Comparison of Persistent Homologies for Vector Functions:
from continuous to discrete

N. Cavazzal, M. Ethier?, P. Frosinil,
T. Kaczynski?,  Claudia Landi3?

L Universita di Bologna
2 Université de Sherbrooke

3 Universita di Modena e Reggio Emilia

Workshop on Computational Topology
Fields Institute, November 10, 2011



Motivation

Real object Reconstruction Reconstruction Reconstruction

2 0of 19




Outline

Multidimensional persistence of a filtration

o sub-level set filtrations
o simplicial complex filtrations

From discrete to continuous filtrations: topological aliasing

Homological critical values

e Comparison of multidimensional persistence: from continuous to
discrete
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Persistence of a filtration

Given a space X, a filtration is a (finite or infinite) family of nested
subspaces:
0=XoCX1C...CX,_1C X, =X.
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Persistence of a filtration

Given a space X, a filtration is a (finite or infinite) family of nested

subspaces:
0=XCX1C...C X1 X, =X.

Apply the homology functor:
H(Xo) = Hi(X1) = ... = Hi(Xn—1) = Ho(X5).
Analyse X by studying the lifetime of homology classes

s Hk(X,',l) — Hk(X,') — .. = Hk()<j—1) — Hk()(j) —>...
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1-D vs. multi-D Persistence

1-D persistence captures the topology of a one-parameter filtration.
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1-D vs. multi-D Persistence

Multi-D persistence captures the topology of a family of spaces
filtered along multiple geometric dimensions.
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Sublevelset filtrations

Any continuous function f = (f;,...,f) : X — R¥ induces sub-level
sets:

k
Xa=[FH(~oa)), a=(ar,...,a)eRK.
i=1
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Sublevelset filtrations

Any continuous function f = (f;,...,f) : X — R¥ induces sub-level
sets:

Xa = H(~»,a]), a=(ai,...,a5) € R¥.
Setting
a= (a,-) = B = (B,) iff a; < B,' for every i
we get a k-parameter filtration of X by sub-level sets:

a = B implies X C Xp.
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Discrete filtrations

Let % be a simplicial complex and K = |.%] its carrier.
Any family {4} qere of simplicial sub-complexes of J#~ with
Hoq < Hp, for a = B, yields a filtration of K.

il <

(0.2} (1.2} 2.2) (32)

(0,1} (L1} {2,1) {30}

(L [RE]) 2,0y {30}

(from [Carlsson and Zomorodian, 2009])
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Discrete filtrations

Given a simplicial complex .#" and a function ¢ : 7 (K) — R, let

Ha={0€ X |p(v) < a for all vertices v < g}.
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Rank invariant

It is a function that encodes the changes in persistent Betti numbers
along the filtration.
For a filtration .# = {Xq } qcRrrk,

pz :{(a,B) e R“xR¥|a < B} — NU{e},
pz(a,B) =dimimH,( Xy — Xg).
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Rank invariant

It is a function that encodes the changes in persistent Betti numbers
along the filtration.
For a filtration .# = {Xq } qcRrrk,

pz :{(a,B) e R“xR¥|a < B} — NU{e},
pz(a,B) =dimimH,( Xy — Xg).
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Continuous vs discrete setting

e Sub-level set filtrations are those for which stability results hold:
V£, f': X — Rk continuous functions, D(pr,pr) < ||f — '[|e.
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Continuous vs discrete setting

e Sub-level set filtrations are those for which stability results hold:
V£, f': X — Rk continuous functions, D(pr,pr) < ||f — '[|e.

e Discrete filtrations are those actually used in computations:

Laser Projector CCD scanner

Stable comparison of rank invariants obtained from discrete data??
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From discrete to continuous filtrations

Question: How to extend ¢ : #(K) — R¥ to a continuous function
K — R¥ so that its sub-level set filtration coincides with {Kg}ycrt?
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From discrete to continuous filtrations

Question: How to extend ¢ : #(K) — R¥ to a continuous function
K — R¥ so that its sub-level set filtration coincides with {Kg}ycrt?
Answer: © 1-D persistence: use linear interpolation [Morozov, 2008]

11 of 19



From discrete to continuous filtrations

Question: How to extend ¢ : #(K) — R¥ to a continuous function
K — R¥ so that its sub-level set filtration coincides with {Kg}ycrt?
Answer: © Multi-D persistence: linear interpolation yields

topological aliasing
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From discrete to continuous filtrations

Answer: © Multi-D persistence: axis-wise interpolation does the job

e Given any 0 € %/,
H(0) = least upper bound of {¢(v)|v is a vertex of g}.
e Use induction to define ¢ ': K — RX on 0 and a point wy € O s.t.

o Forallxea, ¢ '(x) <9 (ws)=pu(0);
o ¢ is linear on any line segment [wg,y] with y € do .
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From discrete to continuous filtrations

Answer: © Multi-D persistence: axis-wise interpolation does the job
e Given any 0 € %/,

(o) = least upper bound of {¢(v)]|v is a vertex of 0}.

e Use induction to define ¢ ': K — RX on o and a point wy € O s.t.
o Forallxea, ¢ '(x)=¢ ' (wg)=u(0);
o ¢ is linear on any line segment [wg,y] with y € do .

02
V1=W$ ¢(v1) = p(o) = ¢ (wo)
—

v ~¢(v)

?
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From discrete to continuous filtrations

Answer: © Multi-D persistence: axis-wise interpolation does the job

e Given any 0 € %/,
H(0) = least upper bound of {¢(v)|v is a vertex of g}.

e Use induction to define ¢ ': K — RX on 0 and a point wy € O s.t.
o Forallxea, ¢ '(x)=<¢ ' (wy)=u(0o);
o ¢ is linear on any line segment [wg,y] with y € do .

Theorem
For any a € R, Ky is a strong deformation retract of Ky <a-
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Topological Aliasing

had

VS.

-

Nonsub | Linear | Axis-wise | Diff | % Diff
0.031129 | 0.031129 | 0.031129 0.000000 0.000000
Hi | 0.039497 | 0.039497 | 0.039497 0.000000 0.000000
0.046150 | 0.040576 | 0.046150 | -0.005574 | -13.737185
0.118165 | 0.118165 | 0.118165 0.000000 0.000000
Hy | 0.032043 | 0.032043 | 0.032043 | 0.000000 0.000000
0.225394 | 0.207266 | 0.225394 | -0.018128 | -8.746249
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Homological critical values

Definition

Let § : K — R¥ be a continuous vector function. A value a € R¥ is a
homological critical value of ¢ if g exists s.t., for all sufficiently small
real values € > 0, two values a’,a” € R can be found with
a'<a=a’, ||la—al <e, |[a”"—al <&, such that the map
Hq(Kg=<a < Kg=qr) is not an isomorphism.

Case § =¢:

zA z
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Homological critical values

Case = ¢

Theorem

The set of homological critical values of ¢ ' is contained in a finite
union of cones C =J; , Ci(v), ve ¥ (X'), j=1,2,... k, where

G(v):={aeR¥|aj=¢ ;(v) and a; > ¢ ;(v) forall i=1,2,...k}.

¢2(V2) [ | l——
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Homological critical values

Corollary

. . . .
The set of homological critical values of ¢ is a nowhere dense set in
RX. Moreover its k-dimensional Lebesgue measure is zero.

Proposition
For any a € C=J;, Gj(v), there exists A in

N={AeC|Vj=12,...k,IveV(X) Aj=¢j(v)}

such that Ky = Kj.
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From continuous to discrete filtrations: the stability
problem

e X and Y homeomorphic triangulable spaces (real objects);

o f: X —RKg:Y — R¥ continuous functions (real measurements);

o %" and &' simplicial complexes with |7/ =K, |.#"| =L
(approximated object);

o §:K—RK @:L— R continuous functions (approximated
measurements);

Theorem: If two homeomorphisms & : K — X, { : L — Y exist s.t.
1§ —follle<e/4, |P—golfw<e/4
then, for any sufficiently fine subdivision %" of #” and & of %/,
D (pr.Pg) — D (P, y)| <€,
¢V (H)—=RE ¥ (ZL)— RX being restrictions of ¢ and .
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Sketch of the proof

* 30 >0s.t. max{diamo |c€ ¥ or 0 € L} <6 =

|D(p(ﬁaplll) - D(p(pjapwj)l < 8/2
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* 30 >0s.t. max{diamo |c€ ¥ or 0 € L} <6 =
|D(p(ﬁapq’1)_D(p¢japwj)|<£/2

[ qu:pd)jx pw:pw1
e max{diamo|oe . # or0€ L} <0 =

ID(Pg.Pp) —D(pg,py)| < €/2.
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Sketch of the proof

30 >0s.t. max{diamo|oe€ ¥ or 0 € L} <d =
|D(p(ﬁapq’1)_D(p¢japwj)|<£/2

° p¢ :p¢‘\, pw:pw1
max{diano |c € # or0€ ¥} <0 =

ID(Pg.Pp) —D(pg,py)| < €/2.

D (pr, pg) D (pr, prog) +D(Pros, 05) + D (Pg, Py)
D(pllhpgoZ) + D(pgoZ7pg)

&
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Conclusions

We have shown that in multidimensional persistence

e stability of rank invariants for continuous filtrations passes to
stability for discrete filtrations

e two peculiar phenomena occurr:

o topological aliasing
o homological critical values are non-discrete
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