
Universal algebra for CSP
Lecture 2

Ross Willard

University of Waterloo

Fields Institute Summer School
June 26–30, 2011
Toronto, Canada

R. Willard (Waterloo) Universal algebra Fields Institute 2011 1 / 26



Exactly one of the following conditions holds:

1 There exists a reflexive not-symmetric digraph G which is compatible
with some member of HSP(A); or

2 There exists f ∈ C[3] which satisfies f (x , x , y) ≈ y and f (x , y , y) ≈ x .

In case (1), the proof found such G compatible with F ≤ A|A|
2
.

Question raised: do we really need to look that ‘deeply” into HSP(A)?

Example. For any finite set A, the S lupecki clone SA on A is the union of:

{all operations that depend on at most one variable},
{all operations that are not surjective}.

Let A = (A; SA). Clearly A is not in case (2).

Exercise: if |A| > 2n, show that no member of HS(An) has a reflexive
not-symmetric compatible digraph.
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Fixed-Template Constraint Satisfaction Problems

Fix a relational structure G = (A;R) with A and R finite.

Definition

CSP(G) is either of the following equivalent decision problems:

Constraints version
Input: Set V of variables, “constraints” on tuples of variables

(requiring them to belong to prescribed relations in R).
Query: Is there an assignment V → A which satisfies all the

constraints?

Homomorphism version
Input: a finite relational structure H = (B, S) of the same

“signature” as G.
Query: Does there exist a homomorphism H→ G?
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Archetypal examples
G1 = ({0, 1}; {Rabc : a, b, c ∈ {0, 1}}) where

Rabc = {0, 1}3 \ {(a, b, c)}.

E.g., the constraint “(x , y , z) ∈ R101” says “¬x or y or ¬z .”

CSP(G1) is equivalent to 3-SAT, which is NP-complete.

G2 = ({0, 1}; {S0,S1}) where

S0 = {(x , y , z) : x ⊕ y ⊕ z = 0}
S1 = {(x , y , z) : x ⊕ y ⊕ z = 1}.

Instances of CSP(G2) are systems of linear equations (each in 3 variables)
over Z2.

Such systems can be checked for consistency by Gaussian elimination; thus
CSP(G2) is in P.
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G4 = ({0, 1}; {LE ,C0,C1}) where

LE = {(0, 0), (0, 1), (1, 1)}
C0 = {0}
C1 = {1}.

Instances of CSP(G1) can only “say” x ≤ y , z = 0, or z = 1.

There is only one way to get a contradiction: by saying

x1 = 1 and xn = 0 and x1 ≤ x2 and x2 ≤ x3 and . . . and xn−1 ≤ xn.

CSP(G4) is equivalent to REACHABILITY, which is in P (in fact, in NL).

G3 = ({0, 1}; {=,C0,C1}).

Similar to G4.

CSP(G3) encodes Undirected REACHABILITY, which is in L (Reingold,
2005).

R. Willard (Waterloo) Universal algebra Fields Institute 2011 5 / 26



G5 = ({0, 1}; {R110,C0,C1}).

“(x , y , z) ∈ R110” is equivalent to “(x and y) implies z .”

Similar to G4, but with directed paths replaced by ordered binary trees.

CSP(G5) is equivalent to Horn 3-SAT, which is P-complete.

Kn = (A; {6=A}) where A = {0, 1, . . . , n − 1}.

0 1

K2

K3

0 1

2

CSP(Kn) is equivalent to n-COLOURABILITY, which is

NP-complete for n ≥ 3, and
In P (in fact, in L) if n = 2.
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Summary:

NP-complete

P

NL

L

G1 K3 K4

G2

G5

G4

G3 K2

harder
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Comparing CSPs

We will use the following tools:

1 Simulations, pp-definitions

2 Polymorphisms

3 Reduction to the “idemptotent case”

4 Algebraic substructures, Pp-constructions
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Simulation

Consider again G5 = ({0, 1}; R110,C0,C1).

Suppose we modify G5 by adding R1110 = {0, 1}4 \ {(1, 1, 1, 0)}:

G′5 = ({0, 1}; R110,C0,C1,R1110).

Is CSP(G′5) harder than CSP(G5)?

NO! R110 can simulate R1110 as follows:

“(x , y , z ,w) ∈ R1110” means “(x & y & z)⇒ w .”

Given any constraint (x & y & z)⇒ w , introduce a new variable t
and replace the constraint with two new constraints

(x & y)⇒ t and (t & z)⇒ w .

Key: R1110(x , y , z ,w) is defined in G5 by ∃t[R110(x , y , t) & R110(t, z ,w)].
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Pp-definability
In general:

Definition
1 A primitive positive (pp) formula is any first-order formula of the form

∃ · · · [
∧
i

atomici ]

where each atomici is a basic relation or equality (x = y).

2 Given a relational structure G = (A;R) and a relation S on A, we say
that S is pp-definable in G if there exist a pp-formula using relations
from R whose set of solutions in G is S .

Theorem (Folklore; Larose & Tesson 2007)

Suppose G,H are finite relational structures with the same domain. If
every relation of H is pp-definable in G, then CSP(H) ≤L CSP(G).

R. Willard (Waterloo) Universal algebra Fields Institute 2011 10 / 26



Testing pp-definability

How can we test whether a relation is pp-definable in a structure?

Theorem (Bodnarčuk et al; Geiger 1968)

Let G = (A;R) with A finite, and let E be an n-ary relation on A. TFAE:

1 E is pp-definable in G.

2 E is compatible with every polymorphism of G.

Proof sketch (2) ⇒ (1) . . .

Corollary

If G,H are finite relational structures with the same domain and the same
polymorphisms, then CSP(G) and CSP(H) have the same complexity.

Proof . . .
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Polymorphism algebra of a structure

Definition

Given a finite relational structure G = (A;R), the polymorphism algebra of
G is the algebra

PolAlg(G) = (A;Pol(G))

where Pol(G) = {all polymorphisms of G}.

By previous slide, PolAlg(G) determines the complexity of CSP(G).

This is the first insight of the “Algebraic approach” to CSP.
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Examples revisited

G1 = ({0, 1}; {Rabc : a, b, c ∈ {0, 1}}) where

Rabc = {0, 1}3 \ {(a, b, c)}.

Pol(G1) = {projections}. (Exercise: prove it!)

PolAlg(G1) = ({0, 1}; {proj’s}) “=” ({0, 1};∅) = the 2-element set!

G2 = ({0, 1}; {“x ⊕ y ⊕ z = 0,” “x ⊕ y ⊕ z = 1”}).

Pol(G2) = {all boolean sums of an odd number of variables} =: C2.

PolAlg(G2) = ({0, 1};C2) “=” ({0, 1}; x ⊕ y ⊕ z) = like a vector space!
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G4 = ({0, 1}; {LE ,C0,C1}) where LE = {(0, 0), (0, 1), (1, 1)}.

Pol(G4) = {f : f is monotone and “idempotent”} =: C4.

(“Idempotent” means f (0, 0, . . . , 0) = 0 and f (1, 1, . . . , 1) = 1.)

PolAlg(G4) = ({0, 1};C4) “=” ({0, 1}; max,min) = the 2-element lattice!

G3 = ({0, 1}; {=,C0,C1}).

Pol(G3) = {all idempotent boolean functions} =: C3.

PolAlg(G3) = ({0, 1};C3) = almost a boolean algebra!
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G5 = ({0, 1}; {R110,C0,C1}).

(Recall that CSP(G5) encodes Horn 3-SAT, which is in P.)

Exercise:
1 Every f ∈ Pol(G5) is monotone and idempotent.
2 min ∈ Pol(G5) but max 6= Pol(G5). (Exercise: prove it.)

PolAlg(G5) “=” ({0, 1}; min) = the 2-element semi-lattice!

Kn. For n ≥ 3,

Pol(Kn) = {permutations (in a single variable)}.
I.e., PolAlg(Kn) is a set with permutations.

Pol(K2) is much richer:
1 Consists of all “self-dual” functions, i.e., functions f which satisfy

f (¬x1,¬x2, . . . ,¬xn) ≈ ¬f (x1, . . . , xn).

2 Includes x ⊕ y ⊕ z (which is a “Maltsev” operation), maj(x , y , z), etc.
Almost a boolean algebra!
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Polymorphism algebras as measure of CSP:

NP-complete

P

NL

L

G1 K3 K4

G2

G5

G4

G3 K2

harder

Set-like

Vector space-like

Lattice

Semi-lattice

Boolean

richer
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Core and idempotent structures

Let G = (A,R) be a finite structure.

Definition
1 G is core if every endomorphism f : G→ G is a bijection.

2 G is idempotent if R contains the relation Ca = {a} for every a ∈ A.

Remarks:

1 G is core iff all its 1-ary polymorphisms are permutations.

2 G is idempotent ⇒ PolAlg(G) is an idempotent algebra ⇔ every Ca

is pp-definable in G ⇔ the identity map is the only 1-ary
polymorphism of G.

3 For every finite G there exists an induced substructure G′ which is
core and for which there exists a retract mapping G onto G′.

I This G′ is unique up to isomorphism, and is called the core of G.

4 Gc := (A;R ∪ {Ca : a ∈ A}); it is idempotent.
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Lemma

If G is finite and core(G) is its core, then CSP(G) ≡ CSP(core(G)).

Proof: An input maps homomorphically to G iff it maps homomorphically
to core(G).

Lemma (???, Larose & Tesson 2007)

Suppose G is core. Then CSP(G) ≡L CSP(Gc).

Proof: it suffices to reduce CSP(Gc) to CSP(G). There is a trick to do
this.

Conclusion: For CSP, we always assume the template G is idempotent.
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Algebraic substructures

Definition

Let G = (A;R) be a finite structure and H = (B;R�B) an induced
substructure. We say that H is an algebraic substructure of G if B is (the
domain of) a subalgebra of PolAlg(G).

Example:

0 1

H = K2

K3

0 1

2

H is not an algebraic substructure of K3.
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Observe: if H = (B; . . .) is an algebraic substructure of G, then

B is preserved by all polymorphisms of G . . .

. . . so B is pp-definable in G.

More generally, given G we will permit “substructures” whose:

Domains are pp-definable subsets of G 2 (or G 3, etc.) . . .

. . . modulo pp-definable equivalence relations . . .

. . . and whose relations need not be induced, merely pp-definable.
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Pp-constructible structures

Example: K3.

Let ∆ be the 3-ary relation defined by the formula

δ(x , y , z) : (x → y) & (y → z) & (z → x).

So
∆ = {(0, 1, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0), (0, 2, 1), (1, 0, 2)}.

Let E be the 6-ary relation defined by the formula ε(x , y , z , x ′, y ′, z ′):

∃x ′′, y ′′, z ′′ [ δ(x , y , z) & δ(x ′, y ′, z ′) & δ(x ′′, y ′′, z ′′) &

(x → x ′′) & (x ′′ → x ′) & (y → y ′′) & (y ′′ → y ′)

& (z → z ′′) & (z ′′ → z ′) ]

E = {(0, 1, 2), (1, 2, 0), (2, 0, 1)}2 ∪ {(2, 1, 0), (0, 2, 1), (1, 0, 2)}2, which is
an equivalence relation on ∆ (with two blocks).
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Let R be the 6-ary relation defined by the formula

∃x ′′, y ′′, z ′′ [ δ(x , y , z) & δ(x ′, y ′, z ′) & δ(x ′′, y ′′, z ′′) &

ε(x , y , z , x ′′, y ′′, z ′′) &

(x ′ = x ′′) & (y ′ = z ′′) & (z ′ = y ′′) ].

R = {(0, 1, 2), (1, 2, 0), (2, 0, 1)} × {(2, 1, 0), (0, 2, 1), (2, 0, 1)} ∪
{(2, 1, 0), (0, 2, 1), (2, 0, 1)} × {(0, 1, 2), (1, 2, 0), (2, 0, 1)}.

So (∆/E ; R/E ) ∼= K2.

We say that K2 is pp-constructible from K3 via the above pp-formulas.
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Let G,H be finite relational structures.

Write G = (A; {. . .}) and H = (B; {R1,R2, . . .}) with arity(Ri ) = ni .

General Definition

H is pp-constructible from G iff there exist:

k ≥ 1

Pp-definable relations of G:
I U ⊆ Ak

I Θ ⊆ U2 ( ⊆ (Ak)2 = A2k)
I Si ⊆ Uni ( ⊆ (Ak)ni = Anik) for i = 1, 2, . . .

such that

Θ is an equivalence relation on U.

H ∼= (U; S1, S2, . . .)/Θ.

Notation: H ≤ppc G.
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Theorem (Bulatov, Jeavons, Krokhin 2005; Larose, Tesson (2007))

Suppose G,H are finite structures. If H is pp-constructible from G, then
CSP(H) ≤L CSP(G).

Proof: similar to the proof that pp-definable relations can be simulated.

Corollary

If K3 (or G1 = ({0, 1}; {Rabc : abc ∈ {0, 1}3}) is pp-constructible from
G, then CSP(G) is NP-complete.
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Theorem

Let G,H be finite relational structures. TFAE:

1 H is pp-constructible from G.

2 H is compatible with some member of HSP(PolAlg(G)).

Proof sketch (2) ⇒ (1). Write G = (A; . . .), H = (B; {R1,R2, . . . , }).

Let A = PolAlg(G). Assume H is compatible with B ∈ HSP(A).

WLOG, B = U/E for some U ∈ SP(A) and some congruence E of U.

Say U ≤ Ak . We can view E ⊆ A2k .

Similarly, we can “pull back” each n-ary relation Ri to a kn-ary relation R∗i
on A.

All of U,E ,R∗1 ,R
∗
2 , . . . are compatible with A.

Hence they are all pp-definable in G. . .

. . . and give a pp-construction of H from G.
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Corollary

For a finite relational structure G, TFAE:

1 G1 = ({0, 1}; {Rabc : abc ∈ {0, 1}3}) is pp-constructible from G.

2 HSP(PolAlg(G)) contains the 2-element set ({0, 1};∅).

If either holds, CSP(G) is NP-complete.

The Algebraic Dichotomy Conjecture, due to Bulatov, Jeavons and
Krokhin, states:

Conjecture: If G is idempotent and neither condition above holds, then
CSP(G) is in P.
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