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Outline

• Multidimensional persistence of a filtration
◦ sub-level set filtrations
◦ simplicial complex filtrations

• From discrete to continuous filtrations: topological aliasing

• Homological critical values

• Comparison of multidimensional persistence: from continuous to
discrete
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Persistence of a filtration

Given a space X , a filtration is a (finite or infinite) family of nested
subspaces:

/0 = X0 ⊆ X1 ⊆ . . .⊆ Xn−1 ⊆ Xn = X .
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Given a space X , a filtration is a (finite or infinite) family of nested
subspaces:

/0 = X0 ⊆ X1 ⊆ . . .⊆ Xn−1 ⊆ Xn = X .

Apply the homology functor:

H∗(X0)→ H∗(X1)→ . . .→ H∗(Xn−1)→ H∗(Xn).

Analyse X by studying the lifetime of homology classes

α

αα

...→ Hk (Xi−1) → Hk (Xi ) → ... → Hk (Xj−1) → Hk (Xj ) →...
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1-D vs. multi-D Persistence

1-D persistence captures the topology of a one-parameter filtration.

size

X1 X2 X3 X4

darkness

X1 X2 X3 X4

5 of 19



1-D vs. multi-D Persistence

Multi-D persistence captures the topology of a family of spaces
filtered along multiple geometric dimensions.

size

darkness

X1,1 X1,2 X1,3 X1,4

X2,1 X2,2 X2,3 X2,4

X3,1 X3,2 X3,3 X3,4

X4,1 X4,2 X4,3 X4,4
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Sublevelset filtrations

Any continuous function f = (f1, . . . , fk) : X → R
k induces sub-level

sets:

Xα =
k
⋂

i=1

f −1
i ((−∞,αi ]), α = (α1, . . . ,αk) ∈ R

k .
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Sublevelset filtrations

Any continuous function f = (f1, . . . , fk) : X → R
k induces sub-level

sets:

Xα =
k
⋂

i=1

f −1
i ((−∞,αi ]), α = (α1, . . . ,αk) ∈ R

k .

Setting
α = (αi )� β = (βi ) iff αi ≤ βi for every i

we get a k-parameter filtration of X by sub-level sets:

α � β implies Xα ⊆ Xβ .

X

f α
β

x
yy

zz
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Discrete filtrations

Let K be a simplicial complex and K = |K | its carrier.
Any family {Kα}α∈Rk of simplicial sub-complexes of K with
Kα ≤ Kβ , for α � β , yields a filtration of K .

(from [Carlsson and Zomorodian, 2009])
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Discrete filtrations

Given a simplicial complex K and a function ϕ : V (K )→ R
k , let

Kα = {σ ∈ K |ϕ(v)� α for all vertices v ≤ σ}.

α
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Rank invariant

It is a function that encodes the changes in persistent Betti numbers
along the filtration.
For a filtration F = {Xα}α∈Rk ,

ρF : {(α ,β ) ∈ R
k ×R

k |α ≺ β}→ N∪{∞},

ρF (α ,β ) = dim imH∗(Xα →֒ Xβ ).

X

f = (y ,z)

x
yy

zz
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X

f = (y ,z) α
β

x
yy

zz
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Continuous vs discrete setting

• Sub-level set filtrations are those for which stability results hold:
∀f , f ′ : X → R

k continuous functions, D(ρf ,ρf ′)≤ ‖f − f ′‖∞.
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Continuous vs discrete setting

• Sub-level set filtrations are those for which stability results hold:
∀f , f ′ : X → R

k continuous functions, D(ρf ,ρf ′)≤ ‖f − f ′‖∞.

• Discrete filtrations are those actually used in computations:

Laser Projector CCD scanner

Stable comparison of rank invariants obtained from discrete data??
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From discrete to continuous filtrations

Question: How to extend ϕ : V (K )→ R
k to a continuous function

K → R
k so that its sub-level set filtration coincides with {Kα}α∈Rk?
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From discrete to continuous filtrations

Question: How to extend ϕ : V (K )→ R
k to a continuous function

K → R
k so that its sub-level set filtration coincides with {Kα}α∈Rk?

Answer: © 1-D persistence: use linear interpolation [Morozov, 2008]

α
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From discrete to continuous filtrations

Question: How to extend ϕ : V (K )→ R
k to a continuous function

K → R
k so that its sub-level set filtration coincides with {Kα}α∈Rk?

Answer: § Multi-D persistence: linear interpolation yields

topological aliasing

αϕ

v0

v1

ϕ(v0)

ϕ(v1)

ϕ1

ϕ2
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From discrete to continuous filtrations

Answer: © Multi-D persistence: axis-wise interpolation does the job

• Given any σ ∈ K ,

µ(σ) = least upper bound of {ϕ(v) |v is a vertex of σ}.

• Use induction to define ϕq : K →R
k on σ and a point wσ ∈ σ s.t.

◦ For all x ∈ σ , ϕq(x)� ϕq(wσ ) = µ(σ) ;
◦ ϕq is linear on any line segment [wσ ,y ] with y ∈ ∂σ .
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v0

v1 = wσϕ

ϕ(v0)

ϕ(v1) = µ(σ) = ϕq(wσ )

ϕ1
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v0

v1
wσ

µ(σ) = ϕq(wσ )
ϕ

ϕ(v0)
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From discrete to continuous filtrations

Answer: © Multi-D persistence: axis-wise interpolation does the job

• Given any σ ∈ K ,

µ(σ) = least upper bound of {ϕ(v) |v is a vertex of σ}.

• Use induction to define ϕq : K →R
k on σ and a point wσ ∈ σ s.t.

◦ For all x ∈ σ , ϕq(x)� ϕq(wσ ) = µ(σ) ;
◦ ϕq is linear on any line segment [wσ ,y ] with y ∈ ∂σ .

Theorem
For any α ∈ R

k , Kα is a strong deformation retract of Kϕq�α .
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Topological Aliasing

vs.

Nonsub Linear Axis-wise Diff % Diff

0.031129 0.031129 0.031129 0.000000 0.000000

H1 0.039497 0.039497 0.039497 0.000000 0.000000

0.046150 0.040576 0.046150 -0.005574 -13.737185

0.118165 0.118165 0.118165 0.000000 0.000000

H0 0.032043 0.032043 0.032043 0.000000 0.000000

0.225394 0.207266 0.225394 -0.018128 -8.746249
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Homological critical values

Definition
Let ϕ̃ : K → R

k be a continuous vector function. A value α ∈ R
k is a

homological critical value of ϕ̃ if q exists s.t., for all sufficiently small
real values ε > 0, two values α ′,α ′′ ∈ R

k can be found with
α ′ � α � α ′′, ‖α ′−α‖< ε , ‖α ′′−α‖< ε , such that the map
Hq(Kϕ̃�α ′ →֒ Kϕ̃�α ′′) is not an isomorphism.

Case ϕ̃ = ϕ :

x

y

z

x

z

ϕ

v0 v1

v2

v3

α
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Homological critical values

Case ϕ̃ = ϕq:

Theorem
The set of homological critical values of ϕq is contained in a finite

union of cones C =
⋃

j ,v Cj(v), v ∈ V (K ), j = 1,2, . . .k, where

Cj(v) := {α ∈ R
k | αj = ϕq

j(v) and αi ≥ ϕq

i (v) for all i = 1,2, . . .k}.

ϕ1

ϕ2

ϕ1(v0)ϕ1(v1) ϕ1(v2)ϕ1(v3)

ϕ2(v0)
ϕ2(v1)

ϕ2(v2)

ϕ2(v3)
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Homological critical values

Corollary

The set of homological critical values of ϕq is a nowhere dense set in

R
k . Moreover its k-dimensional Lebesgue measure is zero.

Proposition

For any α ∈ C =
⋃

j ,v Cj(v), there exists λ in

Λ = {λ ∈ C | ∀ j = 1,2, . . .k , ∃ v ∈ V (K ) : λj = ϕj(v)}

such that Kα = Kλ .
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From continuous to discrete filtrations: the stability

problem

• X and Y homeomorphic triangulable spaces (real objects);
• f : X → R

k ,g : Y → R
k continuous functions (real measurements);

• K ′ and L ′ simplicial complexes with |K ′|= K , |K ′|= L

(approximated object);
• ϕ̃ : K → R

k , ψ̃ : L→ R
k continuous functions (approximated

measurements);

Theorem: If two homeomorphisms ξ : K → X , ζ : L→ Y exist s.t.

‖ϕ̃ − f ◦ξ‖∞ ≤ ε/4, ‖ψ̃ −g ◦ζ‖∞ ≤ ε/4

then, for any sufficiently fine subdivision K of K ′ and L of L ′,
∣

∣D(ρf ,ρg )−D(ρϕ ,ρψ)
∣

∣≤ ε ,

ϕ : V (K )→ R
k , ψ : V (L )→ R

k being restrictions of ϕ̃ and ψ̃.
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Sketch of the proof

• ∃δ > 0 s.t. max{diam σ | σ ∈ K or σ ∈ L }< δ =⇒

|D(ρϕ̃ ,ρψ̃)−D(ρϕq ,ρψq)|< ε/2.
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• ∃δ > 0 s.t. max{diam σ | σ ∈ K or σ ∈ L }< δ =⇒

|D(ρϕ̃ ,ρψ̃)−D(ρϕq ,ρψq)|< ε/2.

• ρϕ = ρϕq , ρψ = ρψq .
• max{diam σ | σ ∈ K or σ ∈ L }< δ =⇒

|D(ρϕ̃ ,ρψ̃)−D(ρϕ ,ρψ)|< ε/2.

•

D(ρf ,ρg ) ≤ D(ρf ,ρf ◦ξ )+D(ρf ◦ξ ,ρϕ̃)+D(ρϕ̃ ,ρψ̃)

+ D(ρψ̃ ,ρg◦ζ )+D(ρg◦ζ ,ρg )

≤ ε

.
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Conclusions

We have shown that in multidimensional persistence

• stability of rank invariants for continuous filtrations passes to
stability for discrete filtrations

• two peculiar phenomena occurr:
◦ topological aliasing
◦ homological critical values are non-discrete
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