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Minimal Rank of Circulants

xt 0 0 0 x3 0 x
X2 X1 0 0 0 X3 0
0 x xx 0 0 0 x3

M(x1,%x2,x3) = | x3 0 x2 x3 0 0 O
0 x3 0 x x3 0 O
0 0 x3 0 x x1 O
0 0 0 X3 0 X2 X1

The minimal rank of M(x) may depend on the field:
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Minimal Rank of Circulants

xt 0 0 0 x3 0 x
X2 X1 0 0 0 X3 0
0 x xx 0 0 0 x3

M(x1,%x2,x3) = | x3 0 x2 x3 0 0 O
0 x3 0 x x3 0 O
0 0 x3 0 x x1 O
0 0 0 X3 0 X2 X1

The minimal rank of M(x) may depend on the field:

6 F=Q
min { rank M(x) : 0#xecF*}={ 5 F=C
4 F=T,.

This has something to do with RP? . ..




Topological Terminology

A,—1 = (n— 1)-simplex.

For a simplicial complex X:

X&) = k-dimensional skeleton of X.

f(X) = number of k-dimensional faces of X.
Hy(X;F) = k-th Homology of X with F coefficients.

hi(X; F) = dim Hy(X; F).
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A,_1 = the (n — 1)-simplex on the vertex set G.
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An Arithmetical Construction of Complexes [LMR]

G finite abelian group of order n, AC G .
A,_1 = the (n — 1)-simplex on the vertex set G.

The Sum Complex

XA7k=A£,k:11)U{UCG:|J|:k+1 and ZXEA}

xXeo

Remark
If k+ 1 is coprime to n then f(Xa ) = %(";1). Hence:

> Al > k+1= fi(Xak) > ("1) = He(Xax) # 0.
> Al = k+1= fi(Xak) = (") and Xax is pure.
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A={0,1,3} C G =1,

Triangulation of RIP? Xap ~ RP?
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Finite abelian group with exponent £.
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The Finite Fourier Transform

G — Finite abelian group with exponent (.

F — Field that contains a primitive £ — th root of 1.
G — [ — valued characters of G.

F[G] — F — valued functions on G.

The Fourier Transform F : F[G] — F[a] ;



The Homology of Xa «

A:{al"'-aam} ) /G\:{]-:XO,Xla--anfl}
Boxk={BC{l,....,n—1}:|B| =k}
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The Homology of Xa «

A:{al"'-aam} ) /G\:{]-:XO,Xla--anfl}
Boxk={BC{l,....,n—1}:|B| =k}
For B={i1 <--- <ix} € Bpy let

1 xi(a1) - xila1)
Mo — 1 Xfl(_az) Xik@z)
1 xi(am) o xi(am)

Theorem [LMR]: If k + 1 is coprime to n then:

m (n—1 1
hk(XAJ(,]F) = k—H< K > — k—H BEZB rank MB .
n,k



Simplicial Cohomology

m-Cochains:

C™(G) = skew-symmetric F-valued functions on G™*!

Coboundary operator:
dp: C™(G) — C™HG)
m+1

Am@ (%05 - - Xm1) = D _(=1)'@(x0s- -, Kis -y Xent1)

i=0



H*~1(Xa k) via Fourier Transform

Let T be the automorphism of G* given by

T(x1s--xk) = Oexgh - oxexg Hxg )

Claim 1: g € F(B*Y(Xax)) iff g € C<-(G) and

g(Xl""an) =0
whenever x1,...,xk # 1.



H*~1(Xa k) via Fourier Transform

Let T be the automorphism of G* given by

T(x1s--xk) = Oexgh - oxexg Hxg )

Claim 1: g € F(B*Y(Xax)) iff g € C<-(G) and

g(Xl""an) =0
whenever x1,...,xk # 1.

Claim 2: g € F(Z*Y(Xa, k)) iff g € C*1(G) and

x)+z g(T'x)=0

for all x = (x1,---,Xxk) € Gk and a € A.



The Cohomology of Xj «

Theorem [LMR]: If k + 1 is coprime to n then:

m n—1 1
hi(Xa i F) = k——i-1< P > S BGZB rank Mg .
n,k

Outline of Proof: Using lemmas 1 & 2 we explicitly compute
F(ZH(Xa, k) F(B* 1 (Xak))

obtaining in particular that

n—1 1
hkfl(XA,k;F) = ( K > — k——|—1 Z rank MB .
BEB,,,;(

hi(Xak; F) is then determined using the Euler-Poincaré relation.
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Higher Dimensional Trees

A Tree is an acyclic 1-dimensional simplicial complex on n vertices
with n — 1 edges.

What is the higher dimensional analogue of a tree?
A k-Hypertree on n vertices is a simplicial complex X such that:
>A$ﬁcXcAﬂl

> f(X) = (")
> Hk(X,Q) =0

Remark: A k-Hypertree is always Q-acyclic. However, it may (and
usually will) have nontrivial homology over other fields.



Examples of k-Hypertrees

A Recursive Construction
C(n, k) = the family of all k-hypertrees on [n].

XelCln—1,k) , YeC(ln—1,k—1) = XUYxneC(n,k).

Remark: This construction preserves collapsibility.
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Examples of k-Hypertrees

A Recursive Construction
C(n, k) = the family of all k-hypertrees on [n].

XecCln—1,k) , YeCln—1,k—1) = XUYxneC(n k).

Remark: This construction preserves collapsibility.

A collapsible 2-Hypertree RP?: a Non-Acyclic 2-Hypertree

=
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Enumerative Aspects

Cayley's Formula (1889)
2

The number of trees on n vertices is n"~~.

Kalai's Theorem (1983)

Yo (X z)? = a0

XeC(n,k)
Problem:
Compute (or estimate) |C(n, k).

Conjecture:
Most k-hypertrees are not Z-acyclic.
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Chebotarev's Theorem

w = wp = exp(27i/n) a primitive n-th root of unity.

Fourier Matrix:

1 1 1 1

1 w w2 w1
F, = .

1 ™1 w2(r.171) w(n;l)z

Chebotarév's Theorem (1926)

If nis prime then all square submatrices of F, are non-singular.

Various other proofs by Resetnyak (1955), Dieudonné (1970),
Newman (1975), Evans and Stark (1977), Frenkel (2003), ...



Chebotarév's Approach

The p-adic Valuation

Let x = pk% with a, b integers coprime to p.
p-adic order of x: ordp(x) =k .
p-adic valuation of x: x|, = p~k .

Qp = Completion of Q with respect to | - |, .
The p-adic valuation extends to Qp(wp) , e.8.
1

1-— = —.
ordp(1 — wp) |



Chebotarév's Approach

The p-adic Valuation

Let x = pk% with a, b integers coprime to p.
p-adic order of x: ordp(x) =k .
p-adic valuation of x: x|, = p~k .

Qp = Completion of Q with respect to | - |, .
The p-adic valuation extends to Qp(wp) , e.8.

1
1-— = —.
ordp(1 — wp) |

Chebotarév's Theorem:
Let M be a k x k submatrix of the Fourier matrix of order p.

Then: K(k— 1)
ord (det M) = —— 7



A New Family of Hypertrees

Let pbeaprime, ACG=Z,, |[Al=k+1.

The k-th homology of Xga j is

p—1 1
.Q) = ——— 3 rank Mg
hi(Xa,k; Q) ( B > k+1BeB rank Mg
P,k



A New Family of Hypertrees

Let pbeaprime, ACG=Z,, |[Al=k+1.

The k-th homology of Xga j is
_ _(p—1 1
hk(XA,ka)—< P >k—+1 Z rank Mg .
BEBp’k
Chebotarév’'s Theorem implies that for all B:

rank Mg = k + 1.



A New Family of Hypertrees

Let pbeaprime, ACG=Z,, |[Al=k+1.

The k-th homology of Xga j is

-1 1
h(Xak; Q) = (pk >k—+1 Z rank Mg .

BEBp,k
Chebotarév’'s Theorem implies that for all B:

rank Mg = k + 1.

Corollary [LMR]: Xa is a k-hypertree.
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Collapsibility and Acyclicity of Sum Complexes

Theorem [LMR]:
Let AC G =Zp, |A|=k+1. Then:
Xa,k is k-collapsible <> A'is an arithmetic progression.

Problem:

Is there an A C G, |A| = k + 1 such that A is not an arithmetic
progression but Hx_1(Xax;Z) =07

Example: 2-trees from A ={0,1,3} C Z,

Assume: p prime and n = p™ — 1 is coprime to 3. Then:

]
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Uncertainty Principles

Fourier theoretic incarnations of various physical uncertainty
principles roughly assert that a non-zero function f and its Fourier
Transform f cannot both be concentrated on small sets.
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Uncertainty Principles

Fourier theoretic incarnations of various physical uncertainty
principles roughly assert that a non-zero function f and its Fourier
Transform f cannot both be concentrated on small sets.

Fourier Transform of f € L2(R):

(&) = / f(x) exp(—27ix¢) dx

X

Classical Uncertainty Inequality:
If ||f|]2 =1 then

[ ircaa - [P = g




The Discrete Uncertainty Principle

Theorem [Donoho and Stark]: For any 0 # f € F[G]

|supp(f)| - Isupp(f)| > |G| .
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The Discrete Uncertainty Principle

Theorem [Donoho and Stark]: For any 0 # f € F[G]

|supp(f)| - |supp(F)| > |G| .

Case of Equality:
f = 1y where H is subgroup of G.

A stronger statement holds for F = C and G = Z,,.
Theorem [Tao and others]: For a prime p and 0 # f € C[Z,]:

|supp(F)| + |supp(F)| > p+1 .



A Common Extension

Theorem [M]: Let f € C[G] and let di < d» be two consecutive
divisors of |G| = n such that di < k = |supp(f)| < d». Then

n

di+dr— k) .
d1d2(1+2 )

|supp(f)| >



A Common Extension

Theorem [M]: Let f € C[G] and let di < d» be two consecutive
divisors of |G| = n such that di < k = |supp(f)| < d». Then

-~ n
f)]| > —(di+do—k) .
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A Common Extension

Theorem [M]: Let f € C[G] and let di < d» be two consecutive
divisors of |G| = n such that di < k = |supp(f)| < d». Then

n

)| >
|supp(f)| > ads

(d1+d2—k) .

old bound new bound

_ (supp (1), supp())
(supp (1) Isupp ()

15



Uncertainty Numbers

For a subset A C G let:

u(G, A;F) = min{ |supp(f)| : 0+ f € F[G], supp(f) C A }.



Uncertainty Numbers

For a subset A C G let:
u(G, A;F) = min{ |supp(f)| : 0+ f € F[G], supp(f) C A }.

Matrix Formulation
For x=(x;:a€ A) let M(x) bethe G x G matrix

MeE ) ={ 3 h 65

Then

u(G,A;F) = min{ rank M(x) : 0#x e FA }.



Uncertainty and Homology

Theorem [M]:

H(Xa:F)#0 = u(G,AF)<n—k—1.
If gcd(k 4+ 1, n) =1 then the converse holds:

U(G,A;F) <n—-k-1 = Hk(XA7k;F)#O.



Uncertainty and Homology

Theorem [M]:

H(Xa:F)#0 = u(G,AF)<n—k—1.
If gcd(k 4+ 1, n) =1 then the converse holds:

U(G,A;F) <n—-k-1 = Hk(XA7k;F)#O.

Example: G =7;, A=1{0,1,3} , Xa, ~ RP?

H,(RP?;C)=0 = u(G,A;C)=5.
Hy(RP% ) =F, = u(G,ATF,) =4



Complete Balanced Complexes

Gy, . . ., G finite abelian groups with discrete topology.
k
N =TTio(IGi| = 1).

Y =Gyx---xGe ~ SKv...vSK (N times)
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Complete Balanced Complexes

Gy, . . ., G finite abelian groups with discrete topology.
k
N =TTio(IGi| = 1).

Y =Gyx---xGe ~ SKv...vSK (N times)

2

12
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Fourier Transform of Couboundaries

G = Gy X -+ X Gj = oriented k-simplices of Y.
The Balanced Complex of A C G is X(A) = Y(--D U A,
The k-Cocycles of X(A) are:

ZK(X(A); Z) = CK(X(A); Z) = ZIA].
Let 1; be the trivial character of G; and let
Gt = (Go—{1o}) x -+ x (G — {14}).
Proposition [M]: The k-Coboundaries of X(A) are:

BX(X(A);Z) = {fia: f € Z[G] such that supp(f) C G — G}.



Balanced Complexes from Arithmetic

Notation

po, - - ., Pk distinct primes, n = pg - - pk.
G="2Zpy X+ X Lp, =Ly

7y ={meZ,:gcd(m,n)=1}.

25| = @(n) = [Tio(pi — 1).



Balanced Complexes from Arithmetic

Notation

po, - - ., Pk distinct primes, n = pg - - pk.
G="2Zpy X+ X Lp, =Ly

7y ={meZ,:gcd(m,n)=1}.

25| = @(n) = [Tio(pi — 1).

Musiker-Reiner Complexes

Let Ag = {p(n)+1,...,n—1}.
For AC {0,...,¢(n)} let

Ka = X(AU Ao)



Homology of Kij

Let w = exp(%Z) be a primitive n-th root of unity.

The n-th cyclotomic polynomial:

@(n)
on(z) = [[(z—)) =D g7 €z[z].
j=0

JjeLy



Homology of Kij

Let w = exp(%Z) be a primitive n-th root of unity.
The n-th cyclotomic polynomial:

@(n)
on(z) = [[(z—)) =D g7 €z[z].
j=0

JjeLy

Theorem [Musiker and Reiner]:
For j € {0,...,¢(n)}
Z)GZ i=k—1

I:I,-(K{J-};Z)% Z i=kandc =0
0 otherwise.



f Ka
Homology o
o

For A ¢ CaA = d
an
Z
Y2 S
j-J
C
()}Iet (J
n
)
0,... A) €
{
or

£0
cA
d(CA) CaA = 0.
gc

2



Homology of Kj

For AC {0,...,0(n)} let ca = (¢; : j € A) € Z* and

dy = { ged(ca) ca#0

0 A = 0.
Theorem [M]:
Z)dal, i=k—1
. - Z‘A| i =k and dAZO
Hi(Ka&iZ) = 8 2la-1 ke and da#0

0 otherwise.



Sketch of Proof

The k-Coboundaries of K4

BX(Ka: Z) = {fipun, : f € Z[Zy) , supp(F) C Zp — L)} =

{flava, - f € Z[Z,] , f(m)=0 for all meZy)} =

{faum - F € Z[Z4), F(1) = 0} & B(A).



Sketch of Proof

The k-Coboundaries of K4

B*(Kai Z) = {fiaua, : f € ZIZy) , supp(f) C Zn— L)} =

~

{flava, - f € Z[Z,] , f(m)=0 for all meZy)} =

{faum - F € Z[Z4), F(1) = 0} & B(A).

The k-Cohomology of K,

ZIA] aef

H*(Ka; Z) = BA)

H(A).
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For j € AU Ag define gj € Z[AU Ao] by gj(i) = dj;.
[gj] = image of gj in H(A).
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(i) H(A) is generated by {[gj] : j € A}.
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Sketch of Proof (Cont.)

For j € AU Ag define gj € Z[AU Ao] by gj(i) = dj;.
[gj] = image of gj in H(A).

Claim:
(i) H(A) is generated by {[gj] : j € A}.

(i) The minimal relation between {[gj]};ca is
Y glgl=0.
JEA

Corollary:

HX(Ka) = H(A) = Z[A]/Zca = 2~ © 7./ daZ .



Proof of (i)

Let t € Ag. There exist up,. .. _1 € Z such that
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Let t € Ag. There exist up,. .. 1 € Z such that

» Up(n)—
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and f(¢) = 0 otherwise.



Proof of (i)

Let t € Ag. There exist up,. .. 1 € Z such that

» Up(n)—

e(n)—

Z Ugw +wt=0.

Define f € Z[Zp] by f(t) =1, f(£) = up for 0 < £ < ¢(n) — 1
and f(¢) = 0 otherwise.

Hence
¢(n)-1

Z uw' +wt=0 =
=0

> uigi+8& = fiaua, €BA) = [&] == ujlgl
JEA JEA

)
—~~
—



Proof of (ii)

Define f € Z[Zy] by

[ a 0<E<o(n)
F0) = { 0 otherwise.



Proof of (ii)

Define f € Z[Z,] by

f(f):{ a 0<1<y(n)

0 otherwise.
Then ?(1) = d,(w) =0.

Therefore

Z Ci& = f\AUAo € B(A),
JjeA

hence ZjeA cilg] = 0.



Proof of (ii)
Define f € Z[Zy] by

[ a 0<E<o(n)
F0) = { 0 otherwise.

Then (1) = ®,(w) = 0.

Therefore
Z cigj = flaua, € B(A),
JEA

hence > ;-4 cilgj] = 0.

The minimality of this relation follows from the minimality of ®(z).



