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Big picture of expander graphs

Expander graphs are of broad interest in mathematics and theoretical
computer science.

They are sparse graphs which are hard to disconnect.

They are sparse graphs for which random walks mix quickly.

They provide metric spaces that can only be embedded in Euclidean space
with large distortion.
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History

Existence of expanders first proved by Pinsker, using the probabilistic
method.

First explicit examples exhibited by Margulis, using property (T).

Ramanujan graphs of Lubotzky, Philips, and Sarnak, after Deligne’s proof
of the Weil conjectures.

Recent work of Breuillard, Green, and Tao on Suzuki groups — finishes
proof that “all finite simple groups have expanders.”
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Edge expansion

The Cheeger constant h of a graph G is defined as follows.

h(G ) = min
0<|S |<|G |/2

e(S , S̄)

|S |
.

Here e(S , S̄) is the number of edges between a set of vertices S and its
complement S̄ , |S | is the number of vertices in S , and the min is taken
over all nonempty vertex subsets which are less than half the size of the
graph.
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Spectral expansion

Define the Laplacian, a linear operator on functions f : G → R, by

L[f ] = f − A[f ],

where A[f ] is the averaging operator

A[f ](v) =
1

deg(v)

∑
u∼v

f (u).

Let 0 = λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of the Laplacian L[G ].
Then the spectral gap of G is the smallest positive eigenvalue λ2(G ).

Matthew Kahle (The Ohio State University) Higher-dimensional expanders November 7, 2011 6 / 23



Spectral expansion

Define the Laplacian, a linear operator on functions f : G → R, by

L[f ] = f − A[f ],

where A[f ] is the averaging operator

A[f ](v) =
1

deg(v)

∑
u∼v

f (u).

Let 0 = λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of the Laplacian L[G ].

Then the spectral gap of G is the smallest positive eigenvalue λ2(G ).

Matthew Kahle (The Ohio State University) Higher-dimensional expanders November 7, 2011 6 / 23



Spectral expansion

Define the Laplacian, a linear operator on functions f : G → R, by

L[f ] = f − A[f ],

where A[f ] is the averaging operator

A[f ](v) =
1

deg(v)

∑
u∼v

f (u).

Let 0 = λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of the Laplacian L[G ].
Then the spectral gap of G is the smallest positive eigenvalue λ2(G ).

Matthew Kahle (The Ohio State University) Higher-dimensional expanders November 7, 2011 6 / 23



Expander families

A sequence of graphs {Gi} of bounded degree with |Gn| → ∞ is called an
expander family if limn→∞ h(Gi ) > 0.

Equivalently, {Gi} is an expander family if limn→∞ λ2(Gi ) > 0.

Inequalities due to Cheeger and Buser in the continuous case, and Tanner,
Alon, and Milman in the discrete case, relate h(G ) and λ2(G ).
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Notions of higher-dimensional expanders

Linial and Meshulam’s use of “homological expansion” to find a sharp
vanishing threshold for H1(Y ,Z2), where Y ∈ Y (n, p) is a random
2-dimensional simplicial complex

Gromov’s “algebraic isoperimetry”

Fox, Gromov, Lafforgue, Naor, and Pach and “geometric overlap”
properties of expanders, and Uli Wagner’s use of coarse expansion to give
non-embeddable theorems.

Gromov and Guth’s recent proof that there exist isotopy classes of knots of
arbitrarily large distortion, using expander-like properties of arithmetic
hyperbolic manifolds.
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Notions of higher-dimensional expanders

Foundational work of Garland on cohomology of buildings via “p-adic
curvature”

Żuk’s work on property (T) in discrete groups and random groups

Ramanujan complexes — Li; Lubotzky, Samuels, and Vishne
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Definitions of higher-dimensional expanders

First note that we can rephrase edge expansion in terms of the coboundary
operator ∂.

h(G ) = min
0<|S|<|G |/2

e(S , S̄)

|S |

= min
X∈C0−{0}

|∂X |
‖X‖

Here X is understood to be a 0-cochain (with (Z/2)-coefficients), | · |
denotes the Hamming norm, and ‖ · ‖ denotes the quotient norm — i.e.
we assume that X is minimal in its coboundary class.
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Definitions of higher-dimensional expanders

Define the kth Cheeger number of a simplicial complex to be

hk(G ) = min
‖X‖6=0

|∂X |
‖X‖

This definition works equally well with other coefficients and norms. The
case R coefficients and L2 norm is particularly important, e.g. when k = 0,
this corresponds to spectral gap of a graph λ2.
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Results — random polyhedra as expanders

Dotterrer and K. studied the asymptotics of hk for various types of
random (k + 1)-dimensional complexes (including Linial-Meshulam and
Meshulam-Wallach). This shows that many random polyhedra are
(degree-relative) expander families.
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Property (T)

Informally, a group G has Kazhdan’s property (T) if whenever it acts
unitarily on a Hilbert space and has almost invariant vectors, it has a
nonzero invariant vector.

More precisely, the trivial representation is an isolated point in its unitary
dual equipped with the Fell topology.
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Tools

Theorem

(Żuk) If ∆ is a pure 2-dimensional simplicial complex, such that every
vertex link is connected and has λ2 > 1/2, then π1(∆) has property (T).

Theorem

(Ballman–Swiatkowski) If ∆ is a pure d-dimensional simplicial complex,
such that the link of every (d − 2)-face is connected and has
λ2 > (d − 1)/d, then Hd−1(∆,R) = 0.

Matthew Kahle (The Ohio State University) Higher-dimensional expanders November 7, 2011 14 / 23



Tools

Theorem
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Results — property (T)

Hoffman, K., and Paquette found a sharp threshold for π1(Y ) to have
property (T) with high probability, where Y ∈ Y (n, p) is a random
2-complex.

This threshold coincides with the homology vanishing threshold found
earlier by Linial and Meshulam.
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Theorems

Theorem

(Linial–Meshulam) Let ω →∞ as n→∞. If

p ≤ 2 log n − ω
n

then a.a.s. H1(Y ,Z2) 6= 0, and if

p ≥ 2 log n + ω

n

then a.a.s. H1(Y ,Z2) = 0.
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Theorems

Theorem

(Hoffman–K.–Paquette) If

p ≤ 2 log n − ω
n

then a.a.s. π1(Y ) does not have property (T), and if

p ≥ 2 log n + ω
√

log n log log n

n

then a.a.s. π1(Y ) has property (T) .
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We show that every vertex link has a large spectral gap, and apply Żuk’s
theorem.

This work requires new estimates and concentration results on the spectral
gap of Erdős-Rényi random graphs.
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Spectral gap concentration

Theorem

(Hoffman – K. – Paquette) Fix k ≥ 0 and ε > 0, and let G ∈ G (n, p).
Let 0 = λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of the normalized
Laplacian of G . There is a constant C = C (k) so that when

p ≥ (k + 1) log n + C
√

log n log log n

n

is satisfied, then
λ2 > 1− ε,

with probability at least 1− o(n−k).
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Results — random flag complexes

Theorem

(K.) If

p ≥
(

(1 + k/2) log n + ω
√

log n

n

)1/(k+1)

or

p = o

(
1

n1/k

)
then a.a.s. Hk(X ,R) = 0, and if

(ω
n

)1/k
≤ p ≤

(
(1 + k/2) log n − ω log log n

n

)1/(k+1)

then a.a.s. Hk(X ,R) 6= 0.
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A random flag complex on n = 100 vertices.
(Computation and image courtesy of Afra Zomorodian.)
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Open problems

Higher dimensional analogues of Cheeger and Buser inequalities.

Define higher-dimensional analogues of k-regular graphs.

Describe the “evolution” of the random fundamental group π1(Y ) from
free group to property (T) group.
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Proposed applications

Spectral sparsification of simplicial complexes, as in Batson, Spielman, and
Srivastava’s work on graph sparsification.

Quantifying coverage in homological sensor networks of de Silva and
Ghrist.

Fast mixing of Markov chains on k-cochains.
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