Fields Institute, Toronto - November 11, 2011

Workshop on Computational Topology

Persistence based signatures for
compact metric spaces

Frédéric Chazal

Joint work with Vin de Silva and Steve Oudot

centre de reche‘[che
SACLAY - ILE-DE-FRANCE

ST EN AUTOMATIQUE

uEdeolula)

TRICA



Introduction

* 3

d Lo

o'..' L
o

* 4%
| ]

Problem: how to compare topo-
logical properties of close metric

spaces (X,dx) and (Y, dy)?



Introduction

ey
[ ] :.‘. @ ° *

d Lo

* 4%
| ]

Problem: how to compare topo-
logical properties of close metric

spaces (X,dx) and (Y, dy)?

e Gromov-Hausdorff distance between (X,dx) and (Y, dy)

Fore >0, C' C X XY is an e-correspondence if
)Vre X, yeYs. t (x,y) € C,
i)VyeY,dre X s. t. (z,y) € C,

i) V(z,y), (2", y') € C, |dx(z,2") — dv (y,y')| <e.

1 .
dam(X,Y) = 5 inf{e > 0 : there exists an e-correspondence between Xand Y}



Introduction

= 0-dimensional homology generators

— 1-dimensional homology generators

e Scale dependent approach considering the Vietoris-Rips complexes built on X
and Y.
For a € R, Rips(X,a) is the simplicial complex with vertex set X
defined by

[33073317 Tt 733/6] < RipS(Xa a’) <~ dX(CUz',CUj) < a, for all Z%]

e Compare the persistence of the filtrations HRips(X) and HRips(Y') where
H = H,(—;F) is the simplicial homology functor in dimension p over a field

IF.
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—»persistence diagrams used as
shape signatures for classifica-
tion



Tame persistent modules

Definition: A persistent module is a family M = (M“,a € R) of vector spaces
together with linear maps &2 : M® — M? for all a < b where €2 = idyre and
(€ =¢fo&l foralla<b<e

Example: Given a metric space (X,dx), the Vietoris-Rips filtration HRips(X) is
a persistence module with linear maps the morphisms £ induced at the homology
level by the inclusion maps Rips(X,a) < Rips(X,b).
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Definition: A persistent module is a family M = (M“,a € R) of vector spaces
together with linear maps &2 : M® — M? for all a < b where €2 = idyre and
(€ =¢fo&l foralla<b<e

Example: Given a metric space (X,dx), the Vietoris-Rips filtration HRips(X) is
a persistence module with linear maps the morphisms £ induced at the homology
level by the inclusion maps Rips(X,a) < Rips(X,b).

In the “classical” setting (finite dimentional spaces), the definition of persistence
only involves the rank of the maps €2, a < b.

Definition: A persistence module M is tame if for any a < b, &2 has a finite rank.

Theorem [CCGGO'09]: tame persistence modules have well-defined persistence di-
agrams.



Tame persistent modules

Definition: A persistent module is a family M = (M“,a € R) of vector spaces
together with linear maps &2 : M® — M? for all a < b where €2 = idyre and
(€ =¢fo&l foralla<b<e

- b
A map ® : M — N of degree ¢ is a family of M® M

morphisms ¢, : M* — N for all a s.t. ngii O \ C) \

¢a:¢bO€2. Na+t—> Nb+t

An e-interleaving between M and N is specified by two maps ®° : M — N and
U : N — M of degree € s.t. ®° o U® and ¥ o ®° are the shifts of A/ and M.
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Tame persistent modules

Definition: A persistent module is a family M = (M“,a € R) of vector spaces
together with linear maps &2 : M® — M? for all a < b where €2 = idyre and

fnggofg foralla <b<e.

A persistence module M is tame if for any a < b, €2 has a finite rank.

Theorem [CCGGO'09]: If M and N are tame and e-interleaved for some ¢ > 0
then

dp(Dgm(M),Dgm(N)) < ¢



Correspondences and interleaving

Proposition: Let X, Y be metric spaces and let C' C X XY be an e-correspondence

between X and Y. Then C induces a canonical e-interleaving between HRips(X)
and HRips(Y).
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Proposition: Let X, Y be metric spaces and let C' C X XY be an e-correspondence
between X and Y. Then C induces a canonical e-interleaving between HRips(X)

and HRips(Y).

Lemma: Let f: X — Y be compatible with C' in the sense that (z, f(z)) € C for
all z € X. Then f induces a simplicial map f : Rips(X,a) — Rips(Y,b) whenever
b> a+e. Moreover, if g: X — Y is compatible with ', f, g are contiguous maps.
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Correspondences and interleaving

Proposition: Let X, Y be metric spaces and let C' C X XY be an e-correspondence
between X and Y. Then C induces a canonical e-interleaving between HRips(X)
and HRips(Y).

Lemma: Let f: X — Y be compatible with C' in the sense that (z, f(z)) € C for
all z € X. Then f induces a simplicial map f : Rips(X,a) — Rips(Y,b) whenever
b> a+e. Moreover, if g: X — Y is compatible with ', f, g are contiguous maps.

Proof of lemma: Y
1. if o = J|xo,---2x] € Rips(X,a) then /
f(o_) — [f(ajo)’o--f(ajk)] E RipS(Y) b) y ................................. .
y ................. ®
2. f(o) and g(o) are contained in a simplex of
Rips(Y, b): R ¢
dy(f(xz)af(ajj))SdX(ajZ)m])_l_gSa_'_ng , /
dy (9(2:), 9(2)) < dx (wi,;) +6 Sa+e<b dx (@, @) —dvwy)| <e
dy (f(z:),9(z;)) < dx(wi,z;) +e<a+e<b



Correspondences and interleaving

Proposition: Let X, Y be metric spaces and let C' C X XY be an e-correspondence
between X and Y. Then C induces a canonical e-interleaving between HRips(X)

and HRips(Y).

Lemma: Let f: X — Y be compatible with C' in the sense that (z, f(z)) € C for
all z € X. Then f induces a simplicial map f : Rips(X,a) — Rips(Y,b) whenever
b> a+e. Moreover, if g: X — Y is compatible with ', f, g are contiguous maps.

Y
Proof of the proposition:
/

_Let f: X Y and g:Y — X be compatible. 7 .
- CTC = {(z,7) € X x X|Fy € Y s.t. (z,y) € T B .

C,(z',y) € C} is a 2e-correspondence and h = go f _

and idx are compatible functions X — X. o :x’ ~

- It follows from the lemma that h and id x are contiguous,

so they induce the same maps at homology level. ldx (z,2") —dy (y,y')| < ¢




Tameness of the Rips filtration

A metric space (X, dx) is totally bounded (or precompact) if for any € > 0 there
exists a finite subset F. C X such that dy (X, F:) < ¢ (i.e. Vx € X,dp € F; s.t.

dx(ﬂ?,p) < 8).

Theorem: Let X be a totally bounded metric space. Then HRips(X) is tame.
= Dgm(HRips(X)) is well-defined!
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A metric space (X, dx) is totally bounded (or precompact) if for any € > 0 there
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e-correspondence. . . — X




Tameness of the Rips filtration

A metric space (X, dx) is totally bounded (or precompact) if for any € > 0 there
exists a finite subset F. C X such that dy (X, F:) < ¢ (i.e. Vx € X,dp € F; s.t.

dx(aj‘,p) < 8).

Theorem: Let X be a totally bounded metric space. Then HRips(X) is tame.
= Dgm(HRips(X)) is well-defined!

Proof: show that I? : HRips(X,a) — HRips(X,b) has

finite rank whenever a < b. o —_—
Let e = (b—a)/2 and let FF C X be finite s. t. C

du (X, F) <¢e/2. F* -

Then C = {(x, f) € X x F|d(x, f) < e} is an o

e-correspondence. . . — X

Using the interleaving map, I° factorizes as

HRips(X,a) -(HRips(F,a + €))— HRips(X, a + 2¢) = HRips(X, d)

—» finite dimensional




Stability of persistence diagrams

X

Y

Theorem: Let X, Y be totally bounded metric spaces. Then

d,(Dgm(HRips(X)), Dgm(HRips(Y))) < 2dgu(X,Y)



Stability of persistence diagrams

X

Y

Theorem: Let X, Y be totally bounded metric spaces. Then

d,(Dgm(HRips(X)), Dgm(HRips(Y))) < 2dgu(X,Y)

Proof:
For any ¢ > 2dgu (X, Y) there exists an e-correspondence C' between X and Y.

C' induces a canonical e-interleaving between HRips(X) and HRips(Y') that are tame

modules.

It follows that
dy (Dgm(HRips(X)), Dgm(HRips(Y))) < e



Stability of persistence diagrams

X

Y

Theorem: Let X, Y be totally bounded metric spaces. Then

d,(Dgm(HRips(X)), Dgm(HRips(Y))) < 2dgu(X,Y)

e Robust multiscale signature for totally bounded spaces.

e A (topological) lower bound of the Gromov-Hausdorff distance.

e Same result with Cech filtrations.

e Similar results for pairs (X, f) where f : X — R is a Lipschitz function.

e No need of the triangle inequality! — Also works for “dissimilarity measures”
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Persistence-based signatures

Signatures of some elementary shapes (approximated from finite samples):

O e O —e O e
1ie 1ie 1
0 0 o]y, 0
0 0 0 0
O e O —e O e O e
1 1t 1 1
[ ]
[ J
[ J
[ J
0 0 0 0




Persistence-based signatures

Experimental results:

e . oalr o S 00 Wy S0 WL W Y0 g
NS LY EYNE S
Yo o F O N 3 S L. &
¢éeeee@@ee
I I B B BN BN BN B BN
T 2 AR RO AR o




Persistence-based signatures

Experimental results:

0.04

camels

0.035

cats

elephants

- {10.025

- 002

faces

0.015

heads

oo

0.005

horses




Persistence-based signatures

Experimental results:

0.04

0.03
0.02

0.01

—0.01

—0.02

—0.03  _0.02 —0.01 O 0.01 0.02 0.03 0.04 0.05



Homework (remarks and open questions)

e Even when X is compact, H,(Rips(X,a)), p > 1, might be infinite dimen-
sional for some value of a:

It is also possible to build such an example with the “open”
X q Rips complex:

[xo, 1, ,xk] € Rips(X,a) & dx(x;,z;) <a, foralli,j
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Homework (remarks and open questions)

e Even when X is compact, H,(Rips(X,a)), p > 1, might be infinite dimen-
sional for some value of a:

It is also possible to build such an example with the “open”
X q Rips complex:

[xo, 1, ,xk] € Rips(X,a) & dx(x;,z;) <a, foralli,j

o If X is compact, then dim H;(Cech(X,a)) < +oo for all a ([Smale-Smale,
C.-de Silva)).

o If X is geodesic, then dim H;(Rips(X,a)) < 4oo for all a > 0 and
Dgm(H;Rips(X)) is contained in the vertical line x = 0.

e Open problem (probably hard): for a given compact set X, how “big" can
the set S of values a such that dim H, (Rips(X,a)) = 400 be?
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