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Analysis

• Capture topological (and geometric)
properties of data with topological
summaries.

• Use topological summaries to perform
a particular type of inference on the
data.
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Persistence Idea
We have a nested family of topological spaces, i.e. a filtration:

X0 ⊂ X1 ⊂ · · · ⊂ Xn

X0 X1 X2 X3 X4 X5 X6

X0 – bunch of connected components.

X1 – only one connected component is left, and seven 1-cycles are born.

X2 – five out of the seven 1-cycles died, but one new 1-cycle is born.

X3 – the new 1-cycle dies.

X4 – one of the oldest 1-cycles dies, one more keeps going.

X5 – going strong!

X6 – everybody’s dead!
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For a compact space X it is
convenient to kill immortal
classes at maxx∈X f(x)
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What’s the mean?

What’s the variance?

Very Specific Problem
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Wasserstein Distance

The p-th Wasserstein distance between the persistence diagrams of f and g is

Wp(f, g) =

 ∑
x∈Dgm`(f)

‖x− γ`(x)‖p∞

 1
p
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where the infimum is over all bijections γ` : Dgm`(f) → Dgm`(g).
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Wasserstein Distance

The p-th Wasserstein distance between the persistence diagrams of f and g is

Wp(f, g) =

 ∑
x∈Dgm`(f)

‖x− γ`(x)‖p∞

 1
p

,

where the infimum is over all bijections γ` : Dgm`(f) → Dgm`(g).

Wasserstein Stability Theorem[Cohen-Steiner, Edelsbrunner, Harer, M.].
Under mild conditions on a metric space X and functions f, g : X → R we have

Wp(f, g) ≤ C‖f − g‖1−
k
p

∞
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Consider xn = (0, 2−n) ∈ R2, n ∈ N, and let dn be the persistence diagram
containing x1, . . . , xn (each with multiplicity 1). Then

Wp(dn, dn+k) <
1

2n
,

so dn is Cauchy. It is clear, however, that the number of off-diagonal points in dn
grows to ∞ as n → ∞, so this sequence cannot have a limit in our space.

But it is not complete!



Space of Persistence Diagrams

Definition. A persistence diagram is a countable multiset of points in R2 along
with the diagonal ∆ = {(x, y) ∈ R2 | x = y}, where each point on the diagonal has
infinite multiplicity.

The set of persistence diagrams (with a finite number of points in them) endowed
with the Wassertstein distance is a metric space.

Consider xn = (0, 2−n) ∈ R2, n ∈ N, and let dn be the persistence diagram
containing x1, . . . , xn (each with multiplicity 1). Then

Wp(dn, dn+k) <
1

2n
,

so dn is Cauchy. It is clear, however, that the number of off-diagonal points in dn
grows to ∞ as n → ∞, so this sequence cannot have a limit in our space.

Definition. The space of persistence diagrams is defined as

Dp = {d|Persp(d) < ∞}, where Persp(d) =
∑
x∈d

pers(x)p

But it is not complete!
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Theorem[M., Mukherjee, Harer ] The space Dp is complete and separable.

Space of Persistence Diagrams

The proof of completeness of `p does not translate well here because the notion of a
pointwise convergence is not defined.

Instead, we define persistence-wise convergence.

The problem is convergence from below.
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Can be resolved due to persistence-wise
separation of points in the diagrams.



Fréchet Expectation
Definition. Given a probability space (Dp,B(Dp),P) the quantity

VarP = inf
d∈Dp

[
FP(d) =

∫
Dp

Wp(d, e)
2 P(de) < ∞

]
,

is the Fréchet variance of P and the set at which the value is obtained

EP = {d | FP(d) = VarP},

is the Fréchet expectation.

In general, the Fréchet expectation may be empty.
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Definition. Given a probability space (Dp,B(Dp),P) the quantity

VarP = inf
d∈Dp

[
FP(d) =

∫
Dp

Wp(d, e)
2 P(de) < ∞

]
,

is the Fréchet variance of P and the set at which the value is obtained

EP = {d | FP(d) = VarP},

is the Fréchet expectation.

In general, the Fréchet expectation may be empty.

To answer the existence question we need to
understand compactness in Dp
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Compactness in Dp

Clearly, we need a boundedness. What else can go wrong?

|dn| = 2n

|dn+1| = 2n+1

|dn+2| = 2n+2

02nε 2(n+1)ε 2(n+2)ε

(2n+1)ε

(2n+3)ε

(2n+5)ε

dn

dn+1

dn+2

Theorem[M., Mukherjee, Harer] A subset of Dp is relatively compact if and
only if it is bounded, off-diagonally birth-death bounded, and uniform.

Not off diagonally birth-death bounded Not uniform
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Definition. We say that a measure µ on a measurable metric space (X, ρ) has a
rate of decay at infinity q if for some (hance all) x0 ∈ X there exist constants C > 0
and R > 0 such that for all r ≥ R we have µ(Br(x0)) ≤ Cr−q, where
Br(x0) = {x ∈ X|ρ(x, x0) ≥ r}.

Definition. A measure µ on a measurable metric space (X, ρ) is called tight if
∀ε > 0 there exists a compact set C ⊂ X such that µ(X− C) < ε



Fréchet Expectation

Theorem[Harer, M., Mukherjee] Let P be a probability measure on (Dp,B(Dp))
with a finite second moment. If P has compact support then EP 6= ∅.

Theorem[Harer, M., Mukherjee] Let P be a tight probability measure on
(Dp,B(Dp)) with the rate of decay at infinity q > max {2, p}. Then EP 6= ∅.

Definition. We say that a measure µ on a measurable metric space (X, ρ) has a
rate of decay at infinity q if for some (hance all) x0 ∈ X there exist constants C > 0
and R > 0 such that for all r ≥ R we have µ(Br(x0)) ≤ Cr−q, where
Br(x0) = {x ∈ X|ρ(x, x0) ≥ r}.

Definition. A measure µ on a measurable metric space (X, ρ) is called tight if
∀ε > 0 there exists a compact set C ⊂ X such that µ(X− C) < ε
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Example
Diagrams {x1, . . . , xn} ⊂ Dp of
samples of a torus, O1.

Diagrams {y1, . . . , yn} ⊂ Dp of
samples of a double torus, O2.

z ∈ Dp
? ?

p̂(x | O1) =
1

mκτ

m∑
i=1

e−W 2
p (x,xi)/τ , p̂(x | O2) =

1

nκτ

n∑
i=1

e−W 2
p (x,yi)/τ ,

Prior π1 = Pr(O1) Prior π2 = Pr(O2)

Posterior

p̂(O1 | z) = p̂(z | O1)π1

p̂(z)
=

p̂(z | O1)π1

p̂(z | O1)π1 + p̂(z | O2)π2
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Future Directions

• Algorithm for computing Fréchet mean.
– ∃ algorithm for computing Fréchet mean in NPC spaces.
– Dp is not NPC and the Fréchet mean is not unique in Dp.

• Convergence results
– We would like to show that persistence diagrams computed for samples from a

probability measure converge to the persistence diagram of the actual
probability measure.

• Similar results for other topological summaries.
– For example, Reeb graphs.
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