{p} \oplus_{0} X_{p} \oplus_{0} X_{p}$

Schedulings

Similarly, given schedulings

$$
M=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right) \quad \text { and } \quad N=\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right)
$$

of the previous program p

Schedulings

Similarly, given schedulings

$$
M=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right) \quad \text { and } \quad N=\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right)
$$

of the previous program p

we write

$$
M \oplus_{0} N=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

for the following scheduling of $X_{p}^{(2,1,1)}=X_{p} \oplus_{0} X_{p}$

Schedulings

Similarly, given schedulings

$$
M=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right) \quad \text { and } \quad N=\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right)
$$

of the previous program p

we write

$$
M \oplus_{0} N=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

for the following scheduling of $X_{p}^{(2,1,1)}=X_{p} \oplus_{0} X_{p}$

Shadows

In fact, scheduling drop "shadows" on previous schedulings

Shadows

In fact, scheduling drop "shadows" on previous schedulings

Write $X_{M \mid j}$ for the shadow projected by scheduling M in direction j :

so that

$$
X_{M \oplus_{j} N}=\left(X_{M} \cap X_{N \mid j}\right) \otimes_{j} X_{N}
$$

Alive matrices for programs with loops

Every scheduling M of a delooping of X_{p} is composed by glueing submatrices $\left(M_{i_{1}, \ldots, i_{n}}\right)$.

Alive matrices for programs with loops

Every scheduling M of a delooping of X_{p} is composed by glueing submatrices $\left(M_{i_{1}, \ldots, i_{n}}\right)$.

If X_{M} contains a deadlock then some subspace $X_{\left(M_{i_{1}}, \ldots, i_{n}\right)}$ contains a deadlock:

Lemma
If a matrix M is alive then all its submatrices are alive.

Alive matrices for programs with loops

Every scheduling M of a delooping of X_{p} is composed by glueing submatrices $\left(M_{i_{1}, \ldots, i_{n}}\right)$.

If X_{M} contains a deadlock then some subspace $X_{\left(M_{i_{1}}, \ldots, i_{n}\right)}$ contains a deadlock:

Lemma
If a matrix M is alive then all its submatrices are alive.

> The converse is not true!

Shadows can create deadlocks

The following matrices P and Q coding the schedulings

of p are alive, however the matrix $P \oplus_{0} Q$ is dead:

The shadow automaton

We construct an automaton which describes all the schedulings possible in the future (which won't create deadlocks by their shadow): given a scheduling M and a direction j, it describes all the matrices N such that $M \oplus_{j} N$ is alive.

The shadow automaton

Definition

The shadow automaton of a program p is a non-deterministic automaton whose

- states are shadows
- transitions $N \xrightarrow{j, M} N^{\prime}$ are labeled by a direction j (with $0 \leqslant j<n$) and a scheduling M
defined as the smallest automaton
- containing the empty scheduling \emptyset
- and such that for every state N^{\prime}, for every direction j and for every scheduling M such that the scheduling $M \cup N^{\prime}$ is alive, and M is maximal with this property, there is a transition

$$
N \xrightarrow{j, M} N^{\prime} \text { with } N=\left.\left(M \cup N^{\prime}\right)\right|_{j} .
$$

All the states of the automaton are both initial and final.

The shadow automaton

For instance consider the program $p=P_{a} \cdot V_{a} \mid P_{a} \cdot V_{a}$

$$
X_{p}=\stackrel{i}{4}^{t_{0}}
$$

The shadow automaton

For instance consider the program $p=P_{a} \cdot V_{a} \mid P_{a} \cdot V_{a}$

$$
x_{p}={\stackrel{\Im}{t_{1}}}^{\square} t_{0}
$$

There are two maximal schedulings

The shadow automaton

For instance consider the program $p=P_{a} . V_{a} \mid P_{a} \cdot V_{a}$

$$
x_{p}=\stackrel{t_{1}}{\square} t_{0}
$$

There are two maximal schedulings

which can drop three possible shadows

The shadow automaton

The shadow automaton of p is

The shadow automaton

The shadow automaton of p is

For instance, the transition $\amalg \xrightarrow{0, \square} \mid$ is computed as follows:

- consider the shadow $M=\boxed{\square}=\square$
- compute its shadow in direction 0 : \quad -

The shadow automaton

Theorem
Given a program p to any total path in a delooping of p is represented by a path in the shadow automaton of p such that

- every path in the automaton comes from a total path in X_{p} ?
- if two total paths in X_{p} ? correspond to the same path in the automaton then they are homotopic

Paths in the shadow automaton describe homotopy classes in deloopings of p.

The shadow automaton

Theorem

Given a program p to any total path in a delooping of p is represented by a path in the shadow automaton of p such that

- every path in the automaton comes from a total path in X_{p} ?
- if two total paths in X_{p} ? correspond to the same path in the automaton then they are homotopic

Paths in the shadow automaton describe homotopy classes in deloopings of p.

is represented by

Reducing the size of the automaton

The shadow automaton is too big:

- we can determinize it:

Reducing the size of the automaton

The shadow automaton is too big:

- we can determinize it:

- two distinct paths in the automaton can represent the same homotopy class of paths: we can quotient paths under connexity.

An application to static analysis

The program

$$
p^{*}=\left(P_{a} \cdot a:=a-1 \cdot V_{a}\right)^{*} \left\lvert\,\left(P_{a} \cdot\left(a:=\frac{a}{2}\right) \cdot V_{a}\right)^{*}\right.
$$

induces the automaton

$$
\overbrace{[a:=a-1]}^{[a:=a-1]}
$$

An application to static analysis

The program

$$
p^{*}=\left(P_{a} \cdot a:=a-1 \cdot V_{a}\right)^{*} \left\lvert\,\left(P_{a} \cdot\left(a:=\frac{a}{2}\right) \cdot V_{a}\right)^{*}\right.
$$

induces the automaton

$$
\overbrace{[a:=a-1]}^{[a:=a-1]}
$$

and thus the set of equations

$$
\left\{\begin{array}{l}
A_{0}=I \cup\left(A_{0}-1\right) \cup\left(A_{1}-1\right) \\
A_{1}=I \cup \frac{A_{1}}{2} \cup \frac{A_{0}}{2}
\end{array}\right.
$$

An application to static analysis

The program

$$
p^{*}=\left(P_{a} \cdot a:=a-1 \cdot V_{a}\right)^{*} \left\lvert\,\left(P_{a} \cdot\left(a:=\frac{a}{2}\right) \cdot V_{a}\right)^{*}\right.
$$

induces the automaton

$$
\overbrace{[a:=a-1]}^{[a:=a-1]}
$$

and thus the set of equations

$$
\left\{\begin{array}{l}
A_{0}=I \cup\left(A_{0}-1\right) \cup\left(A_{1}-1\right) \\
A_{1}=I \cup \frac{A_{1}}{2} \cup \frac{A_{0}}{2}
\end{array}\right.
$$

which admits a least fixed point

$$
\left.\left.A_{0}^{\infty}=A_{1}^{\infty}=\right]-\infty, 1\right]
$$

An example: the two-phase protocol

We consider n programs locking I resources:

$$
p_{n, I}=q|q| \ldots \mid q \quad \text { with } \quad q=P_{a_{1}} \ldots P_{a_{l}} \cdot V_{a_{1}} \ldots . V_{a_{1}}
$$

An example: the two-phase protocol

We consider n programs locking I resources:

$$
p_{n, l}=q|q| \ldots \mid q \quad \text { with } \quad q=P_{a_{1}} \ldots P_{a_{l}} \cdot V_{a_{1}} \ldots . V_{a_{1}}
$$

For instance, $p_{2,2}=q \mid q$ is

An example: the two-phase protocol

We consider n programs locking / resources:

$$
p_{n, l}=q|q| \ldots \mid q \quad \text { with } \quad q=P_{a_{1}} \ldots P_{a_{l}} \cdot V_{a_{1}} \ldots . V_{a_{1}}
$$

For instance, $p_{2,2}=q \mid q$ is

We get the following results compared to spin:

n	l	s	t	s^{\prime}	t^{\prime}	$s^{\prime \prime}$	$t^{\prime \prime}$	$s_{\text {SPIN }}$	$t_{\text {SPIN }}$
2	1	3	8	3	10	1	1	58	65
2	2	3	8	3	10	1	1	112	129
2	3	3	8	3	10	1	1	180	209
3	1	19	90	4	24	1	1	171	218
3	2	19	90	4	24	1	1	441	602
3	3	19	90	4	24	1	1	817	1128

Conclusion

- Geometric methods can help to devise efficient algorithms to study concurrent programs
- Lots of works remain to be done...

