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Motivation

Let f: S™' — [0, 1] be perfect Morse.
LetUUV =S M := UNV n-manifold.

Questions:
» Can we obtain Dgm(f|y) from Dgm(f|y)?
» Can we obtain Dgm(f|y;) from Dgm(f|y)?
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Questions:
» Can we obtain Dgm(f|y) from Dgm(f|y)?
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Results:
» The Land and Water Theorem:

Dgm(f|y) = Dgm(f|v)"
» The Euclidean Shore Theorem:

Dgm(f|u) = Dgm(f|y) L Dgm(f|y)"




Outline

» (Reduced) persistence diagrams
» The Land and Water Theorem
» The Shore Theorem
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Reduced persistence diagrams

0—-Ch—...—Ci—C— C 1—0
Let w denote a new vertex (born at 1) and
XL =XUwx* X
Define the reduced filtration as
0—>)~(0—>---—>)~(m—>---—’)~(2m—>0

with
(X) i=m
(X m+1<i<2m
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Cascades

A dot (a, b) is left-extreme, if there is no dot
with birth value smaller a and death value
larger b.
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Cascade Lemma: Dgm(f|x) = Dgm(f|x)¢




The Land and Water Theorem

Let f: S — [0, 1] be perfect Morse. Let UUV = S™,
M := U NV n-manifold. Then

Dgm(f|y) = Dgm(flv)’.




The Land and Water Theorem

Let f: S — [0, 1] be perfect Morse. Let UUV = S™,
M := U NV n-manifold. Then

Dgm(f|y) = Dgm(flv)’.




The Land and Water Theorem

Let f: S — [0, 1] be perfect Morse. Let UUV = S™,
M := U NV n-manifold. Then

Dgm(f|y) = Dgm(flv)’.




The Land and Water Theorem

Let f: S — [0, 1] be perfect Morse. Let UUV = S™,
M := U NV n-manifold. Then

Dgm(f|y) = Dgm(flv)’.




The Land and Water Theorem

Let f: S — [0, 1] be perfect Morse. Let UUV = S™,
M := U NV n-manifold. Then

Dgm(f|y) = Dgm(flv)’.




The Land and Water Theorem

Let f: S — [0, 1] be perfect Morse. Let UUV = S™,
M := U NV n-manifold. Then

Dgm(f|y) = Dgm(flv)’.




The Land and Water Theorem

Let f: S — [0, 1] be perfect Morse. Let UUV = S™,
M := U NV n-manifold. Then

Dgm(f|y) = Dgm(flv)’.




The Land and Water Theorem — Proof outline

o= = OB — . - IR
R | 1
V2qm — .= VI - L Vg,

» Vertical isomorphisms
» Need some compatibility condition between isomorphisms
» Implied by compatibility of vertical pairings

» Reduction to (compatible) pairing induced by Lefschetz
duality [Cohen-Steiner, E., Harer 09]




The General Shore Theorem

Let f: S"*1 — [0, 1] be perfect Morse. Let UUV = §™1,
M := U NV n-manifold. Then

Dgmg(fl) = [Dgm(fly) U Dgmo(f[v)]°,
ngp(f|M) = ngp(f|U) U ngp(ﬂV)a
Dgm,(flm) = [Dgmo(fly) U Dgmg(flv)]°7,
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The General Shore Theorem — Proof outline

Dgmy(flu) = [Dgmg(fls) U Dgmy(fly)]

» Latitudinal n-manifold: Component of M
that separates the poles

» Latitudinal component: Component of U
or of V neighboring a lat. n-manifold.

» Left-extreme dots in
[Dgmy(fly) L Dgmy(f|v)] correspond to lat.
components

» Show that lat. n-manifolds and lat.
components are related by a cascade




The Euclidean Shore Theorem

Let f: S™' — [0, 1] be perfect Morse. Let UUV = S™1,
M := U NV n-manifold. If north- and south pole belong to a
common component of V, then

Dgm(f|yy) = Dgm(f|y) U Dgm(f|y) "
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The Euclidean Shore Theorem

Let f: S™' — [0, 1] be perfect Morse. Let UUV = S™1,
M := U NV n-manifold. If north- and south pole belong to a
common component of V, then

Dgm(f|y1) = Dgm(f|yy) L Dgm(f|y) "
Proof:
For p =0,

Dgmg(f[m)
[Dgmy(f|u) U Dgmg(fly)]©
Dgmy(f|y) L Dgmy(flv)
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Conclusion and Outlook

We have proved relations
» between the (reduced) diagrams of U and V
» between the diagrams of U, V, and M

Further questions:
» Measure “imperfection” of Morse function?
» Can we always decompose S = U UV as before such that

Dgm(f|s) L Dgm(flar) ~ Dgm(fly) L Dgm(fly)?

» Divide-and-conquer algorithm for computing Dgm(f|s)?
» Generalize to other (n + 1)-manifolds




