Alexander Duality for Functions The Persistent Behavior of Land and Water and Shore

Herbert Edelsbrunner¹ Michael Kerber²

¹IST Austria, Duke University, Geomagic ²IST Austria

Toronto, 2011 Preprint: arXiv:1109.5052

Motivation

Let $f: \mathbb{S}^{n+1} \to [0,1]$ be perfect Morse.

Let $\mathbb{U} \cup \mathbb{V} = \mathbb{S}^{n+1}$, $\mathbb{M} := \mathbb{U} \cap \mathbb{V}$ *n*-manifold.

Questions:

- ▶ Can we obtain $Dgm(f|_{\mathbb{U}})$ from $Dgm(f|_{\mathbb{U}})$?
- ▶ Can we obtain $Dgm(f|_{\mathbb{M}})$ from $Dgm(f|_{\mathbb{U}})$?

Results:

▶ The Land and Water Theorem:

$$\tilde{\mathrm{D}}\mathrm{gm}(f|_{\mathbb{U}}) = \tilde{\mathrm{D}}\mathrm{gm}(f|_{\mathbb{V}})^T$$

► The Euclidean Shore Theorem:

$$\operatorname{Dgm}(f|_{\mathbb{M}}) = \operatorname{Dgm}(f|_{\mathbb{U}}) \sqcup \operatorname{Dgm}(f|_{\mathbb{U}})^{T}$$

Motivation

Let $f: \mathbb{S}^{n+1} \to [0,1]$ be perfect Morse.

Let $\mathbb{U} \cup \mathbb{V} = \mathbb{S}^{n+1}$, $\mathbb{M} := \mathbb{U} \cap \mathbb{V}$ *n*-manifold.

Questions:

- ▶ Can we obtain $Dgm(f|_{\mathbb{V}})$ from $Dgm(f|_{\mathbb{U}})$?
- ▶ Can we obtain $Dgm(f|_{\mathbb{M}})$ from $Dgm(f|_{\mathbb{U}})$?

Results:

The Land and Water Theorem:

$$\tilde{\mathrm{D}}\mathrm{gm}(f|_{\mathbb{U}}) = \tilde{\mathrm{D}}\mathrm{gm}(f|_{\mathbb{V}})^T$$

The Euclidean Shore Theorem:

$$\operatorname{Dgm}(f|_{\mathbb{M}}) = \operatorname{Dgm}(f|_{\mathbb{U}}) \sqcup \operatorname{Dgm}(f|_{\mathbb{U}})^T$$

Outline

- (Reduced) persistence diagrams
- The Land and Water Theorem
- The Shore Theorem

$$0 \to \textit{C}_n \to \ldots \to \textit{C}_1 \to \textit{C}_0 \to 0$$

Let ω denote a new vertex (born at 1) and

$$\mathbb{X}_{\omega}^{t} = \mathbb{X} \cup \omega * \mathbb{X}^{t}.$$

Define the **reduced filtration** as

$$0 \to \tilde{X}_0 \to \ldots \to \tilde{X}_m \to \ldots \to \tilde{X}_{2m} \to 0$$

$$\tilde{X}_i = \begin{cases} \tilde{H}(\mathbb{X}_{f_i}) & 0 \leq i \leq m-1\\ \tilde{H}(\mathbb{X}) & i = m\\ \tilde{H}(\mathbb{X}_{\omega}^{f_{m-i}}) & m+1 \leq i \leq 2m \end{cases}$$

$$0 \rightarrow C_n \rightarrow \ldots \rightarrow C_1 \rightarrow C_0 \rightarrow C_{-1} \rightarrow 0$$

Let ω denote a new vertex (born at 1) and

$$\mathbb{X}_{\omega}^{t} = \mathbb{X} \cup \omega * \mathbb{X}^{t}.$$

Define the **reduced filtration** as

$$0
ightarrow ilde{X}_0
ightarrow \ldots
ightarrow ilde{X}_m
ightarrow \ldots
ightarrow ilde{X}_{2m}
ightarrow 0$$

$$\tilde{X}_i = \begin{cases} \tilde{H}(\mathbb{X}_{f_i}) & 0 \leq i \leq m-1\\ \tilde{H}(\mathbb{X}) & i = m\\ \tilde{H}(\mathbb{X}_{\omega}^{f_{m-i}}) & m+1 \leq i \leq 2m \end{cases}$$

$$0 \rightarrow C_n \rightarrow \ldots \rightarrow C_1 \rightarrow C_0 \rightarrow \begin{array}{c} C_{-1} \rightarrow 0 \end{array}$$

Let ω denote a new vertex (born at 1) and

$$\mathbb{X}_{\omega}^{t} = \mathbb{X} \cup \omega * \mathbb{X}^{t}.$$

Define the **reduced filtration** as

$$0 o ilde{X}_0 o \ldots o ilde{X}_m o \ldots o ilde{X}_{2m} o 0$$

$$\tilde{X}_{i} = \begin{cases} \tilde{H}(\mathbb{X}_{t_{i}}) & 0 \leq i \leq m-1\\ \tilde{H}(\mathbb{X}) & i = m\\ \tilde{H}(\mathbb{X}_{\omega}^{t_{m-i}}) & m+1 \leq i \leq 2m \end{cases}$$

$$0 \to \textit{C}_n \to \ldots \to \textit{C}_1 \to \textit{C}_0 \hspace{-0.05cm} \to \hspace{-0.05cm} \stackrel{}{\text{C_{-1}}} \to \hspace{-0.05cm} 0$$

Let ω denote a new vertex (born at 1) and

$$\mathbb{X}_{\omega}^{t} = \mathbb{X} \cup \omega * \mathbb{X}^{t}.$$

Define the **reduced filtration** as

$$0 \to \tilde{X}_0 \to \ldots \to \tilde{X}_m \to \ldots \to \tilde{X}_{2m} \to 0$$

$$ilde{X}_i = egin{cases} ilde{H}(\mathbb{X}_{t_i}) & 0 \leq i \leq m-1 \ ilde{H}(\mathbb{X}) & i = m \ ilde{H}(\mathbb{X}_{\omega}^{t_{m-i}}) & m+1 \leq i \leq 2m \end{cases}$$

Cascade Lemma: $\widetilde{\mathrm{D}}\mathrm{gm}(f|_{\mathbb{X}})=\mathrm{Dgm}(f|_{\mathbb{X}})^C$

Cascade Lemma: $\widetilde{\mathrm{D}}\mathrm{gm}(f|_{\mathbb{X}})=\mathrm{Dgm}(f|_{\mathbb{X}})^C$

Cascade Lemma: $\widetilde{\mathrm{D}}\mathrm{gm}(f|_{\mathbb{X}})=\mathrm{Dgm}(f|_{\mathbb{X}})^C$

larger b.

Cascade Lemma: $\widetilde{\mathrm{Dgm}}(f|_{\mathbb{X}}) = \mathrm{Dgm}(f|_{\mathbb{X}})^C$

larger b.

Cascade Lemma: $\widetilde{\mathrm{Dgm}}(f|_{\mathbb{X}}) = \mathrm{Dgm}(f|_{\mathbb{X}})^C$

larger b.

Cascade Lemma: $\tilde{\mathrm{D}}\mathrm{gm}(f|_{\mathbb{X}}) = \mathrm{Dgm}(f|_{\mathbb{X}})^{C}$

$$\tilde{\mathrm{Dgm}}(f|_{\mathbb{U}}) = \tilde{\mathrm{Dgm}}(f|_{\mathbb{V}})^{T}.$$

$$\tilde{\mathrm{Dgm}}(f|_{\mathbb{U}}) = \tilde{\mathrm{Dgm}}(f|_{\mathbb{V}})^{T}.$$

$$\tilde{\mathrm{Dgm}}(f|_{\mathbb{U}}) = \tilde{\mathrm{Dgm}}(f|_{\mathbb{V}})^{T}.$$

$$\tilde{\mathrm{Dgm}}(f|_{\mathbb{U}}) = \tilde{\mathrm{Dgm}}(f|_{\mathbb{V}})^{T}.$$

$$\tilde{\mathrm{Dgm}}(f|_{\mathbb{U}}) = \tilde{\mathrm{Dgm}}(f|_{\mathbb{V}})^{T}.$$

$$\tilde{\mathrm{Dgm}}(f|_{\mathbb{U}}) = \tilde{\mathrm{Dgm}}(f|_{\mathbb{V}})^{T}.$$

$$\tilde{\mathrm{Dgm}}(f|_{\mathbb{U}}) = \tilde{\mathrm{Dgm}}(f|_{\mathbb{V}})^{T}.$$

The Land and Water Theorem – Proof outline

- Vertical isomorphisms
- Need some compatibility condition between isomorphisms
- Implied by compatibility of vertical pairings
- Reduction to (compatible) pairing induced by Lefschetz duality [Cohen-Steiner, E., Harer 09]

The General Shore Theorem

```
Let f: \mathbb{S}^{n+1} \to [0,1] be perfect Morse. Let \mathbb{U} \cup \mathbb{V} = \mathbb{S}^{n+1}, \mathbb{M} := \mathbb{U} \cap \mathbb{V} n-manifold. Then
```

```
\begin{array}{lcl} \operatorname{Dgm}_{0}(f|_{\mathbb{M}}) & = & \left[\operatorname{Dgm}_{0}(f|_{\mathbb{U}}) \sqcup \operatorname{Dgm}_{0}(f|_{\mathbb{V}})\right]^{C}, \\ \operatorname{Dgm}_{p}(f|_{\mathbb{M}}) & = & \operatorname{Dgm}_{p}(f|_{\mathbb{U}}) \sqcup \operatorname{Dgm}_{p}(f|_{\mathbb{V}}), \\ \operatorname{Dgm}_{p}(f|_{\mathbb{M}}) & = & \left[\operatorname{Dgm}_{0}(f|_{\mathbb{U}}) \sqcup \operatorname{Dgm}_{0}(f|_{\mathbb{V}})\right]^{CT}, \end{array}
```

The General Shore Theorem

$$\begin{array}{lcl} \operatorname{Dgm}_{0}(f|_{\mathbb{M}}) & = & \left[\operatorname{Dgm}_{0}(f|_{\mathbb{U}}) \sqcup \operatorname{Dgm}_{0}(f|_{\mathbb{V}})\right]^{C}, \\ \operatorname{Dgm}_{\rho}(f|_{\mathbb{M}}) & = & \operatorname{Dgm}_{\rho}(f|_{\mathbb{U}}) \sqcup \operatorname{Dgm}_{\rho}(f|_{\mathbb{V}}), \\ \operatorname{Dgm}_{n}(f|_{\mathbb{M}}) & = & \left[\operatorname{Dgm}_{0}(f|_{\mathbb{U}}) \sqcup \operatorname{Dgm}_{0}(f|_{\mathbb{V}})\right]^{CT}, \end{array}$$

The General Shore Theorem

$$\begin{array}{lcl} \operatorname{Dgm}_{0}(f|_{\mathbb{M}}) & = & \left[\operatorname{Dgm}_{0}(f|_{\mathbb{U}}) \sqcup \operatorname{Dgm}_{0}(f|_{\mathbb{V}})\right]^{C}, \\ \operatorname{Dgm}_{\rho}(f|_{\mathbb{M}}) & = & \operatorname{Dgm}_{\rho}(f|_{\mathbb{U}}) \sqcup \operatorname{Dgm}_{\rho}(f|_{\mathbb{V}}), \\ \operatorname{Dgm}_{n}(f|_{\mathbb{M}}) & = & \left[\operatorname{Dgm}_{0}(f|_{\mathbb{U}}) \sqcup \operatorname{Dgm}_{0}(f|_{\mathbb{V}})\right]^{CT}, \end{array}$$

The General Shore Theorem – Proof outline

$$\mathrm{Dgm}_0(f|_{\mathbb{M}}) = [\mathrm{Dgm}_0(f|_{\mathbb{U}}) \sqcup \mathrm{Dgm}_0(f|_{\mathbb{V}})]^C$$

- Latitudinal n-manifold: Component of M that separates the poles
- ► Latitudinal component: Component of U or of V neighboring a lat. n-manifold.
- ▶ Left-extreme dots in $[\mathrm{Dgm}_0(f|_{\mathbb{U}})\sqcup\mathrm{Dgm}_0(f|_{\mathbb{V}})]$ correspond to lat. components
- ▶ Show that lat. n-manifolds and lat. components are related by a cascade

Let $f: \mathbb{S}^{n+1} \to [0,1]$ be perfect Morse. Let $\mathbb{U} \cup \mathbb{V} = \mathbb{S}^{n+1}$, $\mathbb{M} := \mathbb{U} \cap \mathbb{V}$ *n*-manifold. If north- and south pole belong to a common component of \mathbb{V} , then

$$\mathrm{Dgm}(f|_{\mathbb{M}}) = \mathrm{Dgm}(f|_{\mathbb{U}}) \sqcup \mathrm{Dgm}(f|_{\mathbb{U}})^{T}.$$

Proof:

Let $f: \mathbb{S}^{n+1} \to [0,1]$ be perfect Morse. Let $\mathbb{U} \cup \mathbb{V} = \mathbb{S}^{n+1}$, $\mathbb{M} := \mathbb{U} \cap \mathbb{V}$ *n*-manifold. If north- and south pole belong to a common component of \mathbb{V} , then

$$\mathrm{Dgm}(f|_{\mathbb{M}}) = \mathrm{Dgm}(f|_{\mathbb{U}}) \sqcup \mathrm{Dgm}(f|_{\mathbb{U}})^{T}.$$

Proof:

For p = 0,

 $\mathrm{Dgm}_0(f|_{\mathbb{M}})$

- $= [\mathrm{Dgm}_0(f|_{\mathbb{U}}) \sqcup \mathrm{Dgm}_0(f|_{\mathbb{V}})]^C$
- $= \operatorname{Dgm}_0(f|_{\mathbb{U}}) \sqcup \widetilde{\operatorname{Dgm}}_0(f|_{\mathbb{V}})$
- $= \operatorname{Dgm}_0(f|_{\mathbb{U}}) \sqcup \widetilde{\operatorname{Dgm}}_n(f|_{\mathbb{U}})^T$
- $= \operatorname{Dgm}_0(f|_{\mathbb{U}}) \sqcup \operatorname{Dgm}_n(f|_{\mathbb{U}})^T$

Let $f: \mathbb{S}^{n+1} \to [0,1]$ be perfect Morse. Let $\mathbb{U} \cup \mathbb{V} = \mathbb{S}^{n+1}$, $\mathbb{M} := \mathbb{U} \cap \mathbb{V}$ *n*-manifold. If north- and south pole belong to a common component of \mathbb{V} , then

$$\mathrm{Dgm}(f|_{\mathbb{M}}) = \mathrm{Dgm}(f|_{\mathbb{U}}) \sqcup \mathrm{Dgm}(f|_{\mathbb{U}})^{T}.$$

Proof:

For
$$p = 0$$
,

$$\mathrm{Dgm}_0(f|_{\mathbb{M}})$$

- $= [\mathrm{Dgm}_0(f|_{\mathbb{U}}) \sqcup \mathrm{Dgm}_0(f|_{\mathbb{V}})]^C$
- $= \operatorname{Dgm}_0(f|_{\mathbb{U}}) \sqcup \widetilde{\operatorname{Dgm}}_0(f|_{\mathbb{V}})$
- $= \operatorname{Dgm}_0(f|_{\mathbb{U}}) \sqcup \widetilde{\operatorname{Dgm}}_n(f|_{\mathbb{U}})^{7}$
- $= \operatorname{Dgm}_0(f|_{\mathbb{U}}) \sqcup \operatorname{Dgm}_n(f|_{\mathbb{U}})^T$

Let $f: \mathbb{S}^{n+1} \to [0,1]$ be perfect Morse. Let $\mathbb{U} \cup \mathbb{V} = \mathbb{S}^{n+1}$, $\mathbb{M} := \mathbb{U} \cap \mathbb{V}$ *n*-manifold. If north- and south pole belong to a common component of \mathbb{V} , then

$$\mathrm{Dgm}(f|_{\mathbb{M}}) = \mathrm{Dgm}(f|_{\mathbb{U}}) \sqcup \mathrm{Dgm}(f|_{\mathbb{U}})^{T}.$$

Proof:

For p = 0,

 $\mathrm{Dgm}_0(f|_{\mathbb{M}})$

- $= [\mathrm{Dgm}_0(f|_{\mathbb{U}}) \sqcup \mathrm{Dgm}_0(f|_{\mathbb{V}})]^C$
- $= \operatorname{Dgm}_0(f|_{\mathbb{U}}) \sqcup \widetilde{\operatorname{Dgm}}_0(f|_{\mathbb{V}})$
- $= \operatorname{Dgm}_0(f|_{\mathbb{U}}) \sqcup \widetilde{\operatorname{Dgm}}_n(f|_{\mathbb{U}})^7$
- $= \operatorname{Dgm}_0(f|_{\mathbb{U}}) \sqcup \operatorname{Dgm}_n(f|_{\mathbb{U}})^7$

Let $f: \mathbb{S}^{n+1} \to [0,1]$ be perfect Morse. Let $\mathbb{U} \cup \mathbb{V} = \mathbb{S}^{n+1}$, $\mathbb{M} := \mathbb{U} \cap \mathbb{V}$ *n*-manifold. If north- and south pole belong to a common component of \mathbb{V} , then

$$\mathrm{Dgm}(f|_{\mathbb{M}}) = \mathrm{Dgm}(f|_{\mathbb{U}}) \sqcup \mathrm{Dgm}(f|_{\mathbb{U}})^{T}.$$

Proof:

For
$$p = 0$$
,

$$\mathrm{Dgm}_0(f|_{\mathbb{M}})$$

- $= [\mathrm{Dgm}_0(f|_{\mathbb{U}}) \sqcup \mathrm{Dgm}_0(f|_{\mathbb{V}})]^C$
- $= \operatorname{Dgm}_0(f|_{\mathbb{U}}) \sqcup \widetilde{\operatorname{Dgm}}_0(f|_{\mathbb{V}})$
- $= \operatorname{Dgm}_{0}(f|_{\mathbb{U}}) \sqcup \widetilde{\operatorname{Dgm}}_{n}(f|_{\mathbb{U}})^{T}$
- $= \operatorname{Dgm}_0(f|_{\mathbb{U}}) \sqcup \operatorname{Dgm}_n(f|_{\mathbb{U}})^{7}$

Let $f: \mathbb{S}^{n+1} \to [0,1]$ be perfect Morse. Let $\mathbb{U} \cup \mathbb{V} = \mathbb{S}^{n+1}$, $\mathbb{M} := \mathbb{U} \cap \mathbb{V}$ *n*-manifold. If north- and south pole belong to a common component of \mathbb{V} , then

$$\operatorname{Dgm}(f|_{\mathbb{M}}) = \operatorname{Dgm}(f|_{\mathbb{U}}) \sqcup \operatorname{Dgm}(f|_{\mathbb{U}})^{T}.$$

Proof:

For
$$p = 0$$
,

$$\mathrm{Dgm}_0(f|_{\mathbb{M}})$$

- $= [\mathrm{Dgm}_0(f|_{\mathbb{U}}) \sqcup \mathrm{Dgm}_0(f|_{\mathbb{V}})]^C$
- $= \operatorname{Dgm}_0(f|_{\mathbb{U}}) \sqcup \widetilde{\operatorname{Dgm}}_0(f|_{\mathbb{V}})$
- $= \operatorname{Dgm}_0(f|_{\mathbb{U}}) \sqcup \widetilde{\operatorname{Dgm}}_n(f|_{\mathbb{U}})^T$
- $= \operatorname{Dgm}_0(f|_{\mathbb{U}}) \sqcup \operatorname{Dgm}_n(f|_{\mathbb{U}})^T$

Conclusion and Outlook

We have proved relations

- ightharpoonup between the (reduced) diagrams of $\mathbb U$ and $\mathbb V$
- ▶ between the diagrams of U, V, and M

Further questions:

- Measure "imperfection" of Morse function?
- ▶ Can we always decompose $\mathbb{S} = \mathbb{U} \cup \mathbb{V}$ as before such that

$$\operatorname{Dgm}(f|_{\mathbb{S}}) \sqcup \operatorname{Dgm}(f|_{\mathbb{M}}) \sim \operatorname{Dgm}(f|_{\mathbb{U}}) \sqcup \operatorname{Dgm}(f|_{\mathbb{V}})$$
?

- ▶ Divide-and-conquer algorithm for computing $Dgm(f|_{\mathbb{S}})$?
- ▶ Generalize to other (*n* + 1)-manifolds

