
Coating Flows on Slowly Rotating Cylinders

Mary Pugh
Department of Mathematics

University of Toronto

In collaboration with

Marina Chugunova (University of Toronto)

Roman Taranets (University of Nottingham)

Fields Institute Workshop on Surfactant Driven Thin Film Flows

February 24, 2012



Thank you for the invitation!

This work was partially supported by NSERC.

Warning: this talk does not cite all the work that it should cite. Our
article is more responsible: “Nonnegative solutions for a long-wave
unstable thin film equation with convection” with M. Chugunova and
R.M. Taranets, SIAM Journal on Mathematical Analysis 2010.
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Honey on a knife

“It is a matter of common experience that if a knife is dipped
in honey and then held horizontally, the honey will drain off;
but that the honey may be retained on the knife by simply
rotating it about its length. The question arises: what is
the maximum load of honey that can be supported per unit
length of knife for a given rotation rate?” — H.K. Moffatt,
Journal de Méchanique 16(1977)5:651–673.
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Coating experiments

H.K. Moffatt, Journal de Méchanique 16(1977)5:651–673. Reproduced without author’s permission.
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Rimming experiments

S.T. Thoroddsen and L. Mahadevan Experiments in Fluids 23(1997)1-13. Reproduced without authors’ permission.
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Movie

Marina and Stephen Morris (UofT Physics) supervised a
third-year undergraduate, Gary Yan, who built a demon-
stration experiment similar to that of Thoroddsen and Ma-
hadevan
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Model parameters

Consider a thin liquid film on the outer surface of a cylinder:

R is the radius of the cylinder. ω is the rate of rotation. g is
the acceleration due to gravity. ν is the kinematic viscosity.
ρ is the density. σ is the surface tension.
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Lubrication approximation model

Three dimensionless quantities: the Reynolds number Re =
R2ω
ν , γ = g

Rω2, and the Weber number We = ρR3ω2

σ .

Modelling assumptions:

• The fluid flow is modelled by the Navier Stokes equations

• There is no slip at the liquid/solid interface

• There is surface tension at the liquid/air interface

• If ū is the average thickness of the fluid then ε = ū/R is
small

• χ = Re
Weε

3 and µ = γ Re ε2 have finite, nonzero limits as
ε → 0.
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Lubrication approximation model

Assume the flow is constant along the length of the cylinder.

Pukhnachov, Journal of Applied Mechanics and Technical
Physics 18(1977)3:344–351:

∂u

∂t
+

∂

∂θ

(
u− µ

3
u3 sin(θ)

)
+

χ

3

∂

∂θ

(
u3

[
∂u

∂θ
+

∂3u

∂θ3

])
= 0

θ ∈ [−π, π], ∂iu
∂θi(−π, t) = ∂iu

∂θi(π, t) for t > 0, i = 0, 3

where µ = γ Re ε2 = gR
ωνε2 and χ = Re

Weε
3 = σ

νρRωε3 .

Moffatt (1973, 1977) found the same evolution equation for
the zero surface tension (χ = σ = 0) case:

∂u

∂t
+

∂

∂θ

(
u− µ

3
u3 sin(θ)

)
= 0.
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Steady States: zero surface tension

∂

∂θ

(
u− µ

3
u3 sin(θ)

)
= 0 =⇒ u− µ

3
u3 sin(θ) = q

for some fixed q.

θ = 0, θ = π =⇒ u(0) = u(π) = q

θ = π/2 =⇒ u(π/2) is a root of u− µ

3
u3 = q

θ = 3π/2 =⇒ u(3π/2) is a root of u +
µ

3
u3 = q

At θ = π/2 there might be no positive root if q is too big.

If q < qcrit there is a smooth steady state, at q = qcrit there’s
a corner, if q > qcrit the steady state is discontinuous/shocks.
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Steady states: nonzero surface tension

If there’s no surface tension then qcrit = 2
3
√

µ = 2
3ε

√
ων
gR The

total amount of “honey” in the steady state is closely re-
lated to the value of q and so we see that the larger ω is,
the more “honey” you can hold on your knife.

If there is surface tension, Pukhnachov1 proved that qcrit ≤
2
√

3/µ ≈ 3.464/
√

µ. We improve on this:

Theorem(ChugPughTara 2010) For nonzero surface tension,
there is no strictly positive 2π periodic steady state with flux

q > 2
3

√
2
µ ≈ 0.943/

√
µ. Hence qcrit ≤ 2

3

√
2
µ.

NB: our upper bound on qcrit doesn’t depend on surface tension, but

qcrit will.

1V.V. Pukhnachov, Mathematics and Continuum Mechanics (2004)191-199.
11



Steady states: nonzero surface tension, with rotation

The steady state satisfies

u− µ

3
u3 sin(θ) +

χ

3
u3 (uθθθ + uθ) = q.

For a given flux, is there a smooth periodic solution? If yes,
is it unique? For a given Mass, is there a solution? If yes,
is it unique? How does surface tension affect things?
For zero surface tension, given a Mass, if there’s a solution then it’s

unique. Benilov et al.2 did extensive numerics & asymptotics and

found that for some surface tension values, there are certain Masses

which yield two solutions and others that yield three solutions. Marina

Chugunova & Dmitry Pelinovsky3, working with two undergraduates

(Daniel Badali & Steven Pollack) found even smaller surface tension

values for which a given Mass can yield up to five steady states.

2E.S. Benilov, M.S. Benilov, and N. Kopteva, J Fluid Mechanics 597(2008)91-118
3D. Badali, M. Chugunova, D.E. Pelinovsky, and S. Pollack, Physics of Fluids, 23(2011)
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Steady states: nonzero surface tension, with rotation
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Chugunova et al. χ = 0.005 (dashed), 0.001 (light gray), 0.0005 (dark gray),

0.0001 (black). Curves were generated using a custom-written turning-

point algorithm and implemented in MATLAB.
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Steady states: nonzero surface tension, no rotation
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Almut Burchard, Marina Chugunova, Ben Stephens (2010)
Analytical results for the nonzero surface tension, zero rotation case.

1) Given a mass, there is a unique nonnegative function of minimal

energy. The minimizer is symmetric decreasing about θ = 0, compactly

supported, and meets the dry region at zero contact angle. The larger

the mass, the smaller the dry region. 2) The minimizer is globally

attractive for all strong solutions, however the H1 distance from a strong

solution to the minimizer can not decay faster than a power law ∼ t−2/3.
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Steady states: nonzero surface tension, with rotation

Daniel Ginsberg & Gideon Simpson (2011) Analytical results

for the nonzero surface tension, nonzero rotation case. If there’s rota-

tion then the only steady states are strictly positive. The entire cylinder

surface is coated.
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Global existence, rimming flow

Theorem(ChugPughTara 2010) Consider nonnegative initial
data u0 ∈ H1 which has finite entropy. Then given a time
T < ∞ there is a nonnegative strong generalized solution
u ∈ L2(0, T ; H2

per(Ω)) for:

ut +
(
|u|3(a0 uθθθ + a1uθ + a2w

′(θ))
)

θ
+ a3uθ = 0

where a1, a2, a3 are arbitrary constants, constant a0 > 0, and
w(θ) is periodic.

Pukhnachov’s model

ut +
[
|u|3 (uθθθ + α2 uθ − sin θ) + ωu

]
θ

= 0, θ ∈ Ω = (−π, π)

is a special case of the equation above.
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Sketch of proof

1. Find dissipated quantities.

2. Prove short–time existence of solution.

3. Prove that short–time solution can be continued in time.

Finding Dissipated Quantities Unlike for ut = −(|u|nuxxx)x
one cannot show that the energy and entropy are dissipated
independent of one another. We show that a linear combi-
nation of the Dirichlet energy and the entropy is dissipated,
and find a uniform upper bound that holds for short times.
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Energy and Entropy

Energy for approximate solutions:

Eε(T ) =
1

2

∫
a0h

2
εx(x, T )− a1h

2
ε(x, T )− 2a2w(x)h(x, T ) dx

α-Entropy for approximate solutions:∫
G

(α)
ε (hε(x, T )) dx where G

(α)′′
ε (y) =

yα

fε(y)
.

Given nonnegative initial data that has finite entropy there
is a time Tloc such that for T ∈ [0, Tloc]

Eε(T ) ≤ C + KT

and∫
h2

ε,x(x, T )+C̃ G
(α)
ε (hε(x, T )) dx+

∫∫
QT

βhα
ε h2

ε,xx+γhα−2
ε h4

ε,x dxdt ≤ C

where α ∈ (−1/2, 0) and C̃, C, and K are finite.
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Continuation argument

Going from local to global in time. Having take ε → 0, we
prove the strong, nonnegative solutions satisfy the bound

E0(Tloc) ≤ C + K Tloc

at the “final” time Tloc. This can then be used to prove a
bound for the H1 norm of the solution at time Tloc:

a0

4
‖h(·, Tloc)‖2

H1 ≤ E0(Tloc) + K Tloc + K2.

This is then used in a proof by contradiction: assume the so-
lution cannot be extended globally in time. Then either the
H1 norm or the α-Entropy diverges. The H1 norm cannot
diverge by the above. Since the α-Entropy is controlled by
the H1 norm, it cannot diverge either. Hence the solution
can be continued in time.
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Thank you !

THANK YOU FOR YOUR INTEREST
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