Probability measures on the space of persistence diagrams

Yuriy Mileyko yury@math.duke.edu

Joint work with Sayan Mukherjee and John Harer

Workshop on Computational Topology Fields Institute November 8, 2011

- Capture topological (and geometric) properties of data with topological summaries.
- Use topological summaries to perform a particular type of inference on the data.

Persistence Idea

We have a nested family of topological spaces, i.e. a filtration:

 $\mathbb{X}_0 \subset \mathbb{X}_1 \subset \cdots \subset \mathbb{X}_n$

Persistence Idea

We have a nested family of topological spaces, i.e. a filtration:

Persistence Idea

We have a nested family of topological spaces, i.e. a filtration:

 \mathbb{X}_0 – bunch of connected components.

 X_1 – only one connected component is left, and seven 1-cycles are born.

 X_2 – five out of the seven 1-cycles died, but one new 1-cycle is born.

 \mathbb{X}_3 – the new 1-cycle dies.

 \mathbb{X}_4 – one of the oldest 1-cycles dies, one more keeps going.

 X_5 – going strong!

 X_6 – everybody's dead!

Very Specific Problem

Very Specific Problem

What's the mean?

What's the variance?

Metric on Persistence Diagrams

The p-th Wasserstein distance between the persistence diagrams of f and g is

$$W_p(f,g) = \left[\sum_{x \in \mathrm{Dgm}_{\ell}(f)} \|x - \gamma_{\ell}(x)\|_{\infty}^p\right]^{\frac{1}{p}},$$

where the infimum is over all bijections $\gamma_{\ell} : \mathrm{Dgm}_{\ell}(f) \to \mathrm{Dgm}_{\ell}(g)$.

The p-th Wasserstein distance between the persistence diagrams of f and g is

$$W_p(f,g) = \left[\sum_{x \in \mathrm{Dgm}_{\ell}(f)} \|x - \gamma_{\ell}(x)\|_{\infty}^p\right]^{\frac{1}{p}},$$

where the infimum is over all bijections $\gamma_{\ell} : \mathrm{Dgm}_{\ell}(f) \to \mathrm{Dgm}_{\ell}(g)$.

WASSERSTEIN STABILITY THEOREM[Cohen-Steiner, Edelsbrunner, Harer, M.]. Under mild conditions on a metric space X and functions $f, g : X \to \mathbb{R}$ we have

 $W_p(f,g) \le C \|f - g\|_{\infty}^{1 - \frac{k}{p}}$

The set of persistence diagrams (with a finite number of points in them) endowed with the Wassertstein distance is a metric space.

The set of persistence diagrams (with a finite number of points in them) endowed with the Wassertstein distance is a metric space.

But it is not complete!

Consider $x_n = (0, 2^{-n}) \in \mathbb{R}^2$, $n \in \mathbb{N}$, and let d_n be the persistence diagram containing x_1, \ldots, x_n (each with multiplicity 1). Then

$$W_p(d_n, d_{n+k}) < \frac{1}{2^n},$$

so d_n is Cauchy. It is clear, however, that the number of off-diagonal points in d_n grows to ∞ as $n \to \infty$, so this sequence cannot have a limit in our space.

The set of persistence diagrams (with a finite number of points in them) endowed with the Wassertstein distance is a metric space.

But it is not complete!

Consider $x_n = (0, 2^{-n}) \in \mathbb{R}^2$, $n \in \mathbb{N}$, and let d_n be the persistence diagram containing x_1, \ldots, x_n (each with multiplicity 1). Then

$$W_p(d_n, d_{n+k}) < \frac{1}{2^n},$$

so d_n is Cauchy. It is clear, however, that the number of off-diagonal points in d_n grows to ∞ as $n \to \infty$, so this sequence cannot have a limit in our space.

DEFINITION. A persistence diagram is a *countable* multiset of points in \mathbb{R}^2 along with the diagonal $\Delta = \{(x, y) \in \mathbb{R}^2 \mid x = y\}$, where each point on the diagonal has infinite multiplicity.

DEFINITION. The space of persistence diagrams is defined as

$$D_p = \{d | \operatorname{Pers}_p(d) < \infty\}, \text{ where } \operatorname{Pers}_p(d) = \sum_{x \in d} \operatorname{pers}(x)^p$$

THEOREM[*M.*, *Mukherjee*, *Harer*] The space D_p is complete and separable.

THEOREM[*M., Mukherjee, Harer*] The space D_p is complete and separable.

The proof of completeness of ℓ_p does not translate well here because the notion of a pointwise convergence is not defined.

THEOREM[*M., Mukherjee, Harer*] The space D_p is complete and separable.

The proof of completeness of ℓ_p does not translate well here because the notion of a pointwise convergence is not defined.

Instead, we define *persistence-wise* convergence.

THEOREM[*M., Mukherjee, Harer*] The space D_p is complete and separable.

The proof of completeness of ℓ_p does not translate well here because the notion of a pointwise convergence is not defined.

Instead, we define *persistence-wise* convergence.

The problem is convergence from below.

THEOREM[*M., Mukherjee, Harer*] The space D_p is complete and separable.

The proof of completeness of ℓ_p does not translate well here because the notion of a pointwise convergence is not defined.

Instead, we define *persistence-wise* convergence.

The problem is convergence from below.

Can be resolved due to persistence-wise separation of points in the diagrams.

DEFINITION. Given a probability space $(D_p, \mathcal{B}(D_p), \mathcal{P})$ the quantity

$$\operatorname{Var}_{\mathcal{P}} = \inf_{d \in D_p} \left[F_{\mathcal{P}}(d) = \int_{D_p} W_p(d, e)^2 \mathcal{P}(\mathrm{d}e) < \infty \right],$$

is the Fréchet variance of ${\mathcal{P}}$ and the set at which the value is obtained

$$\mathbb{E}_{\mathcal{P}} = \{ d \mid F_{\mathcal{P}}(d) = \operatorname{Var}_{\mathcal{P}} \},\$$

is the Fréchet expectation.

In general, the Fréchet expectation may be empty.

DEFINITION. Given a probability space $(D_p, \mathcal{B}(D_p), \mathcal{P})$ the quantity

$$\operatorname{Var}_{\mathcal{P}} = \inf_{d \in D_p} \left[F_{\mathcal{P}}(d) = \int_{D_p} W_p(d, e)^2 \mathcal{P}(\mathrm{d}e) < \infty \right],$$

is the Fréchet variance of ${\mathcal{P}}$ and the set at which the value is obtained

$$\mathbb{E}_{\mathcal{P}} = \{ d \mid F_{\mathcal{P}}(d) = \operatorname{Var}_{\mathcal{P}} \},\$$

is the Fréchet expectation.

In general, the Fréchet expectation may be empty.

Clearly, we need a boundedness. What else can go wrong?

Clearly, we need a boundedness. What else can go wrong?

Clearly, we need a boundedness. What else can go wrong?

Clearly, we need a boundedness. What else can go wrong?

THEOREM[M., Mukherjee, Harer] A subset of D_p is relatively compact if and only if it is bounded, off-diagonally birth-death bounded, and uniform.

THEOREM[Harer, M., Mukherjee] Let \mathcal{P} be a probability measure on $(D_p, \mathcal{B}(D_p))$ with a finite second moment. If \mathcal{P} has compact support then $\mathbb{E}_{\mathcal{P}} \neq \emptyset$.

THEOREM[Harer, M., Mukherjee] Let \mathcal{P} be a probability measure on $(D_p, \mathcal{B}(D_p))$ with a finite second moment. If \mathcal{P} has compact support then $\mathbb{E}_{\mathcal{P}} \neq \emptyset$.

DEFINITION. A measure μ on a measurable metric space (X, ρ) is called tight if $\forall \varepsilon > 0$ there exists a compact set $C \subset X$ such that $\mu(X - C) < \varepsilon$

DEFINITION. We say that a measure μ on a measurable metric space (\mathbb{X}, ρ) has a rate of decay at infinity q if for some (hance all) $x_0 \in \mathbb{X}$ there exist constants C > 0 and R > 0 such that for all $r \geq R$ we have $\mu(B^r(x_0)) \leq Cr^{-q}$, where $B^r(x_0) = \{x \in \mathbb{X} | \rho(x, x_0) \geq r\}.$

THEOREM[*Harer, M., Mukherjee*] Let \mathcal{P} be a probability measure on $(D_p, \mathcal{B}(D_p))$ with a finite second moment. If \mathcal{P} has compact support then $\mathbb{E}_{\mathcal{P}} \neq \emptyset$.

DEFINITION. A measure μ on a measurable metric space (X, ρ) is called tight if $\forall \varepsilon > 0$ there exists a compact set $C \subset X$ such that $\mu(X - C) < \varepsilon$

DEFINITION. We say that a measure μ on a measurable metric space (\mathbb{X}, ρ) has a rate of decay at infinity q if for some (hance all) $x_0 \in \mathbb{X}$ there exist constants C > 0 and R > 0 such that for all $r \geq R$ we have $\mu(B^r(x_0)) \leq Cr^{-q}$, where $B^r(x_0) = \{x \in \mathbb{X} | \rho(x, x_0) \geq r\}.$

THEOREM[*Harer, M., Mukherjee*] Let \mathcal{P} be a tight probability measure on $(D_p, \mathcal{B}(D_p))$ with the rate of decay at infinity $q > \max\{2, p\}$. Then $\mathbb{E}_{\mathcal{P}} \neq \emptyset$.

Diagrams $\{x_1, \ldots, x_n\} \subset D_p$ of samples of a torus, \mathcal{O}_1 .

Diagrams $\{y_1, \ldots, y_n\} \subset D_p$ of samples of a double torus, \mathcal{O}_2 .

 $\checkmark ? z \in D_p \xrightarrow{?}$

Diagrams $\{x_1, \ldots, x_n\} \subset D_p$ of samples of a torus, \mathcal{O}_1 .

Diagrams $\{y_1, \ldots, y_n\} \subset D_p$ of samples of a double torus, \mathcal{O}_2 .

Diagrams $\{x_1, \ldots, x_n\} \subset D_p$ of samples of a torus, \mathcal{O}_1 .

Diagrams $\{y_1, \ldots, y_n\} \subset D_p$ of samples of a double torus, \mathcal{O}_2 .

$$\hat{p}(x \mid \mathcal{O}_1) = \frac{1}{m\kappa_\tau} \sum_{i=1}^m e^{-W_p^2(x, x_i)/\tau}, \qquad \hat{p}(x \mid \mathcal{O}_2) = \frac{1}{n\kappa_\tau} \sum_{i=1}^n e^{-W_p^2(x, y_i)/\tau},$$

 $\checkmark ? z \in D_p \xrightarrow{?}$

Diagrams $\{x_1, \ldots, x_n\} \subset D_p$ of samples of a torus, \mathcal{O}_1 .

Diagrams $\{y_1, \ldots, y_n\} \subset D_p$ of samples of a double torus, \mathcal{O}_2 .

$$\hat{p}(x \mid \mathcal{O}_1) = \frac{1}{m\kappa_{\tau}} \sum_{i=1}^m e^{-W_p^2(x, x_i)/\tau}, \quad \hat{p}(x \mid \mathcal{O}_2) = \frac{1}{n\kappa_{\tau}} \sum_{i=1}^n e^{-W_p^2(x, y_i)/\tau},$$

Prior
$$\pi_1 = \Pr(\mathcal{O}_1)$$

Prior $\pi_2 = \Pr(\mathcal{O}_2)$

Posterior

$$\hat{p}(\mathcal{O}_1 \mid z) = \frac{\hat{p}(z \mid \mathcal{O}_1)\pi_1}{\hat{p}(z)} = \frac{\hat{p}(z \mid \mathcal{O}_1)\pi_1}{\hat{p}(z \mid \mathcal{O}_1)\pi_1 + \hat{p}(z \mid \mathcal{O}_2)\pi_2}$$

Future Directions

- Algorithm for computing Fréchet mean.
 - \exists algorithm for computing Fréchet mean in NPC spaces.
 - D_p is not NPC and the Fréchet mean is not unique in D_p .

Future Directions

- Algorithm for computing Fréchet mean.
 - \exists algorithm for computing Fréchet mean in NPC spaces.
 - D_p is not NPC and the Fréchet mean is not unique in D_p .

- Convergence results
 - We would like to show that persistence diagrams computed for samples from a probability measure converge to the persistence diagram of the actual probability measure.

Future Directions

- Algorithm for computing Fréchet mean.
 - \exists algorithm for computing Fréchet mean in NPC spaces.
 - D_p is not NPC and the Fréchet mean is not unique in D_p .

- Convergence results
 - We would like to show that persistence diagrams computed for samples from a probability measure converge to the persistence diagram of the actual probability measure.

- Similar results for other topological summaries.
 - For example, Reeb graphs.

Collaborators

John Harer

Y. MILEYKO, S. MUKHERJEE, AND J. HARER. Probability measures on the space of persistence diagrams. Inverse Problems, in press.

D. COHEN-STEINER, H. EDELSBRUNNER, J. HARER, AND Y. MILEYKO. Lipschitz functions have L_p -stable persistence, Foundations of Computational Mathematics Journal, Vol.10, No.2, pp. 127–139, 2010

H. EDELSBRUNNER, D. LETSCHER AND A. ZOMORODIAN. Topological persistence and simplification. *Discrete Comput. Geom.* 28 (2002), 511–533.

Thank you.