Universal algebra for CSP Lecture 2

Ross Willard

University of Waterloo

Fields Institute Summer School June 26–30, 2011 Toronto, Canada Exactly one of the following conditions holds:

There exists a reflexive not-symmetric digraph G which is compatible with some member of HSP(A); or

2 There exists $f \in \mathcal{C}_{[3]}$ which satisfies $f(x, x, y) \approx y$ and $f(x, y, y) \approx x$.

In case (1), the proof found such \mathbb{G} compatible with $\mathbf{F} \leq \mathbf{A}^{|\mathcal{A}|^2}$.

Question raised: do we really need to look that 'deeply" into HSP(A)?

Example. For any finite set A, the *Słupecki clone* S_A on A is the union of:

- {all operations that depend on at most one variable},
- {all operations that are not surjective}.

Let $\mathbf{A} = (A; S_A)$. Clearly \mathbf{A} is not in case (2).

Exercise: if |A| > 2n, show that no member of $HS(\mathbf{A}^n)$ has a reflexive not-symmetric compatible digraph.

Fixed-Template Constraint Satisfaction Problems

Fix a relational structure $\mathbb{G} = (A; \mathcal{R})$ with A and \mathcal{R} finite.

Definition

 $\mathrm{CSP}(\mathbb{G})$ is either of the following equivalent decision problems:

Constraints version

Input: Set V of variables, "constraints" on tuples of variables (requiring them to belong to prescribed relations in \mathcal{R}). Query: Is there an assignment $V \rightarrow A$ which satisfies all the constraints?

Homomorphism version

Input: a finite relational structure $\mathbb{H} = (B, \mathbb{S})$ of the same "signature" as \mathbb{G} . Query: Does there exist a homomorphism $\mathbb{H} \to \mathbb{G}$?

Archetypal examples

 $\mathbb{G}_1 = ig(\{0,1\}; \{ {\sf R}_{abc} \, : \, a,b,c \in \{0,1\} \} ig)$ where

$$R_{abc} = \{0,1\}^3 \setminus \{(a,b,c)\}.$$

E.g., the constraint " $(x, y, z) \in R_{101}$ " says " $\neg x$ or y or $\neg z$."

 $\operatorname{CSP}(\mathbb{G}_1)$ is equivalent to 3-SAT, which is *NP*-complete.

 $\mathbb{G}_2 = (\{0,1\}; \{S_0, S_1\}) \text{ where}$ $S_0 = \{(x, y, z) : x \oplus y \oplus z = 0\}$ $S_1 = \{(x, y, z) : x \oplus y \oplus z = 1\}.$

Instances of $CSP(\mathbb{G}_2)$ are systems of linear equations (each in 3 variables) over \mathbb{Z}_2 .

Such systems can be checked for consistency by Gaussian elimination; thus $CSP(\mathbb{G}_2)$ is in *P*.

 $\mathbb{G}_4 = (\{0,1\}; \{LE, C_0, C_1\})$ where

$$\begin{array}{rcl} LE &=& \{(0,0),(0,1),(1,1)\} \\ C_0 &=& \{0\} \\ C_1 &=& \{1\}. \end{array}$$

Instances of $CSP(\mathbb{G}_1)$ can only "say" $x \leq y$, z = 0, or z = 1.

There is only one way to get a contradiction: by saying

 $x_1 = 1$ and $x_n = 0$ and $x_1 \le x_2$ and $x_2 \le x_3$ and \ldots and $x_{n-1} \le x_n$.

 $CSP(\mathbb{G}_4)$ is equivalent to REACHABILITY, which is in P (in fact, in NL).

 $\mathbb{G}_3 = (\{0,1\}; \{=, C_0, C_1\}).$

Similar to \mathbb{G}_4 .

 $CSP(\mathbb{G}_3)$ encodes Undirected REACHABILITY, which is in *L* (Reingold, 2005).

 $\mathbb{G}_5 = (\{0,1\}; \{R_{110}, C_0, C_1\}).$ " $(x, y, z) \in R_{110}$ " is equivalent to "(x and y) implies z." Similar to \mathbb{G}_4 , but with directed paths replaced by ordered binary trees. $\operatorname{CSP}(\mathbb{G}_5)$ is equivalent to Horn 3-SAT, which is *P*-complete.

 $\operatorname{CSP}(\mathbb{K}_n)$ is equivalent to *n*-COLOURABILITY, which is

• *NP*-complete for $n \ge 3$, and

• In P (in fact, in L) if
$$n = 2$$
.

Summary:

Comparing CSPs

We will use the following tools:

- Simulations, pp-definitions
- Polymorphisms
- 8 Reduction to the "idemptotent case"
- Algebraic substructures, Pp-constructions

Simulation

Consider again $\mathbb{G}_5 = (\{0,1\}; R_{110}, C_0, C_1).$

Suppose we modify \mathbb{G}_5 by adding $R_{1110} = \{0,1\}^4 \setminus \{(1,1,1,0)\}$:

$$\mathbb{G}_5' = (\{0,1\}; R_{110}, C_0, C_1, R_{1110}).$$

Is $\operatorname{CSP}(\mathbb{G}'_5)$ harder than $\operatorname{CSP}(\mathbb{G}_5)$?

NO! R_{110} can simulate R_{1110} as follows:

- " $(x, y, z, w) \in R_{1110}$ " means " $(x \& y \& z) \Rightarrow w$."
- Given any constraint (x & y & z) ⇒ w, introduce a new variable t and replace the constraint with two new constraints

$$(x \& y) \Rightarrow t$$
 and $(t \& z) \Rightarrow w$.

Key: $R_{1110}(x, y, z, w)$ is defined in \mathbb{G}_5 by $\exists t[R_{110}(x, y, t) \& R_{110}(t, z, w)]$.

Pp-definability

In general:

Definition

A primitive positive (pp) formula is any first-order formula of the form

$$\exists \cdots [\bigwedge_{i} atomic_{i}]$$

where each *atomic*_i is a basic relation or equality (x = y).

Q Given a relational structure C = (A; R) and a relation S on A, we say that S is *pp-definable in* C if there exist a pp-formula using relations from R whose set of solutions in C is S.

Theorem (Folklore; Larose & Tesson 2007)

Suppose \mathbb{G}, \mathbb{H} are finite relational structures with the same domain. If every relation of \mathbb{H} is pp-definable in \mathbb{G} , then $\mathrm{CSP}(\mathbb{H}) \leq_L \mathrm{CSP}(\mathbb{G})$.

Testing pp-definability

How can we test whether a relation is pp-definable in a structure?

Theorem (Bodnarčuk et al; Geiger 1968)

Let $\mathbb{G} = (A; \mathbb{R})$ with A <u>finite</u>, and let E be an n-ary relation on A. TFAE:

• E is pp-definable in \mathbb{G} .

2 E is compatible with every polymorphism of \mathbb{G} .

Proof sketch (2) \Rightarrow (1) . . .

Corollary

If \mathbb{G} , \mathbb{H} are finite relational structures with the same domain and the same polymorphisms, then $\mathrm{CSP}(\mathbb{G})$ and $\mathrm{CSP}(\mathbb{H})$ have the same complexity.

Proof . . .

Polymorphism algebra of a structure

Definition

Given a finite relational structure $\mathbb{G} = (A; \mathcal{R})$, the *polymorphism algebra* of \mathbb{G} is the algebra

$$\operatorname{PolAlg}(\mathbb{G}) = (A; \operatorname{Pol}(\mathbb{G}))$$

where $Pol(\mathbb{G}) = \{all \text{ polymorphisms of } \mathbb{G}\}.$

By previous slide, $\operatorname{PolAlg}(\mathbb{G})$ determines the complexity of $\operatorname{CSP}(\mathbb{G})$.

This is the first insight of the "Algebraic approach" to CSP.

Examples revisited

$$\mathbb{G}_1 = (\{0,1\}; \{R_{abc} : a, b, c \in \{0,1\}\})$$
 where $R_{abc} = \{0,1\}^3 \setminus \{(a,b,c)\}.$

$$\begin{split} &\operatorname{Pol}(\mathbb{G}_1) = \{ \text{projections} \}. \text{ (Exercise: prove it!)} \\ &\operatorname{PolAlg}(\mathbb{G}_1) = (\{0,1\}; \{ \text{proj's} \}) \text{ "=" } (\{0,1\}; \varnothing) = \text{the 2-element set!} \end{split}$$

$$\mathbb{G}_2 = (\{0,1\}; \{ "x \oplus y \oplus z = 0, " "x \oplus y \oplus z = 1" \}).$$

 $\operatorname{Pol}(\mathbb{G}_2) = \{ \text{all boolean sums of an odd number of variables} \} =: \mathbb{C}_2.$ $\operatorname{PolAlg}(\mathbb{G}_2) = (\{0,1\}; \mathbb{C}_2) \quad "=" (\{0,1\}; x \oplus y \oplus z) = \text{like a vector space!} \}$ $\mathbb{G}_4 = (\{0,1\}; \{LE, C_0, C_1\}) \text{ where } LE = \{(0,0), (0,1), (1,1)\}.$ $\operatorname{Pol}(\mathbb{G}_4) = \{f : f \text{ is monotone and "idempotent"}\} =: \mathbb{C}_4.$

("Idempotent" means $f(0,0,\ldots,0)=0$ and $f(1,1,\ldots,1)=1.$)

 $\operatorname{PolAlg}(\mathbb{G}_4) = (\{0,1\}; \mathbb{C}_4)$ "=" $(\{0,1\}; \mathsf{max}, \mathsf{min}) = \mathsf{the} 2\mathsf{-element} |\mathsf{attice}|$

 $\mathbb{G}_3 = (\{0,1\}; \{=, C_0, C_1\}).$

 $\operatorname{Pol}(\mathbb{G}_3) = \{ \text{all idempotent boolean functions} \} =: \mathbb{C}_3.$

 $\operatorname{PolAlg}(\mathbb{G}_3) = (\{0,1\}; \mathbb{C}_3) = \operatorname{almost} a \text{ boolean algebra}!$

 $\mathbb{G}_5 = (\{0,1\}; \{R_{110}, C_0, C_1\}).$

(Recall that $CSP(\mathbb{G}_5)$ encodes Horn 3-SAT, which is in *P*.)

Exercise:

- Every $f \in Pol(\mathbb{G}_5)$ is monotone and idempotent.
- 2 min $\in \operatorname{Pol}(\mathbb{G}_5)$ but max $\neq \operatorname{Pol}(\mathbb{G}_5)$. (Exercise: prove it.)

 $\operatorname{PolAlg}(\mathbb{G}_5)$ "=" ({0,1}; min) = the 2-element semi-lattice!

 \mathbb{K}_n . For $n \geq 3$,

- $\operatorname{Pol}(\mathbb{K}_n) = \{ \text{permutations (in a single variable}) \}.$
- I.e., $\operatorname{PolAlg}(\mathbb{K}_n)$ is a set with permutations.

 $Pol(\mathbb{K}_2)$ is much richer:

() Consists of all "self-dual" functions, i.e., functions f which satisfy

$$f(\neg x_1, \neg x_2, \ldots, \neg x_n) \approx \neg f(x_1, \ldots, x_n).$$

Includes x ⊕ y ⊕ z (which is a "Maltsev" operation), maj(x, y, z), etc.
Almost a boolean algebra!

Polymorphism algebras as measure of CSP:

Core and idempotent structures

Let $\mathbb{G} = (A, \mathcal{R})$ be a finite structure.

Definition

- **(**) \mathbb{G} is *core* if every endomorphism $f : \mathbb{G} \to \mathbb{G}$ is a bijection.
- **2** \mathbb{G} is *idempotent* if \mathbb{R} contains the relation $C_a = \{a\}$ for every $a \in A$.

Remarks:

- \blacksquare G is core iff all its 1-ary polymorphisms are permutations.
- ② G is idempotent ⇒ PolAlg(G) is an idempotent algebra ⇔ every C_a is pp-definable in G ⇔ the identity map is the only 1-ary polymorphism of G.
- For every finite G there exists an induced substructure G' which is core and for which there exists a *retract* mapping G onto G'.
 - This \mathbb{G}' is unique up to isomorphism, and is called *the core of* \mathbb{G} .
- $\mathbb{G}^{c} := (A; \mathcal{R} \cup \{C_{a} : a \in A\}); \text{ it is idempotent.}$

Lemma

If \mathbb{G} is finite and $\operatorname{core}(\mathbb{G})$ is its core, then $\operatorname{CSP}(\mathbb{G}) \equiv \operatorname{CSP}(\operatorname{core}(\mathbb{G}))$.

Proof: An input maps homomorphically to \mathbb{G} iff it maps homomorphically to $\operatorname{core}(\mathbb{G}).$

Lemma (???, Larose & Tesson 2007) Suppose \mathbb{G} is core. Then $CSP(\mathbb{G}) \equiv_{I} CSP(\mathbb{G}^{c})$.

Proof: it suffices to reduce $CSP(\mathbb{G}^c)$ to $CSP(\mathbb{G})$. There is a trick to do this.

Conclusion: For CSP, we always assume the template \mathbb{G} is idempotent.

Algebraic substructures

Definition

Let $\mathbb{G} = (A; \mathbb{R})$ be a finite structure and $\mathbb{H} = (B; \mathbb{R} \upharpoonright_B)$ an induced substructure. We say that \mathbb{H} is an *algebraic substructure* of \mathbb{G} if *B* is (the domain of) a subalgebra of $\operatorname{PolAlg}(\mathbb{G})$.

Example:

 \mathbb{H} is **not** an algebraic substructure of \mathbb{K}_3 .

Observe: if $\mathbb{H} = (B; ...)$ is an algebraic substructure of \mathbb{G} , then

- B is preserved by all polymorphisms of \mathbb{G}
- ... so B is pp-definable in \mathbb{G} .

More generally, given ${\mathbb G}$ we will permit "substructures" whose:

- Domains are pp-definable subsets of G^2 (or G^3 , etc.) ...
- ... modulo pp-definable equivalence relations
- ... and whose relations need not be induced, merely pp-definable.

Pp-constructible structures

(

Example: \mathbb{K}_3 .

Let Δ be the 3-ary relation defined by the formula

$$\delta(x,y,z)$$
 : $(x \to y) \& (y \to z) \& (z \to x).$

So

 $\Delta = \{(0,1,2), (1,2,0), (2,0,1), (2,1,0), (0,2,1), (1,0,2)\}.$

Let *E* be the 6-ary relation defined by the formula $\varepsilon(x, y, z, x', y', z')$:

$$\exists x'', y'', z'' \quad [\quad \delta(x, y, z) \& \ \delta(x', y', z') \& \ \delta(x'', y'', z'') \& \\ (x \to x'') \& \ (x'' \to x') \& \ (y \to y'') \& \ (y'' \to y') \\ \& \ (z \to z'') \& \ (z'' \to z') \]$$

 $E = \{(0, 1, 2), (1, 2, 0), (2, 0, 1)\}^2 \cup \{(2, 1, 0), (0, 2, 1), (1, 0, 2)\}^2$, which is an equivalence relation on Δ (with two blocks).

Let R be the 6-ary relation defined by the formula

$$\exists x'', y'', z'' \quad [\quad \delta(x, y, z) \& \ \delta(x', y', z') \& \ \delta(x'', y'', z'') \& \\ \varepsilon(x, y, z, x'', y'', z'') \& \\ (x' = x'') \& \ (y' = z'') \& \ (z' = y'') \].$$

 $\begin{array}{lll} R & = & \{(0,1,2),(1,2,0),(2,0,1)\} \times \{(2,1,0),(0,2,1),(2,0,1)\} & \cup \\ & & \{(2,1,0),(0,2,1),(2,0,1)\} \times \{(0,1,2),(1,2,0),(2,0,1)\}. \end{array}$

So $(\Delta/E; R/E) \cong \mathbb{K}_2$.

We say that \mathbb{K}_2 is *pp-constructible* from \mathbb{K}_3 via the above pp-formulas.

Let \mathbb{G}, \mathbb{H} be finite relational structures.

Write $\mathbb{G} = (A; \{\ldots\})$ and $\mathbb{H} = (B; \{R_1, R_2, \ldots\})$ with $\operatorname{arity}(R_i) = n_i$.

General Definition

 $\mathbb H$ is **pp-constructible from** $\mathbb G$ iff there exist:

• $k \geq 1$

• Pp-definable relations of \mathbb{G} :

$$egin{aligned} & U \subseteq \mathcal{A}^k \ & \Theta \subseteq U^2 & (\ \subseteq (\mathcal{A}^k)^2 = \mathcal{A}^{2k}) \ & S_i \subseteq U^{n_i} & (\ \subseteq (\mathcal{A}^k)^{n_i} = \mathcal{A}^{n_ik}) ext{ for } i = 1, 2, \dots \end{aligned}$$

such that

• Θ is an equivalence relation on U.

•
$$\mathbb{H} \cong (U; S_1, S_2, \ldots) / \Theta.$$

Notation: $\mathbb{H} \leq_{ppc} \mathbb{G}$.

Theorem (Bulatov, Jeavons, Krokhin 2005; Larose, Tesson (2007)) Suppose \mathbb{G}, \mathbb{H} are finite structures. If \mathbb{H} is pp-constructible from \mathbb{G} , then $\operatorname{CSP}(\mathbb{H}) \leq_L \operatorname{CSP}(\mathbb{G})$.

Proof: similar to the proof that pp-definable relations can be simulated.

Corollary

If \mathbb{K}_3 (or $\mathbb{G}_1 = (\{0, 1\}; \{R_{abc} : abc \in \{0, 1\}^3\})$ is pp-constructible from \mathbb{G} , then $CSP(\mathbb{G})$ is NP-complete.

Theorem

Let \mathbb{G}, \mathbb{H} be finite relational structures. TFAE:

1 If is pp-constructible from \mathbb{G} .

2 \mathbb{H} is compatible with some member of $HSP(PolAlg(\mathbb{G}))$.

Proof sketch (2) \Rightarrow (1). Write $\mathbb{G} = (A; \ldots)$, $\mathbb{H} = (B; \{R_1, R_2, \ldots, \})$.

Let $\mathbf{A} = \operatorname{PolAlg}(\mathbb{G})$. Assume \mathbb{H} is compatible with $\mathbf{B} \in \operatorname{HSP}(\mathbf{A})$.

WLOG, $\mathbf{B} = \mathbf{U}/E$ for some $\mathbf{U} \in SP(\mathbf{A})$ and some congruence E of \mathbf{U} .

Say $\mathbf{U} \leq \mathbf{A}^k$. We can view $E \subseteq A^{2k}$.

Similarly, we can "pull back" each *n*-ary relation R_i to a *kn*-ary relation R_i^* on *A*.

All of $U, E, R_1^*, R_2^*, \ldots$ are compatible with **A**.

Hence they are all pp-definable in $\mathbb{G}...$

 \ldots and give a pp-construction of $\mathbb H$ from $\mathbb G.$

Corollary

For a finite relational structure \mathbb{G} , TFAE:

- $\mathbb{G}_1 = (\{0,1\}; \{R_{abc} : abc \in \{0,1\}^3\})$ is pp-constructible from \mathbb{G} .
- **2** HSP(PolAlg(\mathbb{G})) contains the 2-element set ({0,1}; \emptyset).

If either holds, $CSP(\mathbb{G})$ is NP-complete.

The **Algebraic Dichotomy Conjecture**, due to Bulatov, Jeavons and Krokhin, states:

Conjecture: If \mathbb{G} is *idempotent* and neither condition above holds, then $CSP(\mathbb{G})$ is in *P*.