Fourier Transform and Homology

Roy Meshulam
Technion – Israel Institute of Technology

Workshop on Computational Topology Fields Institute, November 2011

Sum Complexes and Hypertrees

Joint work with N. Linial and M. Rosenthal

- Sum Complexes and their homology
- Hypertrees and Chebotarëv's Theorem

Sum Complexes and Hypertrees

Joint work with N. Linial and M. Rosenthal

- Sum Complexes and their homology
- Hypertrees and Chebotarëv's Theorem

Uncertainty Numbers and Homology

- Discrete Uncertainty Principles
- Uncertainty Numbers and Sum Complexes

Sum Complexes and Hypertrees

Joint work with N. Linial and M. Rosenthal

- Sum Complexes and their homology
- Hypertrees and Chebotarëv's Theorem

Uncertainty Numbers and Homology

- Discrete Uncertainty Principles
- Uncertainty Numbers and Sum Complexes

Balanced Complexes

- Fourier Transform of Coboundaries
- Application to Musiker-Reiner Complexes

Minimal Rank of Circulants

$$M(x_1, x_2, x_3) = \begin{bmatrix} x_1 & 0 & 0 & 0 & x_3 & 0 & x_2 \\ x_2 & x_1 & 0 & 0 & 0 & x_3 & 0 \\ 0 & x_2 & x_1 & 0 & 0 & 0 & x_3 \\ x_3 & 0 & x_2 & x_1 & 0 & 0 & 0 \\ 0 & x_3 & 0 & x_2 & x_1 & 0 & 0 \\ 0 & 0 & x_3 & 0 & x_2 & x_1 & 0 \\ 0 & 0 & 0 & x_3 & 0 & x_2 & x_1 \end{bmatrix}$$

Minimal Rank of Circulants

$$M(x_1, x_2, x_3) = \begin{bmatrix} x_1 & 0 & 0 & 0 & x_3 & 0 & x_2 \\ x_2 & x_1 & 0 & 0 & 0 & x_3 & 0 \\ 0 & x_2 & x_1 & 0 & 0 & 0 & x_3 \\ x_3 & 0 & x_2 & x_1 & 0 & 0 & 0 \\ 0 & x_3 & 0 & x_2 & x_1 & 0 & 0 \\ 0 & 0 & x_3 & 0 & x_2 & x_1 & 0 \\ 0 & 0 & 0 & x_3 & 0 & x_2 & x_1 \end{bmatrix}$$

The minimal rank of M(x) may depend on the field:

$$\label{eq:min} \text{min } \{ \ \mathrm{rank} \ \mathrm{M}(\mathrm{x}) \ : \ 0 \neq \mathrm{x} \in \mathbb{F}^3 \ \} = \left\{ \begin{array}{ll} 6 & \mathbb{F} = \mathbb{Q} \\ 5 & \mathbb{F} = \mathbb{C} \\ 4 & \mathbb{F} = \mathbb{F}_2. \end{array} \right.$$

Minimal Rank of Circulants

$$M(x_1, x_2, x_3) = \begin{bmatrix} x_1 & 0 & 0 & 0 & x_3 & 0 & x_2 \\ x_2 & x_1 & 0 & 0 & 0 & x_3 & 0 \\ 0 & x_2 & x_1 & 0 & 0 & 0 & x_3 \\ x_3 & 0 & x_2 & x_1 & 0 & 0 & 0 \\ 0 & x_3 & 0 & x_2 & x_1 & 0 & 0 \\ 0 & 0 & x_3 & 0 & x_2 & x_1 & 0 \\ 0 & 0 & 0 & x_3 & 0 & x_2 & x_1 \end{bmatrix}$$

The minimal rank of M(x) may depend on the field:

$$\text{min } \{ \text{ rank } M(x) \ : \ 0 \neq x \in \mathbb{F}^3 \ \} = \left\{ \begin{array}{l} 6 & \mathbb{F} = \mathbb{Q} \\ 5 & \mathbb{F} = \mathbb{C} \\ 4 & \mathbb{F} = \mathbb{F}_2. \end{array} \right.$$

This has something to do with \mathbb{RP}^2 ...

Topological Terminology

$$\Delta_{n-1} = (n-1)$$
-simplex.

For a simplicial complex X:

 $X^{(k)} = k$ -dimensional skeleton of X.

 $f_k(X) = \text{number of } k\text{-dimensional faces of } X.$

 $H_k(X; \mathbb{F}) = k$ -th Homology of X with \mathbb{F} coefficients.

$$h_k(X;\mathbb{F})=\text{dim}\,H_k(X;\mathbb{F}).$$

An Arithmetical Construction of Complexes [LMR]

G finite abelian group of order $n,\ A\subset G$. $\Delta_{n-1}=\text{the }(n-1)\text{-simplex on the vertex set }G.$

An Arithmetical Construction of Complexes [LMR]

G finite abelian group of order $n,\ A\subset G$. $\Delta_{n-1}=$ the (n-1)-simplex on the vertex set G.

The Sum Complex

$$X_{A,k} = \Delta_{n-1}^{(k-1)} \cup \{ \ \sigma \subset G : |\sigma| = k+1 \ \text{ and } \ \sum_{x \in \sigma} x \in A \ \}$$

An Arithmetical Construction of Complexes [LMR]

G finite abelian group of order $n,\ A\subset G$. $\Delta_{n-1}=$ the (n-1)-simplex on the vertex set G.

The Sum Complex

$$X_{A,k} = \Delta_{n-1}^{(k-1)} \cup \{ \ \sigma \subset G : |\sigma| = k+1 \ \text{and} \ \sum_{x \in \sigma} x \in A \ \}$$

Remark

If k+1 is coprime to n then $f_k(X_{A,k}) = \frac{|A|}{k+1} {n-1 \choose k}$. Hence:

- $|A| > k+1 \Rightarrow f_k(X_{A,k}) > {n-1 \choose k} \Rightarrow H_k(X_{A,k}) \neq 0.$
- $ightharpoonup |A| = k+1 \Rightarrow f_k(X_{A,k}) = \binom{n-1}{k}$ and $X_{A,k}$ is pure.

From Fano Plane to \mathbb{RP}^2

$$\textit{A} = \{0,1,3\} \subset \textit{G} = \mathbb{Z}_7$$

From Fano Plane to \mathbb{RP}^2

$$A = \{0,1,3\} \subset G = \mathbb{Z}_7$$

Triangulation of \mathbb{RP}^2

From Fano Plane to \mathbb{RP}^2

$$A = \{0,1,3\} \subset G = \mathbb{Z}_7$$

Triangulation of \mathbb{RP}^2

$X_{A,2}\simeq \mathbb{RP}^2$

The Finite Fourier Transform

```
G — Finite abelian group with exponent \ell. \mathbb{F} — Field that contains a primitive \ell — th root of 1. \widehat{G} — \mathbb{F} — valued characters of G. \mathbb{F}[G] — \mathbb{F} — valued functions on G.
```

The Finite Fourier Transform

```
G - Finite abelian group with exponent \ell.
```

 \mathbb{F} - Field that contains a primitive ℓ - th root of 1.

 \widehat{G} — \mathbb{F} — valued characters of G.

 $\mathbb{F}[G]$ — \mathbb{F} — valued functions on G.

The Fourier Transform
$$\mathcal{F}: \mathbb{F}[G] \to \mathbb{F}[\widehat{G}]$$
:

$$\mathcal{F}(f)(\chi) = \widehat{f}(\chi) = \sum_{x \in G} \chi(-x)f(x)$$
.

The Homology of $X_{A,k}$

$$A = \{a_1, \dots, a_m\} , \widehat{G} = \{1 = \chi_0, \chi_1, \dots, \chi_{n-1}\}$$

$$\mathcal{B}_{n,k} = \{B \subset \{1, \dots, n-1\} : |B| = k\}$$
For $B = \{i_1 < \dots < i_k\} \in \mathcal{B}_{n,k}$ let
$$M_B = \begin{bmatrix} 1 & \chi_{i_1}(a_1) & \dots & \chi_{i_k}(a_1) \\ 1 & \chi_{i_1}(a_2) & \dots & \chi_{i_k}(a_2) \\ \vdots & \vdots & & \vdots \\ 1 & \chi_{i_1}(a_m) & \dots & \chi_{i_k}(a_m) \end{bmatrix}$$

The Homology of $X_{A,k}$

$$\begin{split} A &= \{a_1, \dots, a_m\} \quad , \quad \widehat{G} &= \{1 = \chi_0, \chi_1, \dots, \chi_{n-1}\} \\ \mathcal{B}_{n,k} &= \{B \subset \{1, \dots, n-1\} : |B| = k\} \\ \text{For } B &= \{i_1 < \dots < i_k\} \in \mathcal{B}_{n,k} \text{ let} \end{split}$$

$$M_B = \left[egin{array}{cccc} 1 & \chi_{i_1}(a_1) & \dots & \chi_{i_k}(a_1) \\ 1 & \chi_{i_1}(a_2) & \dots & \chi_{i_k}(a_2) \\ \vdots & \vdots & & \vdots \\ 1 & \chi_{i_1}(a_m) & \dots & \chi_{i_k}(a_m) \end{array}
ight]$$

Theorem [LMR]: If k + 1 is coprime to n then:

$$h_k(X_{A,k};\mathbb{F}) = \frac{m}{k+1} \binom{n-1}{k} - \frac{1}{k+1} \sum_{B \in \mathcal{B}} rank M_B$$
.

Simplicial Cohomology

m-Cochains:

 $C^m(G) = \text{skew-symmetric } \mathbb{F}\text{-valued functions on } G^{m+1}$

Coboundary operator:

$$d_m: C^m(G) \to C^{m+1}(G)$$

$$d_m\phi(x_0,\ldots,x_{m+1}) = \sum_{i=0}^{m+1} (-1)^i \phi(x_0,\ldots,\widehat{x_i},\ldots,x_{m+1})$$

$H^{k-1}(X_{A,k})$ via Fourier Transform

Let T be the automorphism of \widehat{G}^k given by

$$T(\chi_1,\ldots,\chi_k) = (\chi_2\chi_1^{-1},\ldots,\chi_k\chi_1^{-1},\chi_1^{-1})$$

Claim 1:
$$g \in \mathcal{F}(B^{k-1}(X_{A,k}))$$
 iff $g \in C^{k-1}(\widehat{G})$ and

$$g(\chi_1,\ldots,\chi_k)=0$$

whenever $\chi_1, \ldots, \chi_k \neq \mathbf{1}$.

$$H^{k-1}(X_{A,k})$$
 via Fourier Transform

Let T be the automorphism of \widehat{G}^k given by

$$T(\chi_1,\ldots,\chi_k) = (\chi_2\chi_1^{-1},\ldots,\chi_k\chi_1^{-1},\chi_1^{-1})$$

Claim 1:
$$g \in \mathcal{F}(B^{k-1}(X_{A,k}))$$
 iff $g \in C^{k-1}(\widehat{G})$ and

$$g(\chi_1,\ldots,\chi_k)=0$$

whenever $\chi_1, \ldots, \chi_k \neq \mathbf{1}$.

Claim 2:
$$g \in \mathcal{F}(Z^{k-1}(X_A, k))$$
 iff $g \in C^{k-1}(\widehat{G})$ and

$$g(\chi) + \sum_{i=1}^{\kappa} (-1)^{ki} \chi_i(-a) g(T^i \chi) = 0$$

for all
$$\chi = (\chi_1, \dots, \chi_k) \in \widehat{G}^k$$
 and $a \in A$.

The Cohomology of $X_{A,k}$

Theorem [LMR]: If k + 1 is coprime to n then:

$$h_k(X_{A,k};\mathbb{F}) = rac{m}{k+1}inom{n-1}{k} - rac{1}{k+1}\sum_{B\in\mathcal{B}_{n,k}} \mathit{rank}\; M_B$$
 .

Outline of Proof: Using lemmas 1 & 2 we explicitly compute

$$\mathcal{F}(Z^{k-1}(X_A,k))/\mathcal{F}(B^{k-1}(X_{A,k}))$$

obtaining in particular that

$$h_{k-1}(X_{A,k};\mathbb{F}) = {n-1 \choose k} - rac{1}{k+1} \sum_{B \in \mathcal{B}_{n,k}} \operatorname{rank} M_B$$
.

 $h_k(X_{A,k}; \mathbb{F})$ is then determined using the Euler-Poincaré relation.

A Tree is an acyclic 1-dimensional simplicial complex on n vertices with n-1 edges.

A Tree is an acyclic 1-dimensional simplicial complex on n vertices with n-1 edges.

What is the higher dimensional analogue of a tree?

A Tree is an acyclic 1-dimensional simplicial complex on n vertices with n-1 edges.

What is the higher dimensional analogue of a tree?

A k-Hypertree on n vertices is a simplicial complex X such that:

$$\blacktriangleright \ \Delta_{n-1}^{(k-1)} \subset X \subset \Delta_{n-1}^{(k)}$$

$$f_k(X) = \binom{n-1}{k}$$

$$H_k(X;\mathbb{Q}) = 0$$

A Tree is an acyclic 1-dimensional simplicial complex on n vertices with n-1 edges.

What is the higher dimensional analogue of a tree?

A k-Hypertree on n vertices is a simplicial complex X such that:

$$\blacktriangleright \ \Delta_{n-1}^{(k-1)} \subset X \subset \Delta_{n-1}^{(k)}$$

$$f_k(X) = \binom{n-1}{k}$$

$$H_k(X;\mathbb{Q}) = 0$$

Remark: A k-Hypertree is always \mathbb{Q} -acyclic. However, it may (and usually will) have nontrivial homology over other fields.

A Recursive Construction

C(n, k) = the family of all k-hypertrees on [n].

$$X \in \mathcal{C}(n-1,k)$$
, $Y \in \mathcal{C}(n-1,k-1)$ \Rightarrow $X \cup Y * n \in \mathcal{C}(n,k)$.

Remark: This construction preserves collapsibility.

A Recursive Construction

C(n, k) = the family of all k-hypertrees on [n].

$$X \in \mathcal{C}(n-1,k)$$
 , $Y \in \mathcal{C}(n-1,k-1)$ \Rightarrow $X \cup Y * n \in \mathcal{C}(n,k)$.

Remark: This construction preserves collapsibility.

A Recursive Construction

C(n, k) = the family of all k-hypertrees on [n].

$$X \in \mathcal{C}(n-1,k)$$
 , $Y \in \mathcal{C}(n-1,k-1)$ \Rightarrow $X \cup Y * n \in \mathcal{C}(n,k)$.

Remark: This construction preserves collapsibility.

A Recursive Construction

C(n, k) = the family of all k-hypertrees on [n].

$$X \in \mathcal{C}(n-1,k)$$
 , $Y \in \mathcal{C}(n-1,k-1)$ \Rightarrow $X \cup Y * n \in \mathcal{C}(n,k)$.

Remark: This construction preserves collapsibility.

A Recursive Construction

C(n, k) = the family of all k-hypertrees on [n].

$$X \in \mathcal{C}(n-1,k)$$
 , $Y \in \mathcal{C}(n-1,k-1)$ \Rightarrow $X \cup Y * n \in \mathcal{C}(n,k)$.

Remark: This construction preserves collapsibility.

A Recursive Construction

C(n, k) = the family of all k-hypertrees on [n].

$$X \in \mathcal{C}(n-1,k)$$
 , $Y \in \mathcal{C}(n-1,k-1)$ \Rightarrow $X \cup Y * n \in \mathcal{C}(n,k)$.

Remark: This construction preserves collapsibility.

A Recursive Construction

C(n, k) = the family of all k-hypertrees on [n].

$$X \in \mathcal{C}(n-1,k)$$
 , $Y \in \mathcal{C}(n-1,k-1)$ \Rightarrow $X \cup Y * n \in \mathcal{C}(n,k)$.

Remark: This construction preserves collapsibility.

 \mathbb{RP}^2 : a Non-Acyclic 2-Hypertree

Enumerative Aspects

Cayley's Formula (1889)

The number of trees on n vertices is n^{n-2} .

Enumerative Aspects

Cayley's Formula (1889)

The number of trees on n vertices is n^{n-2} .

Kalai's Theorem (1983)

$$\sum_{X\in\mathcal{C}(n,k)}|H_{k-1}(X;\mathbb{Z})|^2=n^{\binom{n-2}{k}}.$$

Enumerative Aspects

Cayley's Formula (1889)

The number of trees on n vertices is n^{n-2} .

Kalai's Theorem (1983)

$$\sum_{X\in\mathcal{C}(n,k)}|H_{k-1}(X;\mathbb{Z})|^2=n^{\binom{n-2}{k}}.$$

Problem:

Compute (or estimate) |C(n, k)|.

Enumerative Aspects

Cayley's Formula (1889)

The number of trees on n vertices is n^{n-2} .

Kalai's Theorem (1983)

$$\sum_{X\in\mathcal{C}(n,k)}|H_{k-1}(X;\mathbb{Z})|^2=n^{\binom{n-2}{k}}.$$

Problem:

Compute (or estimate) |C(n, k)|.

Conjecture:

Most k-hypertrees are not \mathbb{Z} -acyclic.

Chebotarëv's Theorem

 $\omega = \omega_n = \exp(2\pi i/n)$ a primitive *n*-th root of unity.

Fourier Matrix:

$$F_{n} = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \omega & \omega^{2} & \dots & \omega^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \dots & \omega^{(n-1)^{2}} \end{bmatrix}$$

Chebotarëv's Theorem

 $\omega = \omega_n = \exp(2\pi i/n)$ a primitive *n*-th root of unity.

Fourier Matrix:

$$F_{n} = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \omega & \omega^{2} & \dots & \omega^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \dots & \omega^{(n-1)^{2}} \end{bmatrix}$$

Chebotarëv's Theorem (1926)

If n is prime then all square submatrices of F_n are non-singular.

Chebotarëv's Theorem

 $\omega = \omega_n = \exp(2\pi i/n)$ a primitive *n*-th root of unity.

Fourier Matrix:

$$F_{n} = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \omega & \omega^{2} & \dots & \omega^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \dots & \omega^{(n-1)^{2}} \end{bmatrix}$$

Chebotarëv's Theorem (1926)

If n is prime then all square submatrices of F_n are non-singular.

Various other proofs by Resetnyak (1955), Dieudonné (1970), Newman (1975), Evans and Stark (1977), Frenkel (2003), ...

Chebotarëv's Approach

The *p*-adic Valuation

Let $x=p^k\frac{a}{b}$ with a,b integers coprime to p. p-adic order of x: $ord_p(x)=k$. p-adic valuation of x: $|x|_p=p^{-k}$. $\mathbb{Q}_p=$ Completion of \mathbb{Q} with respect to $|\cdot|_p$. The p-adic valuation extends to $\mathbb{Q}_p(\omega_p)$, e.g.

$$ord_p(1-\omega_p)=rac{1}{p-1}$$
 .

Chebotarëv's Approach

The *p*-adic Valuation

Let $x=p^k\frac{a}{b}$ with a,b integers coprime to p. p-adic order of x: $ord_p(x)=k$. p-adic valuation of x: $|x|_p=p^{-k}$. $\mathbb{Q}_p=$ Completion of \mathbb{Q} with respect to $|\cdot|_p$. The p-adic valuation extends to $\mathbb{Q}_p(\omega_p)$, e.g.

$$ord_p(1-\omega_p)=rac{1}{p-1}$$
 .

Chebotarëv's Theorem:

Let M be a $k \times k$ submatrix of the Fourier matrix of order p.

Then:

$$ord_p(\det M) = \frac{k(k-1)}{2(p-1)}$$
.

A New Family of Hypertrees

Let p be a prime, $A \subset G = \mathbb{Z}_p$, |A| = k + 1.

The k-th homology of $X_{A,k}$ is

$$h_k(X_{A,k};\mathbb{Q}) = inom{p-1}{k} - rac{1}{k+1} \sum_{B \in \mathcal{B}_{p,k}} \mathit{rank} \; M_B$$
 .

A New Family of Hypertrees

Let p be a prime, $A \subset G = \mathbb{Z}_p$, |A| = k + 1 .

The k-th homology of $X_{A,k}$ is

$$h_k(X_{A,k};\mathbb{Q}) = inom{p-1}{k} - rac{1}{k+1} \sum_{B \in \mathcal{B}_{p,k}} \mathit{rank} \; M_B$$
 .

Chebotarëv's Theorem implies that for all B:

$$rank M_B = k + 1.$$

A New Family of Hypertrees

Let p be a prime, $A \subset G = \mathbb{Z}_p$, |A| = k + 1.

The k-th homology of $X_{A,k}$ is

$$h_k(X_{A,k};\mathbb{Q}) = inom{p-1}{k} - rac{1}{k+1} \sum_{B \in \mathcal{B}_{p,k}} \mathit{rank} \; M_B$$
 .

Chebotarëv's Theorem implies that for all B:

$$rank M_B = k + 1.$$

Corollary [LMR]: $X_{A,k}$ is a k-hypertree.

Collapsibility and Acyclicity of Sum Complexes

Theorem [LMR]:

Let $A \subset G = \mathbb{Z}_p$, |A| = k + 1. Then:

 $X_{A,k}$ is k-collapsible \Leftrightarrow A is an arithmetic progression.

Collapsibility and Acyclicity of Sum Complexes

Theorem [LMR]:

Let $A \subset G = \mathbb{Z}_p$, |A| = k + 1. Then: $X_{A,k}$ is k-collapsible \Leftrightarrow A is an arithmetic progression.

Problem:

Is there an $A\subset G$, |A|=k+1 such that A is not an arithmetic progression but $\tilde{H}_{k-1}(X_{A,k};\mathbb{Z})=0$?

Collapsibility and Acyclicity of Sum Complexes

Theorem [LMR]:

Let $A \subset G = \mathbb{Z}_p$, |A| = k + 1. Then: $X_{A.k}$ is k-collapsible \Leftrightarrow A is an arithmetic progression.

Problem:

Is there an $A\subset G$, |A|=k+1 such that A is not an arithmetic progression but $\tilde{H}_{k-1}(X_{A,k};\mathbb{Z})=0$?

Example: 2-trees from $A = \{0, 1, 3\} \subset \mathbb{Z}_n$

Assume: p prime and $n = p^m - 1$ is coprime to 3. Then:

$$h_1(X_{A,2}; \mathbb{F}_p) = \begin{cases} \frac{n-1}{6} & p = 2\\ \frac{n-2}{6} & p = 3\\ \frac{n-4}{6} & p > 3. \end{cases}$$

Uncertainty Principles

Fourier theoretic incarnations of various physical uncertainty principles roughly assert that a non-zero function f and its Fourier Transform \hat{f} cannot both be concentrated on small sets.

Uncertainty Principles

Fourier theoretic incarnations of various physical uncertainty principles roughly assert that a non-zero function f and its Fourier Transform \hat{f} cannot both be concentrated on small sets.

Fourier Transform of $f \in L^2(\mathbb{R})$:

$$\widehat{f}(\xi) = \int_{x} f(x) \exp(-2\pi i x \xi) dx$$
.

Uncertainty Principles

Fourier theoretic incarnations of various physical uncertainty principles roughly assert that a non-zero function f and its Fourier Transform \hat{f} cannot both be concentrated on small sets.

Fourier Transform of $f \in L^2(\mathbb{R})$:

$$\widehat{f}(\xi) = \int_{x} f(x) \exp(-2\pi i x \xi) dx$$
.

Classical Uncertainty Inequality:

If
$$||f||_2 = 1$$
 then

$$\int_x |x|^2 |f(x)|^2 dx \cdot \int_\xi |\xi|^2 |\widehat{f}(\xi)|^2 d\xi \geq \frac{1}{16\pi^2} \ .$$

The Discrete Uncertainty Principle

Theorem [Donoho and Stark]: For any $0 \neq f \in \mathbb{F}[G]$ $|supp(f)| \cdot |supp(\widehat{f})| \geq |G| \quad .$

The Discrete Uncertainty Principle

Theorem [Donoho and Stark]: For any
$$0 \neq f \in \mathbb{F}[G]$$

$$|supp(f)| \cdot |supp(\widehat{f})| \geq |G| .$$

Case of Equality:

 $f = 1_H$ where H is subgroup of G.

The Discrete Uncertainty Principle

Theorem [Donoho and Stark]: For any $0 \neq f \in \mathbb{F}[G]$ $|supp(f)| \cdot |supp(\widehat{f})| \geq |G|$.

Case of Equality:

 $f = 1_H$ where H is subgroup of G.

A stronger statement holds for $\mathbb{F} = \mathbb{C}$ and $G = \mathbb{Z}_p$.

Theorem [Tao and others]: For a prime p and $0 \neq f \in \mathbb{C}[\mathbb{Z}_p]$:

$$|supp(f)| + |supp(\widehat{f})| \ge p + 1$$
.

A Common Extension

Theorem [M]: Let $f \in \mathbb{C}[G]$ and let $d_1 < d_2$ be two consecutive divisors of |G| = n such that $d_1 \le k = |supp(f)| \le d_2$. Then

$$|supp(\widehat{f})| \geq \frac{n}{d_1d_2}(d_1+d_2-k)$$
.

A Common Extension

Theorem [M]: Let $f \in \mathbb{C}[G]$ and let $d_1 < d_2$ be two consecutive divisors of |G| = n such that $d_1 \le k = |supp(f)| \le d_2$. Then

$$|supp(\widehat{f})| \geq \frac{n}{d_1d_2}(d_1+d_2-k)$$
 .

old bound

A Common Extension

Theorem [M]: Let $f \in \mathbb{C}[G]$ and let $d_1 < d_2$ be two consecutive divisors of |G| = n such that $d_1 \le k = |supp(f)| \le d_2$. Then

$$|supp(\widehat{f})| \geq \frac{n}{d_1d_2}(d_1+d_2-k)$$
.

Uncertainty Numbers

For a subset $A \subset G$ let:

$$u(G, A; \mathbb{F}) = \min\{ |supp(\widehat{f})| : 0 \neq f \in \mathbb{F}[G], supp(f) \subset A \}.$$

Uncertainty Numbers

For a subset $A \subset G$ let:

$$u(G, A; \mathbb{F}) = \min\{ |supp(\widehat{f})| : 0 \neq f \in \mathbb{F}[G], supp(f) \subset A \}.$$

Matrix Formulation

For $x = (x_a : a \in A)$ let M(x) be the $G \times G$ matrix

$$M(x)(g,h) = \begin{cases} x_{h-g} & h-g \in A \\ 0 & h-g \notin A. \end{cases}$$

Then

$$u(G, A; \mathbb{F}) = \min\{ \text{ rank } M(x) : 0 \neq x \in \mathbb{F}^A \}.$$

Uncertainty and Homology

Theorem [M]:

$$\tilde{H}_k(X_{A,k};\mathbb{F}) \neq 0 \quad \Rightarrow \quad u(G,A;\mathbb{F}) \leq n-k-1.$$

If gcd(k+1, n) = 1 then the converse holds:

$$u(G,A;\mathbb{F}) \leq n-k-1 \quad \Rightarrow \quad \tilde{H}_k(X_{A,k};\mathbb{F}) \neq 0.$$

Uncertainty and Homology

Theorem [M]:

$$\tilde{H}_k(X_{A,k};\mathbb{F}) \neq 0 \quad \Rightarrow \quad u(G,A;\mathbb{F}) \leq n-k-1.$$

If gcd(k+1, n) = 1 then the converse holds:

$$u(G,A;\mathbb{F}) \leq n-k-1 \quad \Rightarrow \quad \tilde{H}_k(X_{A,k};\mathbb{F}) \neq 0.$$

Example:
$$G = \mathbb{Z}_7$$
 , $A = \{0, 1, 3\}$, $X_{A,2} \simeq \mathbb{RP}^2$

$$H_2(\mathbb{RP}^2;\mathbb{C})=0 \quad \Rightarrow \quad u(G,A;\mathbb{C})=5.$$

$$H_2(\mathbb{RP}^2; \mathbb{F}_2) = \mathbb{F}_2 \quad \Rightarrow \quad u(G, A; \overline{\mathbb{F}_2}) = 4.$$

Complete Balanced Complexes

 G_0,\ldots,G_k finite abelian groups with discrete topology. $N=\prod_{i=0}^k (|G_i|-1).$

$$Y = G_0 * \cdots * G_k \simeq S^k \vee \cdots \vee S^k$$
 (N times)

Complete Balanced Complexes

 G_0, \ldots, G_k finite abelian groups with discrete topology. $N = \prod_{i=0}^k (|G_i| - 1)$.

$$Y = G_0 * \cdots * G_k \simeq S^k \vee \cdots \vee S^k$$
 (N times)

Fourier Transform of Couboundaries

 $G = G_0 \times \cdots \times G_k = \text{oriented } k\text{-simplices of } Y.$ The Balanced Complex of $A \subset G$ is $X(A) = Y^{(k-1)} \cup A$.

Fourier Transform of Couboundaries

 $G = G_0 \times \cdots \times G_k = \text{ oriented } k\text{-simplices of } Y.$ The Balanced Complex of $A \subset G$ is $X(A) = Y^{(k-1)} \cup A$. The k-Cocycles of X(A) are:

$$Z^k(X(A); \mathbb{Z}) = C^k(X(A); \mathbb{Z}) = \mathbb{Z}[A].$$

Fourier Transform of Couboundaries

 $G = G_0 \times \cdots \times G_k = \text{ oriented } k\text{-simplices of } Y.$ The Balanced Complex of $A \subset G$ is $X(A) = Y^{(k-1)} \cup A$. The k-Cocycles of X(A) are:

$$Z^k(X(A); \mathbb{Z}) = C^k(X(A); \mathbb{Z}) = \mathbb{Z}[A].$$

Let $\mathbf{1}_i$ be the trivial character of G_i and let

$$\widehat{G}^+ = (\widehat{G}_0 - \{\mathbf{1}_0\}) \times \cdots \times (\widehat{G}_k - \{\mathbf{1}_k\}).$$

Proposition [M]: The k-Coboundaries of X(A) are:

$$B^k(X(A);\mathbb{Z}) = \{f_{|A}: f \in \mathbb{Z}[G] \text{ such that } \operatorname{supp}(\widehat{f}) \subset \widehat{G} - \widehat{G}^+\}.$$

Balanced Complexes from Arithmetic

Notation

```
p_0, \ldots, p_k distinct primes, n = p_0 \cdots p_k.

G = \mathbb{Z}_{p_0} \times \cdots \times \mathbb{Z}_{p_k} = \mathbb{Z}_n.

\mathbb{Z}_n^{\times} = \{ m \in \mathbb{Z}_n : \gcd(m, n) = 1 \}.

|\mathbb{Z}_n^{\times}| = \varphi(n) = \prod_{i=0}^k (p_i - 1).
```

Balanced Complexes from Arithmetic

Notation

$$p_0, \ldots, p_k$$
 distinct primes, $n = p_0 \cdots p_k$.
 $G = \mathbb{Z}_{p_0} \times \cdots \times \mathbb{Z}_{p_k} = \mathbb{Z}_n$.
 $\mathbb{Z}_n^{\times} = \{ m \in \mathbb{Z}_n : \gcd(m, n) = 1 \}$.
 $|\mathbb{Z}_n^{\times}| = \varphi(n) = \prod_{i=0}^k (p_i - 1)$.

Musiker-Reiner Complexes

Let
$$A_0 = \{ \varphi(n) + 1, \dots, n-1 \}$$
.
For $A \subset \{0, \dots, \varphi(n) \}$ let

$$K_A = X(A \cup A_0).$$

Homology of $K_{\{j\}}$

Let $\omega = \exp(\frac{2\pi i}{n})$ be a primitive *n*-th root of unity. The *n*-th cyclotomic polynomial:

$$\Phi_n(z) = \prod_{j \in \mathbb{Z}_n^{\times}} (z - \omega^j) = \sum_{j=0}^{\varphi(n)} c_j z^j \in \mathbb{Z}[z].$$

Homology of $K_{\{j\}}$

Let $\omega = \exp(\frac{2\pi i}{n})$ be a primitive *n*-th root of unity. The *n*-th cyclotomic polynomial:

$$\Phi_n(z) = \prod_{j \in \mathbb{Z}_n^{\times}} (z - \omega^j) = \sum_{j=0}^{\varphi(n)} c_j z^j \in \mathbb{Z}[z].$$

Theorem [Musiker and Reiner]:

For
$$j \in \{0, \dots, \varphi(n)\}$$

$$ilde{H}_i(K_{\{j\}};\mathbb{Z})\cong \left\{egin{array}{ll} \mathbb{Z}/c_j\mathbb{Z} & i=k-1 \ \mathbb{Z} & i=k \ and \ c_j=0 \ 0 & otherwise. \end{array}
ight.$$

Homology of K_A

For
$$A \subset \{0, \dots, \varphi(n)\}$$
 let $c_A = (c_j : j \in A) \in \mathbb{Z}^A$ and
$$d_A = \left\{ \begin{array}{ll} \gcd(c_A) & c_A \neq 0 \\ 0 & c_A = 0. \end{array} \right.$$

Homology of K_A

For
$$A \subset \{0, \dots, \varphi(n)\}$$
 let $c_A = (c_j : j \in A) \in \mathbb{Z}^A$ and
$$d_A = \left\{ \begin{array}{ll} \gcd(c_A) & c_A \neq 0 \\ 0 & c_A = 0. \end{array} \right.$$

Theorem [M]:

$$ilde{H}_i(K_A;\mathbb{Z})\cong \left\{egin{array}{ll} \mathbb{Z}/d_A\mathbb{Z} & i=k-1 \ \mathbb{Z}^{|A|} & i=k \ ext{and} \ d_A=0 \ \mathbb{Z}^{|A|-1} & i=k \ ext{and} \ d_A
eq 0 \ 0 & otherwise. \end{array}
ight.$$

Sketch of Proof

The k-Coboundaries of K_A

$$\begin{split} B^k(K_A;\mathbb{Z}) &= \{f_{|A\cup A_0}: f\in \mathbb{Z}[\mathbb{Z}_n] \ , \ supp(\widehat{f}) \subset \mathbb{Z}_n - \mathbb{Z}_n^\times \} = \\ \{f_{|A\cup A_0}: f\in \mathbb{Z}[\mathbb{Z}_n] \ , \ \widehat{f}(m) = 0 \ \ \text{for all} \ \ m\in \mathbb{Z}_n^\times)\} &= \\ \{f_{|A\cup A_0}: f\in \mathbb{Z}[\mathbb{Z}_n] \ , \ \widehat{f}(1) = 0\} \stackrel{\text{def}}{=} \mathcal{B}(A). \end{split}$$

Sketch of Proof

The k-Coboundaries of K_A

$$\begin{split} B^k(K_A;\mathbb{Z}) &= \{f_{|A\cup A_0}: f\in \mathbb{Z}[\mathbb{Z}_n] \ , \ supp(\widehat{f}) \subset \mathbb{Z}_n - \mathbb{Z}_n^\times \} = \\ \{f_{|A\cup A_0}: f\in \mathbb{Z}[\mathbb{Z}_n] \ , \ \widehat{f}(m) = 0 \ \ \text{for all} \ \ m\in \mathbb{Z}_n^\times)\} &= \\ \{f_{|A\cup A_0}: f\in \mathbb{Z}[\mathbb{Z}_n] \ , \ \widehat{f}(1) = 0\} \stackrel{\text{def}}{=} \mathcal{B}(A). \end{split}$$

The k-Cohomology of K_A

$$H^k(K_A; \mathbb{Z}) = \frac{\mathbb{Z}[A]}{\mathcal{B}(A)} \stackrel{def}{=} \mathcal{H}(A).$$

Sketch of Proof (Cont.)

For $j \in A \cup A_0$ define $g_j \in \mathbb{Z}[A \cup A_0]$ by $g_j(i) = \delta_{ij}$. $[g_j] = \text{image of } g_j \text{ in } \mathcal{H}(A)$.

Sketch of Proof (Cont.)

For $j \in A \cup A_0$ define $g_j \in \mathbb{Z}[A \cup A_0]$ by $g_j(i) = \delta_{ij}$. $[g_j] = \text{image of } g_j \text{ in } \mathcal{H}(A)$.

Claim:

- (i) $\mathcal{H}(A)$ is generated by $\{[g_j] : j \in A\}$.
- (ii) The minimal relation between $\{[g_j]\}_{j\in A}$ is

$$\sum_{j\in A}c_j[g_j]=0.$$

Sketch of Proof (Cont.)

For $j \in A \cup A_0$ define $g_j \in \mathbb{Z}[A \cup A_0]$ by $g_j(i) = \delta_{ij}$. $[g_j] = \text{image of } g_j \text{ in } \mathcal{H}(A)$.

Claim:

- (i) $\mathcal{H}(A)$ is generated by $\{[g_j] : j \in A\}$.
- (ii) The minimal relation between $\{[g_j]\}_{j\in A}$ is

$$\sum_{j\in A}c_j[g_j]=0.$$

Corollary:

$$H^k(K_A) = \mathcal{H}(A) = \mathbb{Z}[A]/\mathbb{Z}c_A \cong \mathbb{Z}^{|A|-1} \oplus \mathbb{Z}/d_A\mathbb{Z}$$
.

Proof of (i)

Let $t \in A_0$. There exist $u_0, \ldots, u_{\varphi(n)-1} \in \mathbb{Z}$ such that

$$\sum_{\ell=0}^{\varphi(n)-1} u_{\ell} \omega^{\ell} + \omega^{t} = 0.$$

Proof of (i)

Let $t \in A_0$. There exist $u_0, \ldots, u_{\varphi(n)-1} \in \mathbb{Z}$ such that

$$\sum_{\ell=0}^{\varphi(n)-1} u_{\ell} \omega^{\ell} + \omega^{t} = 0.$$

Define $f \in \mathbb{Z}[\mathbb{Z}_n]$ by f(t) = 1, $f(\ell) = u_\ell$ for $0 \le \ell \le \varphi(n) - 1$ and $f(\ell) = 0$ otherwise.

Proof of (i)

Let $t \in A_0$. There exist $u_0, \ldots, u_{\varphi(n)-1} \in \mathbb{Z}$ such that

$$\sum_{\ell=0}^{\varphi(n)-1} u_{\ell} \omega^{\ell} + \omega^{t} = 0.$$

Define $f \in \mathbb{Z}[\mathbb{Z}_n]$ by f(t) = 1, $f(\ell) = u_\ell$ for $0 \le \ell \le \varphi(n) - 1$ and $f(\ell) = 0$ otherwise.

Hence

$$\widehat{f}(1) = \sum_{\ell=0}^{\varphi(n)-1} u_{\ell} \omega^{\ell} + \omega^{t} = 0 \quad \Rightarrow$$

$$\sum_{i \in A} u_{i} g_{j} + g_{t} = f_{|A \cup A_{0}|} \in \mathcal{B}(A) \quad \Rightarrow \quad [g_{t}] = -\sum_{i \in A} u_{i} [g_{i}].$$

Proof of (ii)

Define $f \in \mathbb{Z}[\mathbb{Z}_n]$ by

$$f(\ell) = \left\{ egin{array}{ll} c_{\ell} & 0 \leq \ell \leq arphi(n) \\ 0 & otherwise. \end{array}
ight.$$

Then
$$\widehat{f}(1) = \Phi_n(\omega) = 0$$
.

Proof of (ii)

Define $f \in \mathbb{Z}[\mathbb{Z}_n]$ by

$$f(\ell) = \left\{ egin{array}{ll} c_\ell & 0 \leq \ell \leq arphi(n) \\ 0 & otherwise. \end{array}
ight.$$

Then $\widehat{f}(1) = \Phi_n(\omega) = 0$.

Therefore

$$\sum_{j\in A}c_jg_j=f_{|A\cup A_0}\in\mathcal{B}(A),$$

hence $\sum_{j\in A} c_j[g_j] = 0$.

Proof of (ii)

Define $f \in \mathbb{Z}[\mathbb{Z}_n]$ by

$$f(\ell) = \left\{ egin{array}{ll} c_{\ell} & 0 \leq \ell \leq arphi(n) \\ 0 & otherwise. \end{array}
ight.$$

Then $\widehat{f}(1) = \Phi_n(\omega) = 0$.

Therefore

$$\sum_{j\in A}c_jg_j=f_{|A\cup A_0}\in\mathcal{B}(A),$$

hence $\sum_{j\in A} c_j[g_j] = 0$.

The minimality of this relation follows from the minimality of $\Phi(z)$.