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e Capture topological (and geometric)
properties of data with topological
summaries.

e Use topological summaries to perform
a particular type of inference on the
data.
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Persistence ldea

We have a nested family of topological spaces, i.e. a filtration:

Xo — bunch of connected components.

X1 — only one connected component is left, and seven 1-cycles are born.

X9 — five out of the seven 1-cycles died, but one new 1-cycle is born.
X3 — the new 1-cycle dies.

X4 — one of the oldest 1-cycles dies, one more keeps going.

X5 — going strong!

Xg — everybody's dead!
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What's the mean?

What's the variance?
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The p-th Wasserstein distance between the persistence diagrams of f and g is

1
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Wolf.9)=| D llz—w@lk]| .
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where the infimum is over all bijections v, : Dgm,(f) — Dgm,(g).
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WASSERSTEIN STABILITY THEOREM|Cohen-Steiner, Edelsbrunner, Harer, M.].
Under mild conditions on a metric space X and functions f,g : X — R we have

W,(f.9) < Cllf — gl ®
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DEFINITION. A persistence diagram is a countable multiset of points in R? along
with the diagonal A = {(z,y) € R? | x = y}, where each point on the diagonal has
infinite multiplicity.

DEFINITION. The space of persistence diagrams is defined as

D, = {d|Pers,(d) < oo}, where Pers,(d) = Zpers(a:)p
red
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Space of Persistence Diagrams

{ THEOREM|M., Mukherjee, Harer| The space D,, is complete and separable. J

The proof of completeness of ¢, does not translate well here because the notion of a
pointwise convergence is not defined.

Instead, we define persistence-wise convergence.

The problem is convergence from below.
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Can be resolved due to persistence-wise
separation of points in the diagrams.
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Fréchet Expectation
DEFINITION. Given a probability space (D,, B(D,),P) the quantity

Varp = inf Fp(d):/ W,(d,e)* P(de) < oo,
deD, D,

Is the Fréchet variance of P and the set at which the value is obtained
Ep ={d| Fp(d) = Varp},

is the Fréchet expectation.

In general, the Fréchet expectation may be empty.
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DEFINITION. Given a probability space (D,, B(D,),P) the quantity

Varp = inf Fp(d):/ W,(d,e)* P(de) < oo,
deD, D,

Is the Fréchet variance of P and the set at which the value is obtained
Ep ={d| Fp(d) = Varp},

is the Fréchet expectation.

In general, the Fréchet expectation may be empty.

To answer the existence question we need to
understand compactness in D,
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Clearly, we need a boundedness. What else can go wrong?
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THEOREM[M., Mukherjee, Harer| A subset of D, is relatively compact if and
only if it is bounded, off-diagonally birth-death bounded, and uniform.
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DEFINITION. A measure 1 on a measurable metric space (X, p) is called tight if
Ve > 0 there exists a compact set C' C X such that u(X —C') < ¢

DEFINITION. We say that a measure ;1 on a measurable metric space (X, p) has a
rate of decay at infinity ¢ if for some (hance all) z¢ € X there exist constants C' > 0
and R > 0 such that for all » > R we have u(B"(xg)) < Cr~9, where

B"(x0) = {z € X|p(z,2z0) = r}.
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THEOREM|[Harer, M., Mukherjee| Let P be a probability measure on (D,,, B(D,))
with a finite second moment. If P has compact support then Ep # 0.
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DEFINITION. A measure 1 on a measurable metric space (X, p) is called tight if
Ve > 0 there exists a compact set C' C X such that u(X —C') < ¢

DEFINITION. We say that a measure ;1 on a measurable metric space (X, p) has a
rate of decay at infinity ¢ if for some (hance all) z¢ € X there exist constants C' > 0
and R > 0 such that for all » > R we have u(B"(xg)) < Cr~9, where
B"(x0) = {z € X|p(z,2z0) = r}.

THEOREM|[Harer, M., Mukherjee| Let P be a tight probability measure on
(Dp, B(D,)) with the rate of decay at infinity ¢ > max {2, p}. Then Ep # (.
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Future Directions

e Algorithm for computing Fréchet mean.
— d algorithm for computing Fréchet mean in NPC spaces.
— D, is not NPC and the Fréchet mean is not unique in D,,.

e Convergence results
— We would like to show that persistence diagrams computed for samples from a
probability measure converge to the persistence diagram of the actual
probability measure.

e Similar results for other topological summaries.
— For example, Reeb graphs.
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