Two Phase Flow in Porous Media: Stability of Fronts

Michael Shearer Kim Spayd, Zhengzheng Hu

North Carolina State University Department of Mathematics

Fields Institute 2012

Supported by NSF grants DMS 0604047, DMS 0968258, DMS 0636590 RTG

Shearer/Spayd/Hu (NCSU)

Flow in Porous Media

Fields Institute 2012 1 / 26

Secondary oil recovery: water flood

Buckley and Leverett, 1942 scalar 1st order PDE in 1-d Gray and Hassanizadeh, 1990's dynamic capillary pressure: rate dependence

Plane waves: undercompressive shocks; Pop, Cuesta, Peletier et al 2006-2011

Fingering instability: Saffman, Taylor, 1958 New insights; Yortsos and Hickernell, 1989

2-D Model w: water; o: oil; T: total.

u(x, y, t): saturation (vol. fraction) of water, (1 - u): oil saturation p(x, y, t): pressure in water

Conservation of mass with Darcy's law: velocity $\mathbf{v} = -\lambda^w(u)
abla p$:

$$\phi \frac{\partial u}{\partial t} - \nabla \cdot (\lambda^{w}(u) \nabla p) = 0 \qquad \phi = \text{ porosity, } \lambda(u) = \frac{Kk(u)}{\mu}$$

K = absolute permeability, k(u) = relative permeability, μ = viscosity Incompressibility: $\nabla \cdot \mathbf{v}^{\mathsf{T}} = 0$

$$\nabla \cdot \left(\lambda^{T}(u) \nabla p + \lambda^{o}(u) \nabla p_{c}(u) \right) = 0$$

 $\lambda^T = \lambda^w + \lambda^o$, $p^c(u) = p^o - p^w$: capillary pressure;

For simplicity, neglect gravity

Plane waves

 $p_e = p_e(u)$: equilibrium capillary pressure; decreasing function One-dimensional equation: $\partial_x \mathbf{v}^T = 0$: $\mathbf{v}^T = (V, 0)$ constant eliminate pressure gradient $\partial_x p$

Relative permeability functions: $k^w(u) = \kappa^w u^2$; $k^o(u) = \kappa^o (1-u)^2$

Dynamic Capillary Pressure

Gray and Hassanizadeh (1990, 1993) propose that capillary pressure should be rate dependent:

$$p_c(u, u_t) = p_e(u) - \tau u_t$$

 p_e : equilibrium capillary pressure; $p_e(u) = -u$ for simplicity

DiCarlo: Water Resources Research, 2004: Experiments (with gravity) show nonmonotonic saturation profiles

Modified Buckley-Leverett Equation (1-D)

$$u_{t} + f(u)_{x} = (H(u)u_{x})_{x} + \tau (H(u)u_{tx})_{x}$$

$$f(u) = V \frac{u^{2}}{u^{2} + M(1 - u)^{2}} \qquad H(u) = \frac{u^{2}(1 - u)^{2}}{u^{2} + M(1 - u)^{2}}$$

$$M = m^{o}/m^{w} \text{ mobility ratio; } m^{j} = \kappa^{j}/\mu^{j}$$

$$0.1 \qquad 0.1 \qquad 0.1$$

Scalar conservation law: $u_t + f(u)_x = 0$

Idealization: no capillary pressure; characteristic speed f'(u)Scale invariant solutions: building blocks for solving initial value problem

Rarefactions

$$u(x,t) = \begin{cases} u_{-} & \text{if } x < f'(u_{-})t \\ r(\frac{x}{t}) & \text{if } f'(u_{-})t \le x \le f'(u_{+})t \\ u_{+} & \text{if } x > f'(u_{+})t \end{cases}$$

Shocks

$$u(x,t) = \begin{cases} u_{-} & \text{if } x < st \\ u_{+} & \text{if } x > st \end{cases}$$

Rankine-Hugoniot condition: shock speed

$$s = {f(u_+) - f(u_-) \over u_+ - u_-}$$

Admissible Shocks

 $f'(u_+) < s < f'(u_-)$ Lax shock is admissible if there is a traveling wave from u_- (unstable node) to u_+ (saddle point)

Dynamic capillary pressure admits undercompressive shocks Σ : $s > f'(u_{\pm})$ **PLUS** corresponding traveling wave (saddle-to-saddle) Jacobs, McKinney, Shearer (1995), LeFloch Book (2002)

Buckley-Leverett solution 1942

Solve conservation law with initial jump from all water $u_{-} = 1$ to all oil $u_{+} = 0$: water flooding:

The Riemann Problem: Classical Solution

Solve conservation law with initial jump from u_{ℓ} to u_r

$$u_t + f(u)_x = 0,$$
 $u(x, 0) = \begin{cases} u_\ell & \text{if } x < 0 \\ u_r & \text{if } x > 0 \end{cases}$

u

The Riemann Problem; dynamic capillary pressure

$$(RP): \quad u_t + f(u)_x = 0, \qquad u(x,0) = \begin{cases} u_\ell & \text{if } x < 0 \\ u_r & \text{if } x > 0 \end{cases}$$

- R: Rarefaction Wave
- S: Admissible Lax Shock
- $\Sigma: \mathsf{Undercompressive}\ \mathsf{Shock}$

PDE Simulations - Nonclassical Solutions

 $u_{\ell} \in (u_{mid}, u_{\Sigma})$: Lax shock u_{ℓ} to u_{Σ} undercompressive shock u_{Σ} to u_{r} $u_{\ell} \in (u_{\Sigma}, 1)$: rarefaction wave u_{ℓ} to u_{Σ} undercompressive shock u_{Σ} to u_{r}

Classical Result: Saffman-Taylor Instability (1958)

Pure fluids: all water (u = 1) displacing all oil (u = 0)

No capillary pressure $(p_c \equiv 0) \Rightarrow$ sharp interface

Does not capture rarefaction-shock solution of Buckley-Leverett

Perturb pressure and interface, $x = Vt + ae^{i\alpha y + \sigma t}$ wave number α , growth rate $\sigma(\alpha)$

Saffman-Taylor result: $\sigma = \sigma_1 \alpha + h.o.t., \ \sigma_1 = V \frac{1-M}{1+M}$

Fingering instability: Mobility ratio $M = \frac{\mu^w}{k^w} / \frac{\mu^o}{k^o} < 1$

Saffman-Taylor Analysis: 1-dimensional base state

Interface $\bar{x} = Vt$; velocity $V = -m_{\pm}\partial_{x}\bar{p}_{\pm}$; mobility $m_{\pm} = k_{\pm}/\mu_{\pm}$ Continuous pressure $\bar{p}_{\pm} = -\frac{V}{m_{\pm}}(x - Vt) = -\frac{V}{m_{\pm}}z$, z = x - Vt; shock location: $\bar{z} = \bar{x} - Vt = 0$

Saffman-Taylor perturbation analysis

2-d equations: $v_{\pm} = -m_{\pm} \nabla p_{\pm}; \quad \nabla \cdot v_{\pm} = 0$

Thus, the pressure is harmonic: $\Delta p_{\pm} = \partial_z^2 p_{\pm} + \partial_y^2 p_{\pm} = 0$ (1)

 $p_{\pm}(z,y,t) = -rac{V}{m_{\pm}}z + q_{\pm}(z)e^{ilpha y + \sigma t}$ interface: $z = \hat{z}(y,t) = ae^{ilpha y + \sigma t}$

From (1): $q''_{\pm} - \alpha^2 q_{\pm} = 0, \quad q_{\pm}(\pm \infty) = 0 \text{ (resp.)}$

Hence, $q_{\pm}(z) = b_{\pm}e^{\mp \alpha z}$

Next: continuity of velocity and pressure at interface $z = \hat{z}$

$$p_{\pm}(z,y,t) = -rac{V}{m_{\pm}}z + b_{\pm}e^{\mplpha z}e^{ilpha y+\sigma t}$$
 interface: $z=\hat{z}(y,t)=ae^{ilpha y+\sigma t}$

Continuity of velocity and pressure at interface $z = \hat{z}$, retaining linear terms in coefficients a, b_{\pm}

Horizontal velocity: $\frac{\partial x}{\partial t} = a\sigma e^{i\alpha y + \sigma t} + V = -m_{\pm} \frac{\partial p_{\pm}}{\partial z}|_{\hat{z}} = V \pm m_{\pm} b_{\pm} \alpha e^{i\alpha y + \sigma t}$ Thus, $b_{\pm} = \pm \frac{\sigma}{\sigma} a / m_{\pm}$ Similarly, $p_{+} = p_{-}$ at $z = \hat{z}$: $-\frac{V}{m}a + b_{+} = -\frac{V}{m}a + b_{-}$ 3 linear equations for a, b_{\pm} , parameter $\stackrel{o}{-}$ Nonzero solution: $\left| \frac{\sigma}{\alpha} = V \frac{1-M}{1+M} \right| M = \frac{m_+}{m_-} = \frac{\mu_-}{k_-} / \frac{\mu_+}{k_+} < 1$

Stability of Lax shocks

Variable saturation u = u(x, y, t), pressure p(x, y, t) $p_c \equiv 0$, linearized equations

$$\sigma = \sigma_1 \alpha + \dots \quad \sigma_1 = V \frac{\lambda^T(u_-) - \lambda^T(u_+)}{\lambda^T(u_-) + \lambda^T(u_+)}$$

 λ^{T} = total mobility; shock $u = u_{\pm}$; V =shock speed

Yortsos and Hickernell, 1989; stability of smooth traveling wave matched asymptotics (with $p_c(u)$)

Conclusion: Long-wave stability $\iff \lambda^{T}(u_{-}) < \lambda^{T}(u_{+})$

2-dimensional stability

2-d equations with $p_c \equiv 0$ variables u, p saturation, pressure:

$$\frac{\partial u}{\partial t} - \nabla \cdot (\lambda^{w}(u) \nabla p) = 0$$
$$\nabla \cdot (\lambda^{T}(u) \nabla p) = 0$$

Interface $x = \hat{x}(y, t)$, normal in $t, x, y : (-\hat{x}_t, 1, -\hat{x}_y)$ Jump condition at shock: $([q] = q_+ - q_-)$

$$-\hat{x}_t[u] - [\lambda^w(u)p_x] + \hat{x}_y[\lambda^w(u)p_y] = 0$$
$$-[\lambda^T(u)p_x] + \hat{x}_y[\lambda^T(u)p_y] = 0$$

Base shock: $u = \bar{u}_{\pm}, p = \bar{q}_{\pm}(x - Vt), \hat{x} = Vt$, constants $\bar{u}_{\pm}, \bar{q}_{\pm}, V$

$$V = \frac{f(\bar{u}_+) - f(\bar{u}_-)}{\bar{u}_+ - \bar{u}_-}, \quad f(u) = v^T \frac{\lambda^w(u)}{\lambda^T(u)} \quad \bar{q}_{\pm} = -\frac{v^T}{\lambda^T(\bar{u}_{\pm})}$$

(1)

(2)

2-d stability: perturb variables and linearize equations

$$u = \bar{u}_{\pm} + u_{\pm}(z)e^{i\alpha y + \sigma t}, \quad p = \bar{q}_{\pm}z + q_{\pm}(z)e^{i\alpha y + \sigma t}$$
$$\hat{z} = \hat{x} - Vt = ae^{i\alpha y + \sigma t}, \quad z = x - Vt$$

Linearized equations: $(' = \frac{d}{dz})$

$$\sigma u - V u' - \lambda^{w}(\bar{u}_{\pm}) \left(q'' - \alpha^{2}q\right) + \frac{d\lambda^{w}}{du}(\bar{u}_{\pm})\bar{q}_{\pm}u' = 0$$
$$\lambda^{T}(\bar{u}_{\pm}) \left(q'' - \alpha^{2}q\right) + \frac{d\lambda^{T}}{du}(\bar{u}_{\pm})\bar{q}_{\pm}u' = 0$$

Relevant solutions for small α :

$$u=0, \ \ q_{\pm}=b_{\pm}e^{\mplpha z}, \ \ \pm(z-\hat{z})>0, \ \ -$$
 as for Saffman-Taylor!

Now linearize the jump conditions and find solvability condition for b_{\pm} , a

(3)

$$\sigma a[\bar{u}] + [\lambda^w(\bar{u})q'] = 0 \tag{4}$$

$$[\lambda^{T}(\bar{u})q'] = 0$$
 (5)

Equation (5):

$$\lambda^{\mathsf{T}}(\bar{u}_{+})b_{+} = -\lambda^{\mathsf{T}}(\bar{u}_{-})b_{-}$$
(6)

Then (4) implies

$$b_{-}\lambda^{T}(\bar{u}_{-})(f(\bar{u}_{+})-f(\bar{u}_{-}))v^{T}=-\frac{\sigma}{\alpha}a(\bar{u}_{+}-\bar{u}_{-})$$

But $(f(ar{u}_+)-f(ar{u}_-))/(ar{u}_+-ar{u}_-)=V,$ the shock speed, so

$$b_{-}\lambda^{T}(\bar{u}_{-})V = -arac{\sigma}{lpha}v^{T}$$

(7)

2-dimensional stability continued

Third equation comes from continuity of pressure

$$p = ar{q}_{\pm}(x - Vt) + q_{\pm}(x - Vt)e^{ilpha y + \sigma t}, q_{\pm} = b_{\pm}e^{\mp z} ~~(\pm (z - \hat{z}) > 0)$$

at $z = x - Vt = \hat{z}(y, t)$. Consequently,

$$\bar{q}_+ a + b_+ = \bar{q}_- a + b_- \tag{8}$$

Thus,
$$(\bar{q}_{+} - \bar{q}_{-})a = -\frac{\sigma}{\alpha} \frac{v^{T}}{V} a \left(\frac{1}{\lambda^{T}(\bar{u}_{+})} + \frac{1}{\lambda^{T}(\bar{u}_{-})}\right)$$
, (from (6,7))
Since $\bar{q}_{\pm} = -\frac{v^{T}}{\lambda^{T}(\bar{u}_{\pm})}$, we obtain

$$\frac{\sigma}{\alpha} = V \frac{\lambda^{T}(\bar{u}_{-}) - \lambda^{T}(\bar{u}_{+})}{\lambda^{T}(\bar{u}_{-}) + \lambda^{T}(\bar{u}_{+})}$$

Interpretation of stability condition: quadratic relative permeabilities: $k(u) = \kappa u^2$

Lax shocks for $u_+ < u_- \le u_lpha^*$

Stability boundary: $u_+ = -u_- + \frac{2M}{M+1}$

$$M = 0.2 \quad \frac{2M}{M+1} = \frac{1}{3}$$

Inflection point I of f(u) at $u_I = 0.2591$

S: Stable Lax shocks

U: Unstable Lax shocks

Undercompressive shocks are all unstable

Fingering Instability - Zhengzheng's Simulations

Crank-Nicolson time step, centered difference spatial discretization, first-order upwind scheme for advection term with periodic side boundary conditions, moving frame

$$\Delta t = O(10^{-3}), \ \Delta x = \Delta y = O(10^{-2})$$

Initial condition: randomly perturbed hyperbolic tangent

$$u_{-} = 0.2, u_{+} = 0, M = 0.05$$

Numerical Simulations - Stable case

Flow in Porous Media

Numerical Simulations: Unstable case: Fingering Instability

- *M* = 0.2
- $u_{-} = 0.25, u_{+} = 0.15$
- Lax shock
- Initial perturbation grows \Rightarrow fingering instability

Undercompressive 1-d shocks with dynamic capillary pressure: non-monotone solutions

Analysis of stability/fingering instability in 2-d, connection to Saffman-Taylor instability

Surprising linear dependence of growth rate on wave number for long waves: distinguishes stable waves from unstable

Numerical simulations of full parabolic/elliptic system; Riaz and Tchelepi (2006) also conducted numerical experiments

Oil/water mixture displacing oil can be stable.

K. Spayd and M. Shearer, SIAM J. Appl. Math. (2011)

K. Spayd, M. Shearer and Z. Hu, Applicable Analysis (2012).