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Background from Cubical Homology

A cubical set X ⊂ Rd is a finite union of elementary cubes

Q = I1 × I2 × · · · × Id ⊂ Rd ,

Ii of the form [k , k + 1] or {k}.
K(Rd ) all such Q
Kk (Rd ) those of dimension k
Kk (X ) those in X
Ck (X ) free abelian group generated by
Kk (X ), its canonical basis

∂k (Q) =
∑
±(k − 1)–dim faces of Q

cubical boundary operator
Alternation defined in [CH] by induction on d = emb X



Cubical cochain complex

C(X ) cubical chain complex

Note: All is valid for R(K(X )) := C(X ; R) graded module with
coefficients in a ring with unity R.

(C∗(X ), δ) the dual complex of (C∗(X ), ∂)

δk : Ck (X )→ Ck+1(X ) the coboundary operator

〈δkck , ck+1〉 := 〈ck , ∂k+1ck+1〉

Kk (X ) := {Q?|Q ∈ Kk (X )} the dual canonical basis of Ck (Rd )

Hk (X ) := Z k (X )/Bk (X ) = ker δk/im δk−1

the k ’th cohomology group of X



Cubical cross product

Recall from CH: the cubical product

× : Cp(Rn)× Cq(Rm)→ Cp+q(Rn+m)

is defined on P ∈ Kn
p and Q ∈ Km

q as the cartesian product
P ×Q and extended to chains (c, c′) by bilinearity.

The cubical cross product of cochains
cp ∈ Cp(X ) and cq ∈ Cq(Y )
is a cochain in Cp+q(X × Y )
defined on R × S ∈ Kp+q(X × Y ) by

〈cp×cq,Q〉 :=

{
〈cp,R〉 · 〈cq,S〉 if dim R = p and dim S = q,

0 otherwise.



Cup product – general definition

The cubical cup product

^ : Cp(X )× Cq(X )→ Cp+q(X )

of cochains cp and cq is defined on Q ∈ Kp+q(X ) by:

〈(cp ^ cq),Q〉 := 〈diagp+q(cp×cq),Q〉 = 〈cp×cq,diagp+q(Q)〉

where diagp+q is the homology chain map induced by
diag(x) = (x , x).

The cup product ^ : Hp(X )× Hq(X )→ Hp+q(X ) is defined by

[zp] ^ [zq] := [zp ^ zq].

Our goal: Obtain an explicit formula suitable for computations.



Chain map of the diagonal map

Theorem (Chain selector CH)
Given f : X → Y, let F : X −→→Y,

F (x) := ch (f (ch (x)),

where ch(A) is the smallest cubical set containing A.
Suppose F acyclic–valued. Then ∃ a chain map
ϕ : C(X )→ C(Y ) such that

(a) |ϕk (Q)| ⊂ (F (
◦
Q)) ∀Q∈Kk (X);

(b) ϕ0(V ) ∈ K0 ∀Q∈K0(X).

For any chain map satisfying (a,b), we have

ϕ∗ = H∗(f ).



Lemma (1)
Let X1,X2,Y1,Y2 be cubical sets,
f : X1 → Y1, g : X2 → Y2 maps which admit acyclic-valued
representations F , G, ϕ and ψ their chain selectors.

1 The set-valued map F ×G : X1 × X2
−→→Y1 × Y2 given by

(F ×G)(x , y) := F (x)×G(y)

is an acyclic-valued representation of f × g.
2 The chain map ϕ⊗ ψ : C(X1 × X2)→ C(Y1 × Y2) given on

generators Q = Q1×Q2 ∈ Kk (X1 × X2) by

(ϕ⊗ ψ)k (Q) := ϕp(Q1)×ψq(Q2)

is a chain selector of F ×G.



Theorem (2)
Let X ,Y be cubical sets and let λ : X × Y → Y × X be the
transpose given by λ(x , y) := (y , x).

1 The map Λ : X × Y −→→Y × X given by

Λ(x , y) := Q2 ×Q1, Q1 := ch (x),Q2 := ch (y),

is an acyclic-valued representation of λ;
2 Let λ# : C(X × Y )→ C(Y × X ) be defined on generators

Q = Q1×Q2 ∈ Kk (X × Y ) by

λk (Q) := (−1)dim Q1 dim Q2Q2×Q1.

Then λ# is a chain selector of Λ.



Constructing ϕ = diag#

Proposition (3)
The map diag : X → X × X admits an acyclic-valued
representation Diag : X −→→ (X × X ) given by
Diag(x) := Q ×Q where Q = ch (x) ∈ K(X ).

We go by induction on d = emb (X ).

Case d = 1:

Q = [v ] ⇒ diag0([v ]) := [v ]×[v ]

Q = [v0, v1] ⇒ diag1([v0, v1]) := [v0]×[v0, v1] + [v0, v1]×[v1]



Induction step:

diag(x1, . . . , xd ) = (x1, . . . , xd , x1, x2, . . . , xd )

= τ(x1, x1, x2, . . . , xd , x2, . . . , xd )

= τ(diag(x1),diag(x2, . . . , xd ))

We get
diag = τ ◦ (diagX1 ×diagX ′

) ◦ j ,

where τ is the permutation,

j : X ↪→ X1 × X2 ⊂ R× Rd−1

the inclusion of X to the product of its projections.



Theorem (4)
Let emb X > 1. Define diag# : C(X )→ C(X × X ) by

diag# := π ◦ τ# ◦ (diagX1
# ⊗diagX ′

# ) ◦ ι,

where
1 ι : C(X )→ C(X1 × X ′) is the inclusion map;

2 diagX1
# and diagX ′

# are defined by induction hypothesis;

3 diagX1
# ⊗diagX ′

# is given by Lemma 1;

4 τ# is given by Theorem 3;
5 π : C(X1 × X ′ × X1 × X ′)→ C(X × X ) is the projection

π(Q) :=

{
Q if Q ∈ K(X × X ),
0 otherwise.

Then diag# is a chain selector for Diag.



Explicit cup product formula

Induction on d = emb (X ). Case d = 1:

k = p + q = 0, R = [v ]. Then

〈P? ^ Q?,R〉 = 〈P?×Q?, [v ]×[v ]〉

=

{
1 if P = Q = [v ],
0 otherwise.

k = p + q = 1, R = [v0, v1]. Then

〈P? ^ Q?,R〉 = 〈P?×Q?, [v0]×[v0, v1] + [v0, v1]×[v1]〉

=


1 if P = [v0] and Q = [v0, v1],
1 if P = [v0, v1] and Q = [v1],
0 otherwise.



Induction step

Theorem (5)
Let emb X = d > 1, and suppose that the formula for ^ is given
for cochains with emb = 1, . . . ,d − 1.
Let P = P1 × P2 ∈ Kp(X ) and Q = Q1 ×Q2 ∈ Kq(X ) with
emb P1 = emb Q1 = 1 and emb P2 = emb Q2 = d − 1.
Let x = P?

1 ^ Q?
1, y = P?

2 ^ Q?
2 be computed using induction.

Then

P? ^ Q? =

{
(−1)dim P2 dim Q1 x×y if |x×y | ∈ K(X ),

0 otherwise.

Example Let X = [0,1]2, P = [0]× [0,1], and Q = [0,1]× [0].

P? ^ Q? = (−1)1·1 ([0]? ^ [0,1]?)× ([0,1]? ^ [1]?) = −[0,1]2
?
.

However, if X = P ∪Q, we get P? ^ Q? = 0.



Coordinate-wise formula

Let

P = I1 × I2 × · · · × Id and Q = J1 × J2 × · · · × Jd .

Let P ′j := Ij+1 × Ij+2 × · · · × Id . Put

sgn (P,Q) := (−1)
∑d

j=1 dim P′
j dim Jj .

Corollary (6)
With the above notation,

P? ^ Q? = sgn (P,Q)(I?1 ^ J?1)×(I?2 ^ J?2)× · · ·×(I?d ^ J?d ),

provided the right-hand side is supported in X,
and P? ^ Q? = 0 otherwise.



Cohomology of S-complexes

S-complex defined by Mrozek et. al. (S, κ)
is a combinatorial setting for a CW-complex
with a chosen canonical basis S = {Sk}
and given incidence numbers κ in a ring of coefficients R
such that
κ(a,b) 6= 0, a ∈ Sk , then b is a (k − 1)–face of a.
Particular cases: Any simplicial complex S,
S = K(X ), X a cubical set.
This gives rise to the chain complex R(S), its dual
R?(S) := Hom (R(S),R), the coboundary map δκ := (∂κ)?,

δκ(t?) :=
∑
s∈S

κ(s, t)s? t ∈ S.

and to the cohomology H∗(S).



Reduction and coreduction pairs
Smith normal form algorithm is costly! Our goal: We want a
low-cost method for removing as many generators as possible
before applying it.
An S-subcomplex S′ is closed if bdSS′ ⊂ S′ and it is open if
S \ S′ is closed.
Consider a pair (a,b) ∈ S × S with invertible κ(Q,P).
It is a reduction pair if cbdS(b) = {a}.
It is a coreduction pair if bdS(a) = {b}.

Theorem (7)
A reduction pair (a,b) is open in S and a coreduction pair is
closed in S. In both cases {a,b} and S̄ := S \ {a,b} are
S-subcomplexes of S, and H({a,b}) = H∗({a,b}) = 0.
Consequently,

H(S) ∼= H(S̄) and H∗(S) ∼= H∗(S̄).



Homology Models

Attention: To compute the cohomology ring of a cubical set it is
not sufficient to have the cohomology generators in a reduced
S-complex.
It is necessary to construct the cohomology generators in the
original cubical set.

Theorem (8)
Let (a,b) be a reduction or coredution pair in S. The maps
ψ = ψ(a,b) : R(S)→ R(S̄), ι = ι(a,b) : R(S̄)→ R(S),

ψ(c) = c − 〈c,a〉
〈∂b,a〉

∂b − 〈c,b〉b, (1)

ι(c) = c − 〈∂c,a〉
〈∂b,a〉

b (2)

are mutually inverse chain equivalences.



Reduction sequence

is a finite sequence

ω = {(ai ,bi)i=1,2,...n} ∈ S

such that (ai ,bi) is a reduction or coreduction pair
in (Si−1, κi−1),
starting at S0 = S and ending at Sω := Sn.
A homology model of S is Sω together with the chain
equivalences:

ιω = ι(a1,b1) ◦ · · · ◦ ι(an,bn) : R(Sω)→ R(S),

ψω = ψ(an,bn) ◦ · · · ◦ ψ(a1,b1) : R(S)→ R(Sω).



Dual chain equivalences

Idea: Use (ιω)? to transport cochains on S to those in Sω and
(ψω)? the reverse way.

Proposition (9)
The duals of ψ and ι are given by

ψ? : R?(S̄) 3 c 7→ c − 〈b
?, δc〉
〈∂b,a〉

a? ∈ R?(S),

ι? : R?(S) 3 c 7→ c − 〈b
?, c〉

〈∂b,a〉
δa? ∈ R?(S̄).



Using models for cohomology

Note: There are even more benefits from the homology model
for cohomology computation than for homology computation!

Theorem (10)
Let ω be a sequence consisting only of elementary coreduction
pairs. Then (ψω)? is an inclusion

R?(Sω) ↪→ R?(S),

Consequence: For computing the ring structure of a cubical set
X , when S = K(X ), the cup product formula may be applied
directly to the cohomology generators in the ω-reduction.



Wedge X and torus T
X = S2 ∨ S1 ∨ S1. H(X ) ∼= H(T ), but H∗(X ) 6∼= H∗(T ) as rings.

Cubical model for X . Left: original, Right: coreduced.
Cup product of H1–generators computed easily in the
coreduced complex is zero.



Cubical model for T . Left: original, Right: coreduced.
Cup product of H1–generators computed easily in the
coreduced complex is a H2–generator.



Efficiency test on rescaled X and T



Past and future work

Origins of (singular) cubical approach:
J.P. Serre, Homologie singulière des espaces fibrés, Annals
Math. (1951).
More recent computation oriented work:
R. González-Diáz and P. Real, Computation of cohomology
operations on finite simplicial complexes, Homology, Homotopy
& Appl. (2003).
T. Kaczynski, K. Mischaikow, and M. Mrozek, Computational
Homology, Springer 2004.
M. Mrozek and B. Batko, Coreduction homology algorithm,
Discrete & Comput. Geom. (2009).
Related program libraries CHomP, CAPD-RedHom.
Future work:
Implementation and experimentation, joint work with P. Dłotko
and M. Mrozek.
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