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The minimal rank of M(x) may depend on the field:

min { rank M(x) : 0 6= x ∈ F3 } =






6 F = Q

5 F = C

4 F = F2.

This has something to do with RP2 . . .



Topological Terminology

∆n−1 = (n − 1)-simplex.

For a simplicial complex X:

X(k) = k-dimensional skeleton of X.

fk(X) = number of k-dimensional faces of X.

Hk(X; F) = k-th Homology of X with F coefficients.

hk(X; F) = dimHk(X; F).
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An Arithmetical Construction of Complexes [LMR]

G finite abelian group of order n, A ⊂ G .
∆n−1 = the (n − 1)-simplex on the vertex set G .

The Sum Complex

XA,k = ∆
(k−1)
n−1 ∪ { σ ⊂ G : |σ| = k + 1 and

∑

x∈σ

x ∈ A }

Remark
If k + 1 is coprime to n then fk(XA,k) = |A|

k+1

(
n−1
k

)
. Hence:

◮ |A| > k + 1 ⇒ fk(XA,k) >
(
n−1
k

)
⇒ Hk(XA,k) 6= 0.

◮ |A| = k + 1 ⇒ fk(XA,k) =
(
n−1
k

)
and XA,k is pure.
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The Finite Fourier Transform

G − Finite abelian group with exponent ℓ.
F − Field that contains a primitive ℓ − th root of 1.

Ĝ − F − valued characters of G .
F[G ] − F − valued functions on G .



The Finite Fourier Transform

G − Finite abelian group with exponent ℓ.
F − Field that contains a primitive ℓ − th root of 1.

Ĝ − F − valued characters of G .
F[G ] − F − valued functions on G .

The Fourier Transform F : F[G ] → F[Ĝ ] :

F(f )(χ) = f̂ (χ) =
∑

x∈G

χ(−x)f (x) .



The Homology of XA,k

A = {a1, . . . , am} , Ĝ = {1 = χ0, χ1, . . . , χn−1}
Bn,k = {B ⊂ {1, . . . , n − 1} : |B | = k}
For B = {i1 < · · · < ik} ∈ Bn,k let

MB =





1 χi1(a1) . . . χik (a1)
1 χi1(a2) . . . χik (a2)
...

...
...

1 χi1(am) . . . χik (am)
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Theorem [LMR]: If k + 1 is coprime to n then:

hk(XA,k ; F) =
m

k + 1

(
n − 1

k

)
−

1

k + 1

∑

B∈Bn,k

rank MB .



Simplicial Cohomology

m-Cochains:

Cm(G ) = skew-symmetric F-valued functions on Gm+1

Coboundary operator:

dm : Cm(G ) → Cm+1(G )

dmφ(x0, . . . , xm+1) =

m+1∑

i=0

(−1)iφ(x0, . . . , x̂i , . . . , xm+1)



Hk−1(XA,k) via Fourier Transform

Let T be the automorphism of Ĝ k given by

T (χ1, . . . , χk) = (χ2χ
−1
1 , . . . , χkχ−1

1 , χ−1
1 )

Claim 1: g ∈ F(Bk−1(XA,k)) iff g ∈ C k−1(Ĝ ) and

g(χ1, . . . , χk) = 0

whenever χ1, . . . , χk 6= 1.



Hk−1(XA,k) via Fourier Transform

Let T be the automorphism of Ĝ k given by

T (χ1, . . . , χk) = (χ2χ
−1
1 , . . . , χkχ−1

1 , χ−1
1 )

Claim 1: g ∈ F(Bk−1(XA,k)) iff g ∈ C k−1(Ĝ ) and

g(χ1, . . . , χk) = 0

whenever χ1, . . . , χk 6= 1.

Claim 2: g ∈ F(Z k−1(XA, k)) iff g ∈ C k−1(Ĝ ) and

g(χ) +

k∑

i=1

(−1)kiχi (−a)g(T iχ) = 0

for all χ = (χ1, . . . , χk) ∈ Ĝ k and a ∈ A.



The Cohomology of XA,k

Theorem [LMR]: If k + 1 is coprime to n then:

hk(XA,k ; F) =
m

k + 1

(
n − 1

k

)
−

1

k + 1

∑

B∈Bn,k

rank MB .

Outline of Proof: Using lemmas 1 & 2 we explicitly compute

F(Z k−1(XA, k))/F(Bk−1(XA,k))

obtaining in particular that

hk−1(XA,k ; F) =

(
n − 1

k

)
−

1

k + 1

∑

B∈Bn,k

rank MB .

hk(XA,k ; F) is then determined using the Euler-Poincaré relation.
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Higher Dimensional Trees

A Tree is an acyclic 1-dimensional simplicial complex on n vertices
with n − 1 edges.

What is the higher dimensional analogue of a tree?

A k-Hypertree on n vertices is a simplicial complex X such that:

◮ ∆
(k−1)
n−1 ⊂ X ⊂ ∆

(k)
n−1

◮ fk(X ) =
(
n−1
k

)

◮ Hk(X ; Q) = 0

Remark: A k-Hypertree is always Q-acyclic. However, it may (and
usually will) have nontrivial homology over other fields.
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A Recursive Construction
C(n, k) = the family of all k-hypertrees on [n].

X ∈ C(n − 1, k) , Y ∈ C(n − 1, k − 1) ⇒ X ∪ Y ∗ n ∈ C(n, k).

Remark: This construction preserves collapsibility.
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Examples of k-Hypertrees

A Recursive Construction
C(n, k) = the family of all k-hypertrees on [n].

X ∈ C(n − 1, k) , Y ∈ C(n − 1, k − 1) ⇒ X ∪ Y ∗ n ∈ C(n, k).

Remark: This construction preserves collapsibility.

A collapsible 2-Hypertree RP2: a Non-Acyclic 2-Hypertree
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Enumerative Aspects

Cayley’s Formula (1889)

The number of trees on n vertices is nn−2.

Kalai’s Theorem (1983)

∑

X∈C(n,k)

|Hk−1(X ; Z)|2 = n(n−2
k ) .

Problem:
Compute (or estimate) |C(n, k)|.

Conjecture:

Most k-hypertrees are not Z-acyclic.
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Fourier Matrix:

Fn =





1 1 1 . . . 1
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Chebotarëv’s Theorem (1926)

If n is prime then all square submatrices of Fn are non-singular.

Various other proofs by Resetnyak (1955), Dieudonné (1970),
Newman (1975), Evans and Stark (1977), Frenkel (2003), ...



Chebotarëv’s Approach

The p-adic Valuation

Let x = pk a
b

with a, b integers coprime to p.
p-adic order of x : ordp(x) = k .
p-adic valuation of x : |x |p = p−k .
Qp = Completion of Q with respect to | · |p .
The p-adic valuation extends to Qp(ωp) , e.g.

ordp(1 − ωp) =
1

p − 1
.
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The p-adic Valuation

Let x = pk a
b

with a, b integers coprime to p.
p-adic order of x : ordp(x) = k .
p-adic valuation of x : |x |p = p−k .
Qp = Completion of Q with respect to | · |p .
The p-adic valuation extends to Qp(ωp) , e.g.

ordp(1 − ωp) =
1

p − 1
.

Chebotarëv’s Theorem:
Let M be a k × k submatrix of the Fourier matrix of order p.
Then:

ordp(det M) =
k(k − 1)

2(p − 1)
.
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A New Family of Hypertrees

Let p be a prime, A ⊂ G = Zp , |A| = k + 1 .

The k-th homology of XA,k is

hk(XA,k ; Q) =

(
p − 1

k

)
−

1

k + 1

∑

B∈Bp,k

rank MB .

Chebotarëv’s Theorem implies that for all B :

rank MB = k + 1.

Corollary [LMR]: XA,k is a k-hypertree.
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Collapsibility and Acyclicity of Sum Complexes

Theorem [LMR]:

Let A ⊂ G = Zp, |A| = k + 1. Then:
XA,k is k-collapsible ⇔ A is an arithmetic progression.

Problem:
Is there an A ⊂ G , |A| = k + 1 such that A is not an arithmetic
progression but H̃k−1(XA,k ; Z) = 0 ?

Example: 2-trees from A = {0, 1, 3} ⊂ Zn

Assume: p prime and n = pm − 1 is coprime to 3. Then:

h1(XA,2; Fp) =






n−1
6 p = 2

n−2
6 p = 3

n−4
6 p > 3.
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Uncertainty Principles

Fourier theoretic incarnations of various physical uncertainty
principles roughly assert that a non-zero function f and its Fourier
Transform f̂ cannot both be concentrated on small sets.

Fourier Transform of f ∈ L2(R):

f̂ (ξ) =

∫

x

f (x) exp(−2πixξ)dx .

Classical Uncertainty Inequality:

If ||f ||2 = 1 then

∫

x

|x |2|f (x)|2dx ·

∫

ξ

|ξ|2|f̂ (ξ)|2dξ ≥
1

16π2
.
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The Discrete Uncertainty Principle

Theorem [Donoho and Stark]: For any 0 6= f ∈ F[G ]

|supp(f )| · |supp(f̂ )| ≥ |G | .

Case of Equality:

f = 1H where H is subgroup of G .

A stronger statement holds for F = C and G = Zp.

Theorem [Tao and others]: For a prime p and 0 6= f ∈ C[Zp]:

|supp(f )| + |supp(f̂ )| ≥ p + 1 .
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Theorem [M]: Let f ∈ C[G ] and let d1 < d2 be two consecutive
divisors of |G | = n such that d1 ≤ k = |supp(f )| ≤ d2. Then
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A Common Extension

Theorem [M]: Let f ∈ C[G ] and let d1 < d2 be two consecutive
divisors of |G | = n such that d1 ≤ k = |supp(f )| ≤ d2. Then
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n

d1d2
(d1 + d2 − k) .

old bound
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new bound
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Uncertainty Numbers

For a subset A ⊂ G let:
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Uncertainty Numbers

For a subset A ⊂ G let:

u(G ,A; F) = min{ |supp(f̂ )| : 0 6= f ∈ F[G ] , supp(f ) ⊂ A }.

Matrix Formulation
For x = (xa : a ∈ A) let M(x) be the G × G matrix

M(x)(g , h) =

{
xh−g h − g ∈ A

0 h − g 6∈ A.

Then

u(G ,A; F) = min{ rank M(x) : 0 6= x ∈ FA }.



Uncertainty and Homology

Theorem [M]:

H̃k(XA,k ; F) 6= 0 ⇒ u(G ,A; F) ≤ n − k − 1.

If gcd(k + 1, n) = 1 then the converse holds:

u(G ,A; F) ≤ n − k − 1 ⇒ H̃k(XA,k ; F) 6= 0.



Uncertainty and Homology

Theorem [M]:

H̃k(XA,k ; F) 6= 0 ⇒ u(G ,A; F) ≤ n − k − 1.

If gcd(k + 1, n) = 1 then the converse holds:

u(G ,A; F) ≤ n − k − 1 ⇒ H̃k(XA,k ; F) 6= 0.

Example: G = Z7 , A = {0, 1, 3} , XA,2 ≃ RP2

H2(RP2; C) = 0 ⇒ u(G ,A; C) = 5.

H2(RP2; F2) = F2 ⇒ u(G ,A; F2) = 4.



Complete Balanced Complexes

G0, . . . ,Gk finite abelian groups with discrete topology.
N =

∏k
i=0(|Gi | − 1).

Y = G0 ∗ · · · ∗ Gk ≃ Sk ∨ · · · ∨ Sk (N times)



Complete Balanced Complexes

G0, . . . ,Gk finite abelian groups with discrete topology.
N =

∏k
i=0(|Gi | − 1).

Y = G0 ∗ · · · ∗ Gk ≃ Sk ∨ · · · ∨ Sk (N times)

G0 ∗ G1 ∗ G2

≃ ≃ S2 ∨ S2
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Fourier Transform of Couboundaries

G = G0 × · · · × Gk = oriented k-simplices of Y .
The Balanced Complex of A ⊂ G is X (A) = Y (k−1) ∪ A.
The k-Cocycles of X (A) are:

Z k(X (A); Z) = C k(X (A); Z) = Z[A].

Let 1i be the trivial character of Gi and let

Ĝ+ = (Ĝ0 − {10}) × · · · × (Ĝk − {1k}).

Proposition [M]: The k-Coboundaries of X (A) are:

Bk(X (A); Z) = {f|A : f ∈ Z[G ] such that supp(f̂ ) ⊂ Ĝ − Ĝ+}.



Balanced Complexes from Arithmetic

Notation
p0, . . . , pk distinct primes, n = p0 · · · pk .
G = Zp0 × · · · × Zpk

= Zn.
Z×

n = {m ∈ Zn : gcd(m, n) = 1}.
|Z×

n | = ϕ(n) =
∏k

i=0(pi − 1).



Balanced Complexes from Arithmetic

Notation
p0, . . . , pk distinct primes, n = p0 · · · pk .
G = Zp0 × · · · × Zpk

= Zn.
Z×

n = {m ∈ Zn : gcd(m, n) = 1}.
|Z×

n | = ϕ(n) =
∏k

i=0(pi − 1).

Musiker-Reiner Complexes

Let A0 = {ϕ(n) + 1, . . . , n − 1}.
For A ⊂ {0, . . . , ϕ(n)} let

KA = X (A ∪ A0).



Homology of K{j}

Let ω = exp(2πi
n

) be a primitive n-th root of unity.
The n-th cyclotomic polynomial:

Φn(z) =
∏

j∈Z
×

n
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Homology of K{j}

Let ω = exp(2πi
n

) be a primitive n-th root of unity.
The n-th cyclotomic polynomial:

Φn(z) =
∏

j∈Z
×

n

(z − ωj) =

ϕ(n)∑

j=0

cjz
j ∈ Z[z ].

Theorem [Musiker and Reiner]:

For j ∈ {0, . . . , ϕ(n)}

H̃i (K{j}; Z) ∼=






Z/cjZ i = k − 1
Z i = k and cj = 0
0 otherwise.



Homology of KA

For A ⊂ {0, . . . , ϕ(n)} let cA = (cj : j ∈ A) ∈ ZA and

dA =

{
gcd(cA) cA 6= 0
0 cA = 0.



Homology of KA

For A ⊂ {0, . . . , ϕ(n)} let cA = (cj : j ∈ A) ∈ ZA and

dA =

{
gcd(cA) cA 6= 0
0 cA = 0.

Theorem [M]:

H̃i (KA; Z) ∼=






Z/dAZ i = k − 1

Z|A| i = k and dA = 0

Z|A|−1 i = k and dA 6= 0
0 otherwise.



Sketch of Proof

The k-Coboundaries of KA

Bk(KA; Z) = {f|A∪A0
: f ∈ Z[Zn] , supp(f̂ ) ⊂ Zn − Z×

n } =

{f|A∪A0
: f ∈ Z[Zn] , f̂ (m) = 0 for all m ∈ Z×

n )} =

{f|A∪A0
: f ∈ Z[Zn] , f̂ (1) = 0}

def
= B(A).



Sketch of Proof

The k-Coboundaries of KA

Bk(KA; Z) = {f|A∪A0
: f ∈ Z[Zn] , supp(f̂ ) ⊂ Zn − Z×

n } =

{f|A∪A0
: f ∈ Z[Zn] , f̂ (m) = 0 for all m ∈ Z×

n )} =

{f|A∪A0
: f ∈ Z[Zn] , f̂ (1) = 0}

def
= B(A).

The k-Cohomology of KA

Hk(KA; Z) =
Z[A]

B(A)

def
= H(A).



Sketch of Proof (Cont.)

For j ∈ A ∪ A0 define gj ∈ Z[A ∪ A0] by gj(i) = δij .
[gj ] = image of gj in H(A).



Sketch of Proof (Cont.)

For j ∈ A ∪ A0 define gj ∈ Z[A ∪ A0] by gj(i) = δij .
[gj ] = image of gj in H(A).

Claim:

(i) H(A) is generated by {[gj ] : j ∈ A}.

(ii) The minimal relation between {[gj ]}j∈A is

∑

j∈A

cj [gj ] = 0.



Sketch of Proof (Cont.)

For j ∈ A ∪ A0 define gj ∈ Z[A ∪ A0] by gj(i) = δij .
[gj ] = image of gj in H(A).

Claim:

(i) H(A) is generated by {[gj ] : j ∈ A}.

(ii) The minimal relation between {[gj ]}j∈A is

∑

j∈A

cj [gj ] = 0.

Corollary:

Hk(KA) = H(A) = Z[A]/ZcA
∼= Z|A|−1 ⊕ Z/dAZ .



Proof of (i)

Let t ∈ A0. There exist u0, . . . , uϕ(n)−1 ∈ Z such that

ϕ(n)−1∑

ℓ=0

uℓω
ℓ + ωt = 0.



Proof of (i)

Let t ∈ A0. There exist u0, . . . , uϕ(n)−1 ∈ Z such that

ϕ(n)−1∑

ℓ=0

uℓω
ℓ + ωt = 0.

Define f ∈ Z[Zn] by f (t) = 1, f (ℓ) = uℓ for 0 ≤ ℓ ≤ ϕ(n) − 1
and f (ℓ) = 0 otherwise.



Proof of (i)

Let t ∈ A0. There exist u0, . . . , uϕ(n)−1 ∈ Z such that

ϕ(n)−1∑

ℓ=0

uℓω
ℓ + ωt = 0.

Define f ∈ Z[Zn] by f (t) = 1, f (ℓ) = uℓ for 0 ≤ ℓ ≤ ϕ(n) − 1
and f (ℓ) = 0 otherwise.

Hence

f̂ (1) =

ϕ(n)−1∑

ℓ=0

uℓω
ℓ + ωt = 0 ⇒

∑

j∈A

ujgj + gt = f|A∪A0
∈ B(A) ⇒ [gt ] = −

∑

j∈A

uj [gj ].



Proof of (ii)

Define f ∈ Z[Zn] by

f (ℓ) =

{
cℓ 0 ≤ ℓ ≤ ϕ(n)
0 otherwise.

Then f̂ (1) = Φn(ω) = 0.



Proof of (ii)

Define f ∈ Z[Zn] by

f (ℓ) =

{
cℓ 0 ≤ ℓ ≤ ϕ(n)
0 otherwise.

Then f̂ (1) = Φn(ω) = 0.

Therefore ∑

j∈A

cjgj = f|A∪A0
∈ B(A),

hence
∑

j∈A cj [gj ] = 0.



Proof of (ii)

Define f ∈ Z[Zn] by

f (ℓ) =

{
cℓ 0 ≤ ℓ ≤ ϕ(n)
0 otherwise.

Then f̂ (1) = Φn(ω) = 0.

Therefore ∑

j∈A

cjgj = f|A∪A0
∈ B(A),

hence
∑

j∈A cj [gj ] = 0.

The minimality of this relation follows from the minimality of Φ(z).


