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Motivation

Let f : Sn+1 → [0, 1] be perfect Morse.

Let U ∪ V = Sn+1, M := U ∩ V n-manifold.

Questions:
I Can we obtain Dgm(f |V) from Dgm(f |U)?
I Can we obtain Dgm(f |M) from Dgm(f |U)?

Results:
I The Land and Water Theorem:

D̃gm(f |U) = D̃gm(f |V)T

I The Euclidean Shore Theorem:

Dgm(f |M) = Dgm(f |U) t Dgm(f |U)T
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Outline

I (Reduced) persistence diagrams
I The Land and Water Theorem
I The Shore Theorem



Reduced persistence diagrams

0→ Cn → . . .→ C1 → C0 → 0

Let ω denote a new vertex (born at 1) and

Xt
ω = X ∪ ω ∗ Xt .

Define the reduced filtration as

0→ X̃0 → . . .→ X̃m → . . .→ X̃2m → 0

with

X̃i =


H̃(Xti ) 0 ≤ i ≤ m − 1
H̃(X) i = m
H̃(Xtm−i

ω ) m + 1 ≤ i ≤ 2m
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Cascades

A dot (a, b) is left-extreme, if there is no dot
with birth value smaller a and death value

larger b.

Cascade Lemma: D̃gm(f |X) = Dgm(f |X)C
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The Land and Water Theorem

Let f : Sn+1 → [0, 1] be perfect Morse. Let U ∪ V = Sn+1,
M := U ∩ V n-manifold. Then

D̃gm(f |U) = D̃gm(f |V)T .



The Land and Water Theorem

Let f : Sn+1 → [0, 1] be perfect Morse. Let U ∪ V = Sn+1,
M := U ∩ V n-manifold. Then

D̃gm(f |U) = D̃gm(f |V)T .



The Land and Water Theorem

Let f : Sn+1 → [0, 1] be perfect Morse. Let U ∪ V = Sn+1,
M := U ∩ V n-manifold. Then

D̃gm(f |U) = D̃gm(f |V)T .



The Land and Water Theorem

Let f : Sn+1 → [0, 1] be perfect Morse. Let U ∪ V = Sn+1,
M := U ∩ V n-manifold. Then

D̃gm(f |U) = D̃gm(f |V)T .



The Land and Water Theorem

Let f : Sn+1 → [0, 1] be perfect Morse. Let U ∪ V = Sn+1,
M := U ∩ V n-manifold. Then

D̃gm(f |U) = D̃gm(f |V)T .



The Land and Water Theorem

Let f : Sn+1 → [0, 1] be perfect Morse. Let U ∪ V = Sn+1,
M := U ∩ V n-manifold. Then

D̃gm(f |U) = D̃gm(f |V)T .



The Land and Water Theorem

Let f : Sn+1 → [0, 1] be perfect Morse. Let U ∪ V = Sn+1,
M := U ∩ V n-manifold. Then

D̃gm(f |U) = D̃gm(f |V)T .



The Land and Water Theorem – Proof outline

Ũp
0 → . . . → Ũp

m → . . . → Ũp
2m

↓ ↓ ↓
Ṽ q

2m ← . . . ← Ṽ q
m ← . . . ← Ṽ q

0 ,

I Vertical isomorphisms
I Need some compatibility condition between isomorphisms
I Implied by compatibility of vertical pairings
I Reduction to (compatible) pairing induced by Lefschetz

duality [Cohen-Steiner, E., Harer 09]



The General Shore Theorem

Let f : Sn+1 → [0, 1] be perfect Morse. Let U ∪ V = Sn+1,
M := U ∩ V n-manifold. Then

Dgm0(f |M) = [Dgm0(f |U) t Dgm0(f |V)]C ,

Dgmp(f |M) = Dgmp(f |U) t Dgmp(f |V),

Dgmn(f |M) = [Dgm0(f |U) t Dgm0(f |V)]CT ,
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The General Shore Theorem – Proof outline

Dgm0(f |M) = [Dgm0(f |U) t Dgm0(f |V)]C

I Latitudinal n-manifold: Component of M
that separates the poles

I Latitudinal component: Component of U
or of V neighboring a lat. n-manifold.

I Left-extreme dots in
[Dgm0(f |U) t Dgm0(f |V)] correspond to lat.
components

I Show that lat. n-manifolds and lat.
components are related by a cascade



The Euclidean Shore Theorem

Let f : Sn+1 → [0, 1] be perfect Morse. Let U ∪ V = Sn+1,
M := U ∩ V n-manifold. If north- and south pole belong to a
common component of V, then

Dgm(f |M) = Dgm(f |U) t Dgm(f |U)T .

Proof:
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Conclusion and Outlook

We have proved relations
I between the (reduced) diagrams of U and V
I between the diagrams of U, V, and M

Further questions:
I Measure “imperfection” of Morse function?
I Can we always decompose S = U ∪ V as before such that

Dgm(f |S) t Dgm(f |M) ∼ Dgm(f |U) t Dgm(f |V)?

I Divide-and-conquer algorithm for computing Dgm(f |S)?
I Generalize to other (n + 1)-manifolds


