Comparison of Persistent Homologies for Vector Functions: from continuous to discrete

N. Cavazza¹, M. Ethier², P. Frosini¹, T. Kaczynski², <u>Claudia Landi^{3,1}</u>

¹ Università di Bologna

² Université de Sherbrooke

³ Università di Modena e Reggio Emilia

Workshop on Computational Topology Fields Institute, November 10, 2011

Motivation

Real object Reconstruction Reconstruction Reconstruction

Outline

- Multidimensional persistence of a filtration
 - o sub-level set filtrations
 - simplicial complex filtrations
- From discrete to continuous filtrations: topological aliasing
- Homological critical values
- Comparison of multidimensional persistence: from continuous to discrete

Persistence of a filtration

Given a space X, a *filtration* is a (finite or infinite) family of nested subspaces:

$$\emptyset = X_0 \subseteq X_1 \subseteq \ldots \subseteq X_{n-1} \subseteq X_n = X.$$

Persistence of a filtration

Given a space X, a *filtration* is a (finite or infinite) family of nested subspaces:

$$\emptyset = X_0 \subseteq X_1 \subseteq \ldots \subseteq X_{n-1} \subseteq X_n = X.$$

Apply the homology functor:

$$H_*(X_0) \rightarrow H_*(X_1) \rightarrow \ldots \rightarrow H_*(X_{n-1}) \rightarrow H_*(X_n).$$

Persistence of a filtration

Given a space X, a filtration is a (finite or infinite) family of nested subspaces:

$$\emptyset = X_0 \subseteq X_1 \subseteq \ldots \subseteq X_{n-1} \subseteq X_n = X.$$

Apply the homology functor:

$$H_*(X_0) \rightarrow H_*(X_1) \rightarrow \ldots \rightarrow H_*(X_{n-1}) \rightarrow H_*(X_n).$$

Analyse X by studying the *lifetime* of homology classes

$$... \rightarrow H_k(X_{i-1}) \rightarrow H_k(X_i) \rightarrow ... \rightarrow H_k(X_{j-1}) \rightarrow H_k(X_j) \rightarrow ...$$

1-D vs. multi-D Persistence

1-D persistence captures the topology of a one-parameter filtration.

1-D vs. multi-D Persistence

Multi-D persistence captures the topology of a family of spaces filtered along multiple geometric dimensions.

Sublevelset filtrations

Any continuous function $f = (f_1, \dots, f_k) : X \to \mathbb{R}^k$ induces sub-level sets:

$$X_{lpha} = igcap_{i=1}^k f_i^{-1}((-\infty,lpha_i]), \quad \ lpha = (lpha_1,\ldots,lpha_k) \in \mathbb{R}^k.$$

Sublevelset filtrations

Any continuous function $f = (f_1, \dots, f_k) : X \to \mathbb{R}^k$ induces sub-level sets:

$$X_{lpha} = igcap_{i=1}^k f_i^{-1}((-\infty, lpha_i]), \quad \ lpha = (lpha_1, \dots, lpha_k) \in \mathbb{R}^k.$$

Setting

$$\alpha = (\alpha_i) \leq \beta = (\beta_i)$$
 iff $\alpha_i \leq \beta_i$ for every i

we get a k-parameter filtration of X by sub-level sets:

$$\alpha \preceq \beta$$
 implies $X_{\alpha} \subseteq X_{\beta}$.

Discrete filtrations

Let $\mathscr K$ be a simplicial complex and $K=|\mathscr K|$ its carrier. Any family $\{\mathscr K_\alpha\}_{\alpha\in\mathbb R^k}$ of simplicial sub-complexes of $\mathscr K$ with $\mathscr K_\alpha\leq\mathscr K_\beta$, for $\alpha\preceq\beta$, yields a filtration of K.

(from [Carlsson and Zomorodian, 2009])

Discrete filtrations

Given a simplicial complex $\mathscr K$ and a function $\varphi:\mathscr V(K)\to\mathbb R^k$, let

$$\mathscr{K}_{\alpha} = \{ \sigma \in \mathscr{K} | \varphi(v) \leq \alpha \text{ for all vertices } v \leq \sigma \}.$$

It is a function that encodes the changes in persistent Betti numbers along the filtration.

For a filtration $\mathscr{F}=\{X_{lpha}\}_{lpha\in\mathbb{R}^k}$,

$$\rho_{\mathscr{F}}: \{(\alpha,\beta) \in \mathbb{R}^k \times \mathbb{R}^k | \alpha \prec \beta\} \to \mathbb{N} \cup \{\infty\},$$
$$\rho_{\mathscr{F}}(\alpha,\beta) = \dim \operatorname{im} H_*(X_\alpha \hookrightarrow X_\beta).$$

It is a function that encodes the changes in persistent Betti numbers along the filtration.

For a filtration $\mathscr{F}=\{X_{\alpha}\}_{\alpha\in\mathbb{R}^k}$,

$$\rho_{\mathscr{F}}: \{(\alpha,\beta) \in \mathbb{R}^k \times \mathbb{R}^k | \alpha \prec \beta\} \to \mathbb{N} \cup \{\infty\},$$
$$\rho_{\mathscr{F}}(\alpha,\beta) = \dim \operatorname{im} H_*(X_\alpha \hookrightarrow X_\beta).$$

It is a function that encodes the changes in persistent Betti numbers along the filtration.

For a filtration $\mathscr{F}=\{X_{lpha}\}_{lpha\in\mathbb{R}^k}$,

$$\rho_{\mathscr{F}}: \{(\alpha,\beta) \in \mathbb{R}^k \times \mathbb{R}^k | \alpha \prec \beta\} \to \mathbb{N} \cup \{\infty\},$$
$$\rho_{\mathscr{F}}(\alpha,\beta) = \dim \operatorname{im} H_*(X_\alpha \hookrightarrow X_\beta).$$

It is a function that encodes the changes in persistent Betti numbers along the filtration.

For a filtration $\mathscr{F}=\{X_{\alpha}\}_{\alpha\in\mathbb{R}^k}$,

$$\rho_{\mathscr{F}}: \{(\alpha,\beta) \in \mathbb{R}^k \times \mathbb{R}^k | \alpha \prec \beta\} \to \mathbb{N} \cup \{\infty\},$$
$$\rho_{\mathscr{F}}(\alpha,\beta) = \dim \operatorname{im} H_*(X_\alpha \hookrightarrow X_\beta).$$

Continuous vs discrete setting

• Sub-level set filtrations are those for which stability results hold: $\forall f, f': X \to \mathbb{R}^k$ continuous functions, $D(\rho_f, \rho_{f'}) \leq ||f - f'||_{\infty}$.

Continuous vs discrete setting

- Sub-level set filtrations are those for which stability results hold: $\forall f, f': X \to \mathbb{R}^k$ continuous functions, $D(\rho_f, \rho_{f'}) \le ||f f'||_{\infty}$.
- Discrete filtrations are those actually used in computations:

Stable comparison of rank invariants obtained from discrete data??

Question: How to extend $\varphi : \mathscr{V}(K) \to \mathbb{R}^k$ to a continuous function $K \to \mathbb{R}^k$ so that its sub-level set filtration coincides with $\{K_\alpha\}_{\alpha \in \mathbb{R}^k}$?

Question: How to extend $\varphi: \mathscr{V}(K) \to \mathbb{R}^k$ to a continuous function $K \to \mathbb{R}^k$ so that its sub-level set filtration coincides with $\{K_\alpha\}_{\alpha \in \mathbb{R}^k}$? **Answer:** \odot 1-D persistence: use linear interpolation [Morozov, 2008]

Question: How to extend $\varphi : \mathscr{V}(K) \to \mathbb{R}^k$ to a continuous function $K \to \mathbb{R}^k$ so that its sub-level set filtration coincides with $\{K_\alpha\}_{\alpha \in \mathbb{R}^k}$? **Answer:** \odot Multi-D persistence: linear interpolation yields

topological aliasing

Answer:

Multi-D persistence: axis-wise interpolation does the job

• Given any $\sigma \in \mathcal{K}$,

$$\mu(\sigma)$$
 = least upper bound of $\{\varphi(v)|v$ is a vertex of $\sigma\}$.

- Use induction to define $\varphi^{\neg}: K \to \mathbb{R}^k$ on σ and a point $w_{\sigma} \in \sigma$ s.t.
 - For all $x \in \sigma$, $\varphi^{\neg}(x) \preceq \varphi^{\neg}(w_{\sigma}) = \mu(\sigma)$;
 - $\circ \varphi$ is linear on any line segment $[w_{\sigma}, y]$ with $y \in \partial \sigma$.

Answer:

Multi-D persistence: axis-wise interpolation does the job

- Given any $\sigma \in \mathcal{K}$,
 - $\mu(\sigma)$ = least upper bound of $\{\varphi(v) | v \text{ is a vertex of } \sigma\}$.
- Use induction to define $\varphi^{\neg}: K \to \mathbb{R}^k$ on σ and a point $w_{\sigma} \in \sigma$ s.t.
 - \circ For all $x \in \sigma$, $\varphi^{\neg}(x) \leq \varphi^{\neg}(w_{\sigma}) = \mu(\sigma)$;
 - $\circ \varphi$ is linear on any line segment $[w_{\sigma}, y]$ with $y \in \partial \sigma$.

Answer:

Multi-D persistence: axis-wise interpolation does the job

- Given any $\sigma \in \mathcal{K}$,
 - $\mu(\sigma)$ = least upper bound of $\{\varphi(v) | v \text{ is a vertex of } \sigma\}$.
- Use induction to define $\varphi^{\neg}: K \to \mathbb{R}^k$ on σ and a point $w_{\sigma} \in \sigma$ s.t.
 - \circ For all $x \in \sigma$, $\varphi^{\neg}(x) \leq \varphi^{\neg}(w_{\sigma}) = \mu(\sigma)$;
 - $\circ \varphi$ is linear on any line segment $[w_{\sigma}, y]$ with $y \in \partial \sigma$.

12 of 19

Answer:

Multi-D persistence: axis-wise interpolation does the job

• Given any $\sigma \in \mathcal{K}$,

$$\mu(\sigma)$$
 = least upper bound of $\{\varphi(v)|v$ is a vertex of $\sigma\}$.

- Use induction to define $\varphi^{\neg}: K \to \mathbb{R}^k$ on σ and a point $w_{\sigma} \in \sigma$ s.t.
 - For all $x \in \sigma$, $\varphi^{\neg}(x) \preceq \varphi^{\neg}(w_{\sigma}) = \mu(\sigma)$;
 - o φ is linear on any line segment $[w_{\sigma}, y]$ with $y \in \partial \sigma$.

Theorem

For any $\alpha \in \mathbb{R}^k$, K_{α} is a strong deformation retract of $K_{\phi^{\neg} \preceq \alpha}$.

Topological Aliasing

	Nonsub	Linear	Axis-wise	Ditt	% Diff
H_1	0.031129	0.031129	0.031129	0.000000	0.000000
	0.039497	0.039497	0.039497	0.000000	0.000000
	0.046150	0.040576	0.046150	-0.005574	-13.737185
H_0	0.118165	0.118165	0.118165	0.000000	0.000000
	0.032043	0.032043	0.032043	0.000000	0.000000
	0.225394	0.207266	0.225394	-0.018128	-8.746249

Homological critical values

Definition

Let $\tilde{\varphi}: K \to \mathbb{R}^k$ be a continuous vector function. A value $\alpha \in \mathbb{R}^k$ is a homological critical value of $\tilde{\varphi}$ if q exists s.t., for all sufficiently small real values $\varepsilon > 0$, two values $\alpha', \alpha'' \in \mathbb{R}^k$ can be found with $\alpha' \preceq \alpha \preceq \alpha''$, $\|\alpha' - \alpha\| < \varepsilon$, $\|\alpha'' - \alpha\| < \varepsilon$, such that the map $H_q(K_{\tilde{\varphi} \preceq \alpha'} \hookrightarrow K_{\tilde{\varphi} \preceq \alpha''})$ is not an isomorphism.

Case $ilde{oldsymbol{arphi}}=\overline{oldsymbol{arphi}}$:

Homological critical values

Case $ilde{oldsymbol{arphi}} = oldsymbol{arphi}^{ hi}$:

Theorem

The set of homological critical values of φ^{\neg} is contained in a finite union of cones $C = \bigcup_{j,v} C_j(v)$, $v \in \mathscr{V}(\mathscr{K})$, j = 1,2,...k, where

$$C_j(v) := \{ \alpha \in \mathbb{R}^k \mid \alpha_j = \varphi^{\lnot}_j(v) \text{ and } \alpha_i \geq \varphi^{\lnot}_i(v) \text{ for all } i = 1, 2, \dots k \}.$$

15 of 19

Homological critical values

Corollary

The set of homological critical values of φ is a nowhere dense set in \mathbb{R}^k . Moreover its k-dimensional Lebesgue measure is zero.

Proposition

For any
$$\alpha \in C = \bigcup_{j,v} C_j(v)$$
, there exists λ in

$$\Lambda = \{\lambda \in C \mid \forall j = 1, 2, \dots k, \exists v \in \mathscr{V}(\mathscr{K}) : \lambda_j = \varphi_j(v)\}$$

such that $K_{\alpha} = K_{\lambda}$.

From continuous to discrete filtrations: the stability problem

- X and Y homeomorphic triangulable spaces (real objects);
- $f: X \to \mathbb{R}^k, g: Y \to \mathbb{R}^k$ continuous functions (real measurements);
- \mathcal{K}' and \mathcal{L}' simplicial complexes with $|\mathcal{K}'| = K$, $|\mathcal{K}'| = L$ (approximated object);
- $\tilde{\varphi}: K \to \mathbb{R}^k$, $\tilde{\psi}: L \to \mathbb{R}^k$ continuous functions (approximated measurements);

Theorem: If two homeomorphisms $\xi : K \to X$, $\zeta : L \to Y$ exist s.t.

$$\|\tilde{\varphi} - f \circ \xi\|_{\infty} \le \varepsilon/4, \ \|\tilde{\psi} - g \circ \zeta\|_{\infty} \le \varepsilon/4$$

then, for any sufficiently fine subdivision ${\mathscr K}$ of ${\mathscr K}'$ and ${\mathscr L}$ of ${\mathscr L}'$,

$$\left| \mathrm{D}(\rho_f, \rho_g) - \mathrm{D}(\rho_\phi, \rho_\psi) \right| \leq \varepsilon,$$

 $\varphi: \mathscr{V}(\mathscr{K}) \to \mathbb{R}^k$, $\psi: \mathscr{V}(\mathscr{L}) \to \mathbb{R}^k$ being restrictions of $\tilde{\varphi}$ and $\tilde{\psi}$.

• $\exists \delta > 0$ s.t. $\max\{\operatorname{diam} \sigma \mid \sigma \in \mathscr{K} \text{ or } \sigma \in \mathscr{L}\} < \delta \Longrightarrow |\mathrm{D}(\rho_{\tilde{\varphi}}, \rho_{\tilde{\psi}}) - \mathrm{D}(\rho_{\varphi^{\neg}}, \rho_{\psi^{\neg}})| < \varepsilon/2.$

- $\exists \delta > 0$ s.t. $\max\{\operatorname{diam} \sigma \mid \sigma \in \mathscr{K} \text{ or } \sigma \in \mathscr{L}\} < \delta \Longrightarrow |\mathrm{D}\left(\rho_{\tilde{\varphi}}, \rho_{\tilde{\psi}}\right) \mathrm{D}\left(\rho_{\varphi^{\lnot}}, \rho_{\psi^{\lnot}}\right)| < \varepsilon/2.$
- ullet $ho_{arphi}=
 ho_{arphi^{
 eg}}$, $ho_{\psi}=
 ho_{\psi^{
 eg}}$.

• $\exists \delta > 0$ s.t. $\max\{\operatorname{diam} \sigma \mid \sigma \in \mathcal{K} \text{ or } \sigma \in \mathcal{L}\} < \delta \implies$

$$|\mathrm{D}\left(
ho_{ ilde{oldsymbol{\phi}}},
ho_{ ilde{oldsymbol{\psi}}}
ight) - \mathrm{D}\left(
ho_{oldsymbol{\phi}^{\lnot}},
ho_{oldsymbol{\psi}^{\lnot}}
ight)| < arepsilon/2.$$

- $ho_{\phi}=
 ho_{\phi}$, $ho_{\psi}=
 ho_{\psi}$.
- $\max\{\operatorname{diam} \sigma \mid \sigma \in \mathscr{K} \text{ or } \sigma \in \mathscr{L}\} < \delta \implies$

$$|\mathrm{D}(
ho_{ ilde{arphi}},
ho_{ ilde{\psi}})-\mathrm{D}(
ho_{arphi},
ho_{\psi})|$$

• $\exists \delta > 0$ s.t. $\max\{\operatorname{diam} \sigma \mid \sigma \in \mathcal{K} \text{ or } \sigma \in \mathcal{L}\} < \delta \implies$

$$|\mathrm{D}\left(\rho_{\widetilde{\phi}},\rho_{\widetilde{\psi}}\right) - \mathrm{D}\left(\rho_{\phi^{\neg}},\rho_{\psi^{\neg}}\right)| < \epsilon/2.$$

- $oldsymbol{
 ho}_{oldsymbol{arphi}}=
 ho_{oldsymbol{arphi}^{
 eg}},\;
 ho_{oldsymbol{\psi}}=
 ho_{oldsymbol{\psi}^{
 eg}}.$
- $\max\{\operatorname{diam} \sigma \mid \sigma \in \mathcal{K} \text{ or } \sigma \in \mathcal{L}\} < \delta \implies$

$$|\mathrm{D}(
ho_{\widetilde{\varphi}},
ho_{\widetilde{\psi}})-\mathrm{D}(
ho_{\varphi},
ho_{\psi})|$$

•

$$\begin{array}{lcl} \mathrm{D}(\rho_f,\rho_g) & \leq & \mathrm{D}(\rho_f,\rho_{f\circ\xi}) + \mathrm{D}(\rho_{f\circ\xi},\rho_{\tilde{\varphi}}) + \mathrm{D}(\rho_{\tilde{\varphi}},\rho_{\tilde{\psi}}) \\ & + & \mathrm{D}(\rho_{\tilde{\psi}},\rho_{g\circ\zeta}) + \mathrm{D}(\rho_{g\circ\zeta},\rho_g) \\ & \leq & \varepsilon \end{array}$$

.

Conclusions

We have shown that in multidimensional persistence

- stability of rank invariants for continuous filtrations passes to stability for discrete filtrations
- two peculiar phenomena occurr:
 - topological aliasing
 - o homological critical values are non-discrete