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Introduction

Secondary oil recovery: Buckley and Leverett, 1942
water flood scalar 1st order PDE in 1-d

Gray and Hassanizadeh, 1990's
dynamic capillary pressure: rate
dependence

Plane waves: undercompressive
shocks; Pop, Cuesta, Peletier et
al 2006-2011

Fingering instability: Saffman,
Taylor, 1958

New insights; Yortsos and
Hickernell, 1989
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2-D Model w: water; o: oil; T: total.

u(x,y, t) : saturation (vol. fraction) of water, (1 — u) : oil saturation
p(x,y,t) : pressure in water

Conservation of mass with Darcy's law: velocity v = —A"(u)Vp:

Kk(u)

gb— -V -(\"(u)Vp)=0 ¢ = porosity, A\(u) =

K = absolute permeability, k(u) = relative permeability, 1 = viscosity

Incompressibility: ¥V -vT =0

V. (AT(u)Vp + )\o(u)Vpc(u)) ~0

AT =A% 4+ X°, pS(u) =p° —p": capillary pressure;
For simplicity, neglect gravity
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Plane waves

Pe = pPe(u) : equilibrium capillary pressure; decreasing function

One-dimensional equation: dyv' =0: v’ = (V,0) constant
eliminate pressure gradient Oyp

Relative permeability functions: k% (u) = k"u?, k°(u) = k°(1 — u)?

ue + f(u)x = — (pe(u)H(u)ux),
1

0.8
2

_ u 0.6
Flu) = Vu2 + M(1 — u)?

M = m°/m" mobility ratio; m/ =/ /i o2
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Dynamic Capillary Pressure

Gray and Hassanizadeh (1990, 1993) propose that capillary pressure

should be rate dependent:

pe(u, up) = pe(u) — Tuy

Pe : equilibrium capillary pressure; pe(u) = —u for simplicity
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Modified Buckley-Leverett Equation (1-D)

ur + f(u)x = (H(u)ux), + 7 (H(u)ue)

2

., u?(1—u)?
Fu) =V ) =
(U) U2 + M(l _ u)2 (U) U2 + M(l — U)2
M = m°/m" mobility ratio; m/ = «/ /1
] 0.1
— M=2
0.8 0.08
0.6 ) 0.0/  H(u)
0.4 0.04
0.2 0.02
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Scalar conservation law: u; + f(u), =0

Idealization: no capillary pressure; characteristic speed f'(u)
Scale invariant solutions: building blocks for solving initial value problem

Rarefactions

umifx < f(u)t
u(x,t) = r(¥) if f(u)t < x < f'(uy)t
up if x> f(ug)t

Shocks

(x, ) u_ if x <st
u(x,t) = .
up if x > st

_ Flug) — fu)

uy —u—

Rankine-Hugoniot condition: shock speed s
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Admissible Shocks

Fluy) <s< f(u) shock is admissible if there is a traveling
wave from u_ (unstable node) to u; (saddle point)

Dynamic capillary pressure admits ‘ undercompressive ‘ shocks ¥ :
s > f’(ux) PLUS corresponding traveling wave (saddle-to-saddle)
Jacobs, McKinney, Shearer (1995), LeFloch Book (2002)

1

1

Undercompressive

0 Uy w1
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Buckley-Leverett solution 1942

Solve conservation law with initial jump from all water u_ =1 to all
oil uy = 0: water flooding:

1 if 0
ur + f(u)x =0, u(x,O)—{ xS

0 ifx>0
1 rarefaction
Solution: rarefaction from
. u_ =1 to u*; Lax shock from
shock / u*touy =0:
w ' rarefaction-shock.
OO u u* 1
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The Riemann Problem: Classical Solution

Solve conservation law with initial jump from vy to u,

u ifx<0
us + f(u)x =0, u(X,O):{f =0
;
0.8 R S R: Rarefaction Wave
S R S: Lax Shock
u°'6 ”””””””””””””””””” RS : Rarefaction - Shock
r
04 R RS
0.2 S
G0 0.2 0.4 0.6 0.8 1
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The Riemann Problem; dynamic capillary pressure

u ifx<0
RP) : 4+ f(u)y =0, ,0) =
(RP) e + F() u(x.0) {ur if x>0

1

S> s
R= .
0.8 R: Rarefaction Wave
- R | S: Admissible Lax Shock
(- A U RS{ X : Undercompressive Shock
Ur N |
0.4 R R>
0.2 S S
0
0 02 04 UeO6 0.8 1
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PDE Simulations - Nonclassical Solutions

up € (Umid, Ux) :

Lax shock uy to uy
undercompressive shock
uy to u,

up € (ug,1):

rarefaction wave up to usy
undercompressive shock
us to u,
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Classical Result: Saffman-Taylor Instability (1958)

Pure fluids: all water (v = 1) displacing all oil (u = 0)
No capillary pressure (p. = 0) = sharp interface

Does not capture rarefaction-shock solution of Buckley-Leverett

— Perturb pressure and interface,
x = Vt + aelovtot
> wave number «, growth rate o(«)
WATER OIL
U= > u=0 Saffman-Taylor result: Y
P P, oc=oia+hot,o1=V——
v.=V % V+:V ]. + M
Y Fingering instability:
x Mobility ratio M = &7 /42 <1
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Saffman-Taylor Analysis: 1-dimensional base state

Interface x = Vit; velocity V = —my0xpy; mobility my = ki /py

Continuous pressure py = —m—vi(x — Vi) = —m—viz, z=x—Vt;

shock location: z=x— Vt =0

x =Vt
—>
WATER OIL
u= > u=20
P P,
v.=V —> v+=V
y
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Saffman-Taylor perturbation analysis

2-d equations: v = —m4+Vpy; V-ve =0

Thus, the pressure is harmonic: Apy = 92py + Bﬁpi =0 (1)
p+(z,y,t) = _nTViZ + q1(z)e’ ™+t interface: z = 2(y, t) = ae'®r+ot
From (1):  ¢1 —a”qe =0, q(£o0) =0 (resp.)

Hence, qi(z) = bret**

Next: continuity of velocity and pressure at interface z = 2
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Saffman-Taylor dispersion relation o

p+(z,y, t) = —m—\;z + byeTaZeiaytot interface: z = 2(y,t) = ae'® Tt

Continuity of velocity and pressure at interface z = z, retaining linear
terms in coefficients a, b+

Horizontal velocity:

% = aoelwtot L v = —miagf ‘2 =V mibiaeiay+at

Thus, by = iga/mjE
!
H _ 5. |4 _ v
Similarly, py = p_atz=2: —mra+t by =—-~a+b_

. . g
3 linear equations for a, by, parameter —
Q@

_ o 1-M
Nonzero solution: o= Vm m = ko
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Stability of Lax shocks

Variable saturation u = u(x, y,t), pressure p(x,y,t) pc =0,
linearized equations

AT(u) = AT(uy)
AT(u=) + AT (uy)

AT = total mobility; shock v = uy; V =shock speed

c=o0ia+... o1=V

Yortsos and Hickernell, 1989; stability of smooth traveling wave
matched asymptotics (with pc(v))

Conclusion: Long-wave stability <= AT (u_) < AT (uy)
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2-dimensional stability

2-d equations with p. = 0 variables u, p saturation, pressure:

Oou W B
E—V-(x\ (L)Vp) = 0 )

V-(AT(u)Vp) = 0

Interface x = X(y, t), normal in t,x,y : (=X, 1,—%))
Jump condition at shock: ([q] = ¢+ — g-)

~Salu] ~ ()] + %N (0)p] = 0
(2)
AT (e + %[\ (w)p] = 0

Base shock: v = 0y, p = gs(x — Vt),Xx = Vi, constants ty, gy, V

CR@) - F@) Lo Aw) T
V=0 0= = v
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2-d stability: perturb variables and linearize equations

u=r1my+ ui(z)eiay+at,. p=0q+z+ qi(z)eiaerat
5=%— Vt=aewtot  z—x_ Vit

Linearized equations: (' = £)

ou— V' —X"(iy) (¢" — 2q) + L (01)ged = 0
_ T\
AT (1) (4" — a?q) + L (04)ger’ = 0
Relevant solutions for small « :

u=0, g =byeT®? +(z—2)>0, - asfor Saffman-Taylor!

Now linearize the jump conditions and find solvability condition for by, a
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2-dimensional stability continued

oali] + [A\"(7)q] = 0 (4)
A(@)q] = 0 (5)
Equation (5):
AT(ay)by = —AT(a-)b- (6)
Then (4) implies
b AT (@) (F(2s) = F(@))vT = —Za(@y — 0.
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2-dimensional stability continued

Third equation comes from continuity of pressure
p=gs(x — Vt) + qe(x — Vt)e™ " qi = bie™? (£(z—2) >0)

at z = x — Vt = 2(y, t). Consequently,

|gia+b =g a+b | (8)
- _ ov’ 1
Thus, (g+—g-)a= Ve <)\T(U+) + )\T(U)> , (from (6,7))
T
Since g+ = —ﬁ, we obtain
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Interpretation of stability condition: quadratic relative
2

permeabilities: k(u) = ku

Lax shocks for vy < u_ < u}

Stability boundary: uy = —u_ + 2¥;
0.5
M =02 /\57M1 _ %
0.4 +
Inflection point | of f(u) at
0.3 - u = 0.2591
u, (1
0.2 /! P\ g ] S: Stable Lax shocks
0.1 4 S U ! ] U: Unstable Lax shocks

[ N T I S U Undercompressive shocks are all
0 01 02 03 04 05 unstable
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Fingering Instability - Zhengzheng's Simulations

Crank-Nicolson time step, centered difference spatial discretization,
first-order upwind scheme for advection term with periodic side
boundary conditions, moving frame

At = 0(1073), Ax = Ay = 0(107?)
Initial condition: randomly perturbed hyperbolic tangent
u-=02,ur =0,M=0.05

time =0 time =2 time = 4

3 3

o
=)
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Numerical Simulations - Stable case

0.5
M=0.2 04
u =025u, =0 03
Oil-water mixture displaces oil u+0_2 A\
Lax shock 0.1 : s U
Initial perturbation decays LN F

0 0.1 o.z:o.s 04 05

12 time = 0.05 12 time = 1.25 12 time =20
6 6 6
0 0 0
-6 -6 -6
-12 -12
-0.05 0 0.05 -0.05 0 0.05 ~12

-0.05 0 0.05
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Numerical Simulations: Unstable case: Fingering Instability

0.5

e M=0.2 0.4
e u =0.25u, =0.15 03
o Lax shock u*o_z N
e Initial perturbation grows = o :

fingering instability |

CO ‘ 0:.1: 6.4 0.5

12 time = 0.05 12 time =1.5 12 time = 20
6 6 6
0 0 0
6 -6 6
-12 _12 _12
-0.05 0 0.05 —0.05 0 0.05 -0.05 0 0.05
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Conclusions

Undercompressive 1-d shocks with dynamic capillary pressure:
non-monotone solutions

Analysis of stability /fingering instability in 2-d, connection to
Saffman-Taylor instability

Surprising linear dependence of growth rate on wave number for long
waves: distinguishes stable waves from unstable

Numerical simulations of full parabolic/elliptic system;
Riaz and Tchelepi (2006) also conducted numerical experiments

Oil /water mixture displacing oil can be stable.

K. Spayd and M. Shearer, SIAM J. Appl. Math. (2011)
K. Spayd, M. Shearer and Z. Hu, Applicable Analysis (2012).
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